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Current 3D imaging methods, including optical projection tomography, light-sheet

microscopy, block-face imaging, and serial two photon tomography enable visualization

of large samples of biological tissue. Large volumes of data obtained at high resolution

require development of automatic image processing techniques, such as algorithms

for automatic cell detection or, more generally, point-like object detection. Current

approaches to automated cell detection suffer from difficulties originating from detection

of particular cell types, cell populations of different brightness, non-uniformly stained,

and overlapping cells. In this study, we present a set of algorithms for robust automatic

cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain

regions and individual brain sections. We used watershed procedure to split regional

maxima representing overlapping cells.We developed a bootstrapGaussian fit procedure

to evaluate the statistical significance of detected cells. We compared cell detection

quality of our algorithm and other software using 42 samples, representing 6 staining

and imaging techniques. The results provided by our algorithm matched manual expert

quantification with signal-to-noise dependent confidence, including samples with cells of

different brightness, non-uniformly stained, and overlapping cells for whole brain regions

and individual tissue sections. Our algorithm provided the best cell detection quality

among tested free and commercial software.

Keywords: brain, cell, eye, molecular and cellular imaging, microscopy, quantification and estimation,

segmentation, Vessels

INTRODUCTION

GROWING evidence suggests that counts of various cell types identified by gene expression,
internal and external markers correlate with various important factors, including central nervous
system activity (Gage et al., 2008), impact of drugs of abuse (Eisch and Harburg, 2006), disease (Jin
et al., 2004; Geraerts et al., 2007), aging (Jin et al., 2003), and other conditions (Cameron et al.,
1998; Gao et al., 2009; Torner et al., 2009; Tanti et al., 2012). Currently, the majority of studies
are conducted using two-dimensional tissue section techniques (Peterson, 2004; Schmitz and Hof,
2005). This traditional approach, combined with planar microscopy techniques, has numerous
drawbacks, including low throughput capacity (Howard and Reed, 2010), loss of data due to
interpolation (West, 2012), and difficulty in recovering 3D information. Low throughput capacity
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usually results in quantification performed on a subset of
tissue sections (Mouton, 2011). Moreover, instead of the full
information about cell positions in the sample, only average cell
counts may be calculated. Such estimates may lead to incorrect
values, biases, and, consequently, to inaccurate results (West,
2012).

These drawbacks have resulted in the emergence of three-
dimensional fluorescent microscopy techniques. Confocal
microscopy, for example, enables researchers to capture thick
(up to several millimeters) tissue sections with the consequent
ability to directly estimate the absolute number of cells in entire
structure of interest (Encinas and Enikolopov, 2008). Other
imaging techniques include optical projection tomography
(Sharpe et al., 2002; Fieramonti et al., 2012), light-sheet
microscopy (Dodt et al., 2007; Keller and Dodt, 2012), block-face
imaging (Weninger et al., 2006; Verveer et al., 2007), and
serial two photon tomography (Ragan et al., 2012). Recently,
new methods for whole-mount immunohistochemical staining
were described (Chung et al., 2013; Gleave et al., 2013; Renier
et al., 2014). Despite an interest in three-dimensional imaging
of biological objects, the set of algorithms for automatic cell
detection is currently limited (Bordiuk et al., 2014).

In early studies, quantification of cellular populations was
directly performed by the observer. More recently, the amount
of data that has become available through advances in 3D-
imaging techniques has become enormous. In 3D methods,
sample preparation and capturing do not require significant
interaction with volume of interest, but manual quantification is
nearly impossible as a result of the enormous number of objects
of interest (e.g., ∼30,000 dividing cells in early postnatal murine
hippocampus). The need for efficient and accurate automatic
cell detection and counting algorithms has become obvious.
In addition, automatic quantification can help overcome other
difficulties, such as significant variations between experts (up to
60%; Schmitz et al., 1999) and complex comparisons of imaging
datasets across platforms.

To respond to this need, a number of software packages for 3D
reconstruction and quantification has been developed (Meijering,
2012). In agreement with the earlier careful tests (Schmitz
et al., 2014), our results have shown significant deviations
between the results of existing algorithms and the expert
quantification. Therefore, the goal of our study was to determine
the specific problems involved in automatic quantification and
create algorithms that would alleviate these issues. Herein,
we present a software package for robust three-dimensional
quantification of fluorescently labeled cell populations that solves
a range of typical problems of automatic cell detection. We called
our algorithm Dependable Algorithm for Matrix Image Analysis
(DALMATIAN). This algorithm is suitable for, but not limited to,
whole brain samples and individual tissue sections.

METHODS

We used histogram equalization to equalize 3D image data
intensities in the dataset. Voxel intensities in every 3D image were
changed so that the histogram of every 3D image matched the
histogram of the sample in which the parameters of the algorithm
were adjusted.

To suppress autofluorescence, we subtracted the
autofluorescent background obtained using imaging at different
wavelengths compared to data (i.e., 488 nm for background vs.
405 or 555 nm for data). The subtraction resulted in suppressing
the autofluorescent background and highlighting the signal,
as we equalized the 3D image histograms as described in the
previous step.

To eliminate the variations in signal and background, we
used Gaussian 3D high-pass and low-pass filters. The standard
deviation of the Gaussian high-pass filter had to be both
larger than the typical cell radius and smaller than the typical
background feature radius. The best compromise value for the
standard deviation of the high-pass filter typically exceeded
putative cell radius by the order of 1.5–2. The Gaussian low-
pass filter standard deviation had to be both larger than the
typical noise artifact radius and smaller than the typical cell
radius. The best compromise value for the standard deviation of
the low-pass filter was typically between 0.5 and several pixels.
We implemented both high-pass and low-pass filters within a
single Fast Fourier Transform (FFT) procedure. To suppress the
remaining background, we set all the voxels with the intensities
below the given threshold, typically 5–10% of the maximal
intensity, to zero. We selected this threshold not to exceed the
cell signal intensity. By doing so, we eliminated the variations in
signal and background.

To perform segmentation, we used the watershed procedure
on the negative 3D image. The watershed procedure divides the
3D image data into disjoint 3D segments, each containing a
local intensity maximum (Malpica et al., 1997). We expect each
intensity maximum to represent a whole cell or the other object
of the similar size, as we removed the features larger and smaller
than the average cell. Thus, each segmentmay contain zero or one
cell. In addition, we eliminate the segments substantially smaller
than expected cell volume (under 10–100 voxels).

To evaluate the statistical significance of the obtained 3D
segments, we applied the following bootstrap procedure to each
of the 3D watershed segments. We fit the voxel intensity within
each of the segments with a 3D Gaussian distribution. For the
fit, we used only the voxels of each segment within a given
radius from the local intensity maximum. This radius, typically
exceeding the putative cell radius by a factor of 1.5, i.e., about
7 pixels for the samples of our resolution, allows including both
voxels of the cell and of the background. For these voxels, we used
the unfiltered intensity data for the fit.

We performed the fit using multiple (∼1,000) bootstrap
iterations (Figure 4). Each timewe randomly resampled the voxel
list with repetitions. We fitted the unfiltered intensities of the
resampled voxel list with a Gaussian distribution.

I(Er) = I0 exp

(

−
1

2
ErT6̂

−1Er

)

We used a linear regression to estimate the variance matrix
6̂. Its eigenvalues correspond to the principal components of
the variance (Figure 4). Fraction of the resamples with the
principal components within the user-defined ranges determines
the statistical significance of the segment.
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Test Samples and Parameters
To estimate the cell detection quality, we used samples of 6
different types, 7 samples per type (42 samples total). In every
sample, expert annotations were available for small cutouts
containing∼10–100 cells. Our comparisons with human experts
were performed for these cutouts, however, cell detection was
performed for the entire samples including 400–30,000 cells.

Whole mount (WM) samples of Nestin-CFPnuc (CFP)
(Encinas et al., 2006) and 5-ethynil-2′-deoxyuridine (EdU)
stained hippocampi were captured using a laser scanning
confocal microscope Olympus FluoView 1000 with a water
immersion objective (20x, 0.5NA) at the axial resolution of 7µm
and the lateral resolution of 2µm. For these samples (CFP
WM and EdU WM, 7 samples each), we used the following
parameters: low (high)-pass filter standard deviations of 0.4 (10)
pixels, intensity thresholds 5% (CFP WM) and 10% (EdU WM)
of maximal intensity, minimal region size of 10 voxels, fitted
standard deviations larger than 1.5 pixels, p-value 0.01.

Tissue section (50µm) samples of 5-ethynil-2′-deoxyuridine
(EdU), 5-bromo-2′-deoxyuridine (BrdU) and c-Fos stained cells
were captured using a spinning disc confocal microscope
Andor Revolution WD with air objective (40x, 0.95NA) at
axial resolution 0.5µm and lateral resolution 1µm. For these
samples (EdU, BrdU, and c-Fos, 7 samples each) we used the
following parameters: low (high)-pass filter standard deviations
of 2 (6), 2 (3), and 2 (3) pixels, intensity thresholds of 6% (EdU),
8% (BrdU) and 4% (c-Fos) of maximum intensity, minimal
region size of 100 voxels, fitted standard deviations between
4 and 9 pixels, p-values of 0.3 (EdU), 0.5 (BrdU) and 0.1 (c-
Fos). For samples of DAPI stained tissue sections (7 samples),
imaging conditions and detection parameters matched those of
EdU samples.

For each of 42 samples, we performed 1,000 bootstrap
iterations on voxels within 7-pixel radius. As a measure of the
detection quality, we used the F-score (Fawcett, 2006; Selinummi
et al., 2009), which is the normalized harmonic mean of the
precision and the recall [F = 2 · precision · recall/(precision
+ recall)]. For the ground truth, we used cell detection by a
single trained human expert per sample type. Different experts
analyzed different sample types. We compared the detection
quality of our algorithm with that of the other software. We
used FIJI (Schindelin et al., 2012), and Imaris (Bitplane Inc.). In
addition, we analyzed the dependence of the detection quality
on the signal-to-noise ratio (SNR). We defined SNR as 20
logarithms of the average signal amplitude to the average noise
amplitude ratio. The average signal amplitude was measured as
a difference between signal and background, whereas the average
noise amplitude was measured as a standard deviation of the data
after high-pass filtering.

RESULTS

Challenges for the Automatic Algorithms
of Cell Detection
We focused on the following specific problems with regard to cell
detection (Figure 1):

• Differences between samplesmay affectmorphology, signal and
background (Figures 1A,B). Therefore, tuning of parameters
for each sample may be required for a typical cell detection
algorithm.

• Autofluorescence may make the objects, which do not carry
any fluorescent marker, to be as bright as the marked objects
of interest (Figure 1C). Major autofluorescent molecules, such
as lipofuscins, elastin and collagen, or Schiff ’s bases can be
reduced or bleached (Viegas et al., 2007). Otherwise, both
objects of interest and autofluorescent objects may contribute
to cell counts, giving rise to errors (Schnell et al., 1999).

• Inhomogeneous staining is typical for studies of dividing
cells (Figure 1D). Dividing cells are studied using synthetic
thymidine analogs, which incorporate into DNA along
with regular thymidine. Synthetic thymidine analogs may
distribute in the cell nucleus in patches. Such nuclei may
be detected as several objects or may be not detected at all
(Lindeberg, 1994).

• Varying background. If the fluorescent background in one part
of the sample is brighter than themarked cells in another parts
(Figure 1E), cell count errors may also rise, as there would be
no general threshold differentiating signal and background for
the entire image (Otsu, 1975; Jones et al., 2005; Xiong et al.,
2006).

• Overlapping cells (Figure 1F) may result from cellular division
(which is important in proliferation studies) or may be found
in samples with densely packed cells (retina, dentate gyrus
etc.). Overlaps may make different cells difficult to distinguish
(Malpica et al., 1997).

As each of the challenges above may result in cell counting errors,
the successful algorithm is expected to address all of them.

Our Algorithm Addresses Differences
between Samples
Fluorescence intensity relation between samples may be non-
linear, as background intensity may scale separately from
the signal intensity. To alleviate these differences, we use
histogram equalization to make all the histograms equal in the
dataset (Figures 2A,B). As a result, both background and signal
intensities match among the samples. After this procedure, one
can use the same set of parameters for every sample. Thus, the
batch cell counting is possible.

Our Algorithm Is Effective in Handling
Autofluorescence
Spectrum of autofluorescent objects (blood vessels, cells etc.)
is broader than spectrum of fluorescent markers (Troy and
Rice, 2004). Thus, taking the second image at a different
wavelength (e.g., 488 nm as opposed to 555 nm) allows capturing
autofluorescent background, but not the signal. The original and
the second images, captured at a different wavelengths, may
differ—a challenge identical to the previous one. Thus, we also
use histogram equalization to alleviate these differences. Once
the histograms are equal, the background levels match among
the samples. We subtract the autofluorescent background image
from the original one. As the original image is a combination of
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FIGURE 1 | Challenges for the automatic algorithms of cell detection: (A,B)

differences between samples, (C) autofluorescence, (D) inhomogeneous

staining, (E) varying background, (F) overlapping cells. (A,C,E) show the same

sample, thus autofluorescence patterns are repeated. All figures: maximum

intensity projections of 3D images.

the fluorescent signal and autofluorescent background, as a result
we get the signal preserved and the autofluorescence suppressed
(Figures 2C,D).

Our Algorithm Is Resistant to
Inhomogeneous Staining
One way to count the cells is to isolate them from each
other. Cells can be isolated using fluorescent intensity minima
between them. However, undesirable local intensity minima
within the cells, reflecting inhomogeneous staining, may arise
(Figure 3A). These minima potentially lead to splitting cells into
the compartments, which may affect cell count. To overcome
that challenge, we use Gaussian 3D low-pass filter. Averaging the
fluorescent intensity over the region smaller than a cell, but larger
than a typical staining inhomogeneity, low-pass filter removes
local intensity minima within the cells, preserving those between

FIGURE 2 | Image preprocessing. (A,B) histogram equalization. (C,D)

suppressing autofluorescence. To remove autofluorescence we subtracted the

images of the same sample obtained at different wavelength. All figures:

maximum intensity projections of 3D images.

the cells (Figure 3B). Thus, we expect inhomogeneous staining
not to affect the cell isolation.

Our Algorithm Is Resistant to Varying
Background
Fluorescent background gradients may also affect cell isolation.
Should the cell be located on the intensity slope, it may be
not separated from the others by the intensity minimum. To
reduce the impact of the background, we use Gaussian 3D high-
pass filter. Averaging the fluorescent intensity over the region
larger than a cell provides us with an image of the fluorescent
background. By subtracting that background image from the
original one we equalize the intensity baseline for every cell
(Figure 3C). To suppress the remaining background, we assign
zero to all the voxels with fluorescent intensities below a selected
threshold (Figure 3D). These steps diminish the impact of the
varying background on cell isolation.

To facilitate the performance of both 3D low-pass and high-
pass Gaussian filters, we applied it in frequency domain using fast
Fourier transform (FFT).

Our Algorithm Is Successful in Splitting the
Overlapping Cells
Low-pass filtering reduces the occurrences of local intensity
minima within the cells. Different cells can be separated using
the intensity minima between them. To this end, we used
the watershed algorithm (Figure 3E). Starting with the global
intensity maximum, watershed algorithm visits all the voxels in
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order of the intensity decrease. If a visited voxel is a standalone,
the algorithm assigns a new integer label to it. Otherwise, if a
visited voxel is adjacent to a labeled one, it shares the same
label. Should a visited voxel be adjacent to two voxels with
distinct labels, its value will be set to zero, which means it is a
boundary between cells. Thus, we divide the entire 3D volume
into the segments each containing a single intensity maximum.
Preprocessing withGaussian high-pass and low-pass filters allows
to reduce the creation of tiny areas. Should the tiny areas still be
created, they are eliminated from the analysis based on their size.
This procedure allows us to split overlapping cells.

Our Algorithm Includes Methods for
Statistical Testing of the Detected Regions
Using Bootstrap
To determine, which of the segments represents a cell, we fit
the intensity in every segment with a Gaussian distribution. We
use the original unfiltered data for the fits, as it allows more

FIGURE 3 | Steps of our cell detection algorithm: (A) original image, (B)

Gaussian 3D low-pass, and (C) high-pass filters, (D) threshold correction, (E)

watershed transform, and (F) bootstrap procedure. All figures: maximum

intensity projections of 3D images.

conservative estimation of the distribution parameters. Only
voxels of the segment within a selected radius from the intensity
maximum are used, to reduce the impact of the background of
the image. To estimate the statistical variability of the parameters
of the fit, we use the bootstrap procedure (Hogg, 2005). In the
bootstrap, the fits are estimated for multiple resamples of the
same data (Figure 4). The resampled data is obtained from the
original 3D images by selecting voxels within the same region
with repetitions. Increasing the number of voxels included in
fits makes the estimation of distribution of fitting parameters
more accurate (Hogg, 2005). Using the distribution of fitting
parameters (standard deviations and intensity) we then estimate
the probability that a given segment satisfies definition of a
cell provided by the user. For example, if a cell is defined as
an object whose half-axes in each direction extend less than
d voxels independently of the brightness, for each watershed
segment we will compute the fraction of bootstrap iterations that
do not satisfy this criterion. This fraction is interpreted as a p-
value, i.e., the probability that a given watershed segment is not
a cell. Cells are then identified as segments that yield p-value
less than a pre-defined threshold (usually taken to be p = 0.05,
Figure 3F).

Below, we show the results of testing of our algorithm
using various samples. We compared the cell detection provided
automatically by our algorithm to the cell detection produced
by human experts in the same samples. We also compared our
results with the commercial and free cell detection software,
including FIJI (Schindelin et al., 2012) TrackMate, and Imaris
(Bitplane Inc.).

FIGURE 4 | (C) Sample cell. Bootstrap Gaussian fit: (B,E,F) principal

components of the standard deviation for all the resamples and (A,D,G,H) its

histograms. Mean values are indicated by the red lines, and standard

deviations by the gray boxes.
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Our Algorithm Yields High Cell Detection
Quality for Tissue Sections
To show how our algorithm deals with inhomogeneous staining,
we present the testing results for 50µm thick brain sections
stained with EdU and BrdU and captured in 3D using a confocal
microscope (Figures 6A,B). EdU and BrdU, being the synthetic
analogs of thymidine, incorporate into DNA of the dividing cells.
Later, depending on the cell cycle phase, EdU and BrdU may
distribute in the cell nucleus in patches. To estimate the cell
detection quality, we use the F-score, which is the normalized
harmonic mean of the precision and the recall [F = 2 · precision
· recall/(precision + recall)]. To remind, precision = TP/(TP
+ FP), recall = TP/(TP + FN), where TP, FP, and FN are true
positives, false positives and false negatives, respectively.

Cell detection quality provided by our algorithm is 90 ± 2%
F-score for EdU and 85 ± 7% F-score for BrdU. Notably, the
higher cell detection quality in EdU samples, compared to the
one in BrdU samples, is consistent with the higher SNR: 6.2 dB
and−3.6 dB, respectively. We also observed a similar trend using
other software. For the same set of samples, FIJI provided cell
detection quality of 86 ± 6% for EdU and 71 ± 8% for BrdU,
whereas Imaris provided the quality of 85 ± 7% for EdU and 58
± 22% for BrdU (all in F-scores). Our algorithm yields highest
cell detection quality for these samples when compared to other
software.

Similarly, to show how our algorithm deals with varying
background, we used c-Fos and DAPI stained tissue section
samples (Figures 6C,D). c-Fos features a low SNR (−6.3 dB),
increasing the impact of the background on the cell detection.
For our samples, SNR of DAPI images (2.81 dB) exceed that of
c-Fos images. SNR of DAPI samples may be impaired due to the
membrane permeability, which would also increase the impact of
the background on the cell detection.

Cell detection quality provided by our algorithm equals to
86 ± 7% for c-Fos and 92 ± 3% for DAPI, which is also
consistent with the expectation based on SNR. FIJI provided the
cell detection quality of 81± 7% for c-Fos and 77± 6% for DAPI,
whereas Imaris provided the cell detection quality of 67 ± 25%
for c-Fos and 78 ± 8% for DAPI on the same set of samples (all
measures are in F-scores). Runtime and memory usage for our
algorithm matched that of both Imaris and FIJI: it took roughly
2–5min to load and process a tissue section (roughly 1,500 ×
3,000 × 30 pixels) using a laptop (Core 2 Duo ASUS laptop
with 2 GB RAM). Thus, our algorithm is efficient in addressing
varying background. Moreover, for the given set of samples, our
algorithm provided the best level of F-score compared to two
other software packages (FIJI and Imaris).

Our Algorithm Yields High Cell Detection
Quality for Whole Mount Samples
Although both tissue sections and whole mount (WM) samples
are in 3D, there are important differences between them. Sample
volume is larger in WM samples (Figure 5), which may impose
memory constraints. Consequently, resolution inWM samples is
usually coarser than in sections to make the amount of the data
manageable. Therefore, WM samples present more challenges to

FIGURE 5 | EdU+ cells detected in whole mount stained 3D hippocampus of

P14 mouse (3 projections). This reconstruction includes 36451 cells.

an algorithm, which has to perform in the conditions of reduced
spatial resolution. In particular, the algorithm has to be able to
resolve overlapping objects.

To show how our algorithm deals with overlapping cells,
we tested it on 3D images of EdU+ and CFP+ cells in WM
samples (Figures 6E,F). CFP here stains neural progenitor cells—
a densely packed cell population. EdU stained cells during cell
division, which may not have enough time to move apart.

Cell detection quality (F-scores) provided by our algorithm is
99 ± 1% for EdU (WM) and 97 ± 2% for CFP (WM). These
high values reflect high SNR in the samples used (16.9 and
10.7 dB, respectively). FIJI provided cell detection quality of 86
± 4% for EdU (WM) and 74 ± 4% for CFP (WM), whereas
Imaris provided cell detection quality of 93± 3% for EdU (WM)
and 83 ± 7% for CFP (WM) on the same set of samples (all
measures are in F-scores). Runtime with our algorithm for a
whole mount hippocampus sample (3,000 × 3,000 × 300 pixels)
was roughly 1 h using a computer server (4-Xeon Supermicro
server with 32 GB of RAM). Notably, runtime andmemory usage
may be reduced with optimization and parallel computations.
Therefore, our algorithm can deal with the issues specific to WM
samples and provided the best cell detection quality (with regard
to human experts) compared to the other automatic algorithms.

Our Algorithm Is Not Limited to a Particular
Resolution
Data resolution may vary across samples due to staining type,
microscope used, sample volume and the desired level of
detail. Therefore, cell detection algorithm should allow switching
between data resolutions. To apply our algorithm to datasets with
different resolution, one needs to scale the spatial parameters
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accordingly. The parameters (low-pass and high-pass filter
standard deviations, cell size ranges) can be set independently for
each axis, which makes it applicable to anisotropic resolutions.
In particular, our algorithm allows the user to have the different
parameters for the Gaussian in different directions.

To show how our algorithm addresses different resolutions,
we provide cell detection qualities for EdU cells in WM samples,
acquired with lower resolution (axial 7µm, lateral 2µm), and
in tissue sections, acquired with higher resolution (axial 0.5µm,
lateral 1µm) (Figures 6A,E). Both types of the samples featured
high cell detection quality (F-score): 99 ± 1 and 84 ± 2%,
respectively. Higher cell detection quality (F-score) in samples
with lower resolution can be explained by a larger SNR in these
samples (16.9 and 6.2 dB, respectively). Thus, our algorithm can
deal with datasets obtained at different imaging resolutions.

Our Algorithm Allows for Batch Cell
Detection
Cell detection in batches is important for increasing throughput,
as it alleviates the necessity to tune the detection parameters
for each individual sample. This seemingly easy task is not
trivial because of sufficient differences between samples. To show
how our algorithm addresses this issue, we present the batch
testing results for all the samples under study (Figure 6). All the
parameters were constant for each sample type.

Batch cell detection quality provided by our algorithm is 86±
5% for EdU, 78 ± 9% for BrdU, 81 ± 13% for c-Fos, 92 ± 3%
for DAPI, 86 ± 2% for EdU (WM) and 57 ± 9% for CFP (WM)
(all measures are in F-scores). Importantly, when compared
to human expert, cell detection quality in batches of samples
provided by our algorithm exceeded two other software packages
(Imaris and FIJI) with individual settings for each sample. Thus,
we consider our algorithm reliable in batch cell detection.

Dependence of Cell Detection Quality on
Noise
One limitation of our algorithm is that cell detection quality
decreases for noisy data. To quantify this effect, we measured
SNR for every sample under study. We defined SNR as 20
logarithms of signal amplitude to noise amplitude ratio. SNR
defined like this is measured in decibels (dB). Average signal
amplitude was measured as a difference between signal and
background, whereas average noise amplitude was measured as a
standard deviation of the data after high-pass filtering. For every
sample type, we plotted the average cell detection quality (F-
score), as a function of the average SNR. To compare between
different software, we show the data for our algorithm, Imaris
and FIJI. The data suggests that despite of the decrease of cell
detection quality (F-score), at lower SNR values, our algorithm
provides the best cell detection quality among the tested software
(Figure 7).

DISCUSSION

Since 1960s, when the first systems were developed to automate
cell detection in images (Meijering, 2012), a number of

FIGURE 6 | Various types of 3D samples (maximum intensity projections) and

cell detection quality (F-scores). Tissue sections stained with (A) EdU, (B)

BrdU, (C) c-Fos, (D) DAPI, (E) whole-mount hippocampi stained with EdU,

and (F) nestin-CFPnuc.

cell detection algorithms has been published. Most of these
algorithms share the common approaches (Wu et al., 2008;
Meijering, 2012), including intensity thresholding (Otsu, 1975;
Jones et al., 2005; Xiong et al., 2006), feature detection
(Meyer, 1979; Lindeberg, 1994; Demandolx and Davoust,
1997), morphological filtering (Wu et al., 2008), region
accumulation (Malpica et al., 1997) and deformable model fitting
(Kobatake and Hashimoto, 1999; Esteves et al., 2012). Cell
detection algorithms would usually combine these approaches
to overcome its individual limitations (Meijering, 2012), and
claim the superior performance in specific tasks (Meijering,
2012). Therefore, there is a demand for a cell detection
algorithm generic enough to be easily adjustable for a wide
range of applications (Schmitz et al., 2014). To address that
demand, we started with building a list of challenges for the
automatic algorithms of cell detection. These challanges included
differences between samples, autofluorescence, inhomogeneous
staining, varying background, and overlapping cells. We
developed and implemented a new algorithm for 3D cell
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FIGURE 7 | Dependence of cell detection quality on the SNR. Sigmoid fits for

our algorithm are provided.

detection, keeping these challenges inmind to be able to deal with
a wide range of sample types.

We used histogram equalization for the reduction of
autofluorescence and to provide the ability of batch detection
with a single set of parameters. Gaussian 3D low-pass filtering
was successful in dealing with inhomogeneous staining. Gaussian
3D high-pass filtering with subsequent thresholding was efficient
in reducing varying background. A watershed procedure is
effective in splitting images into segments, containing zero or one
cell. A bootstrap fitting procedure was effective in establishing
the statistical significance of the watershed segments as cells. We
showed that one set of parameters was sufficient for handling

samples of the same type in a batch mode. Tests performed
on 42 samples, representing 6 different staining and imaging
techniques, have shown that our algorithm enables reliable
detection of cells of different brightness, non-uniformly stained
and overlapping cells in whole brain regions and individual
tissue sections. The comparison to human expert annotations
have shown a favorable performance described by the range of
F-scores between 78 and 99% (Figure 7). These scores exceeded
results obtained with other software packages, such as FIJI and
Imaris. Thus, our algorithm has addressed the typical challenges
of automatic cell detection and yielded high cell detection quality.
One factor to our knowledge that impaired cell detection quality
was SNR. Testing on various types of the samples shows that our
algorithm is generic enough to be adjustable for a wide range
of applications. The software is available at http://github.com/
koulakovlab/dalmatian.
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