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High-throughput imaging techniques, such as Knife-Edge Scanning Microscopy

(KESM),are capable of acquiring three-dimensional whole-organ images at

sub-micrometer resolution. These images are challenging to segment since they

can exceed several terabytes (TB) in size, requiring extremely fast and fully automated

algorithms. Staining techniques are limited to contrast agents that can be applied to

large samples and imaged in a single pass. This requires maximizing the number of

structures labeled in a single channel, resulting in images that are densely packed with

spatial features. In this paper, we propose a three-dimensional approach for locating

cells based on iterative voting. Due to the computational complexity of this algorithm, a

highly efficient GPU implementation is required to make it practical on large data sets.

The proposed algorithm has a limited number of input parameters and is highly parallel.

Keywords: cell detection, image processing, GPU, big data, microscopy, KESM

1. INTRODUCTION

Finding positions of cell nuclei is important for several biomedical applications, including cancer
research (Dow et al., 1996), disease diagnosis (Zink et al., 2004), neurodegenerative disease research
(Li et al., 2007a), and in vitro tracking (Merouane et al., 2015). Several cell localization methods
have been explored in the past few decades. However, they are mostly limited to two dimensional
datasets, and the available three-dimensional (3D) algorithms are inaccurate, slow, or difficult to
automate due to common variations in cell size, shape, and proximity. Perhaps themost challenging
problem to address is computation speed, which significantly impacts processing large images.
Recent advances in high-throughput imaging allow researchers to acquire images of whole brains
(Yuan et al., 2015; Xiong et al., 2017) containing cellular data that is difficult to segment. Processing
these data sets using traditional methods is time consuming and impractical.

1.1. Knife Edge Scanning Microscopy (KESM)
Knife-Edge Scanning Microscopy (KESM) is an optical imaging technique that allows researchers
to quickly collect terabyte-scale 3D images by serially sectioning a sample (Mayerich et al., 2008)
labeled using either traditional brightfield stains, such as thionine, Golgi-Cox, or hematoxylin and
eosin (H&E), as well as transgenic fluorescent labels (Qi et al., 2015). KESM allows researchers
to collect detailed images describing cell structure and vascular/neuronal connectivity across large
(cm3) volumes. Since the imaging is destructive, most labeling techniques attempt to maximize the
amount of information collected in a single imaging pass. Optimal stains, such as thionine, provide

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2018.00028
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2018.00028&domain=pdf&date_stamp=2018-04-26
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mayerich@uh.edu
https://doi.org/10.3389/fnana.2018.00028
https://www.frontiersin.org/articles/10.3389/fnana.2018.00028/full
http://loop.frontiersin.org/people/523820/overview
http://loop.frontiersin.org/people/16472/overview
http://loop.frontiersin.org/people/530951/overview
http://loop.frontiersin.org/people/35178/overview
http://loop.frontiersin.org/people/16474/overview


Saadatifard et al. Cell Detection for Large-Scale Microscopy

multiple structural features in a single channel. Thionine staining
is common in neuroscience for labeling DNA and ribosomal
RNA by binding to acidic proteins and nucleic acids. This
label provides contrast for neurons, endothelial cells, and
various glial cells (Figure 1). While thionine is not generally
considered to provide three-dimensional structure, the use of
KESM also provides microvascular images, which are unstained
and surrounded by labeled endothelial cell nuclei (Xiong et al.,
2017).

1.2. Previous Work
Our three primary goals for cell localization in KESM images
are (a) automation, (b) speed, and (c) accuracy. While accuracy

FIGURE 1 | Thionine-stained mouse cortex imaged using KESM with a 1 µm

section thickness. Thionine is a nucleic acid stain, labeling DNA (cell nuclei)

and ribosomal RNA, which is dense within the neuron cytoplasm. The arrows

indicate tissue features: endothelial cell nuclei (e), neuron nucleoli (c), glial cells

(g), neuron nuclei (n), pericytes (p), and oligodendrocyte nuclei (o). The

surrounding neuropil is stained a light gray, making the unstained microvessels

(v) visible in 3D.

is generally a priority in most algorithms, the bottleneck for
large analysis is processing speed. Maximizing data throughput is
critical for applying any practical segmentation algorithm to big
data. Consequently, cellular detection for large data sets requires
fully automated algorithms, since user interaction is impractical
for data sets containingmore than a few thousand cells embedded
in several terabytes of raw image data. In general, our priority is to
achieve segmentation throughput—including user interaction—
that is comparable to the acquisition time of the original raw
image. At that point, we elect to optimize accuracy.

There are several automated techniques for segmenting
cell nuclei in two-dimensional images. Template matching
algorithms (Chen et al., 2013; Liu et al., 2016; Zarella et al., 2017)
can be reliable when the cell structure is known. These algorithms
are practical in 2D since the number of orientations for non-
symmetric cells is limited. The number of required template tests
also increases with cell variety and size. A traditional Laplacian
of Gaussian (LOG) blob detector (Marr and Hildreth, 1980)
is fast but provides low accuracy in practice. However, over-
segmentation using LoG filters is often a starting point for
multi-step algorithms (Bjornsson et al., 2008). Contour detection
(Wienert et al., 2012; Lotfollahi et al., 2017) and level set methods
(Cremers et al., 2007; Dzyubachyk et al., 2010; Chinta and
Wasser, 2012) require some starting point and rely on a time-
consuming physical evolution algorithm. Some active contours,
such as snakuscules (Thevenaz and Unser, 2008), rely on very
simple optimization and mitigate the need for a seed point
by relying on speed and initializing the contours in a dense
grid. However, these methods require excessive data fetches and
current theory doesn’t extend to higher-dimensional images.

Three-dimensional techniques are available in the FARSIGHT
Toolkit (Bjornsson et al., 2008), and rely on a multi-step process
that binarizes the input based on graph cuts and then detects the
seed points using a scale-space LoG filter. Various versions of
nuclei detection rely on gradient flow tracking (Li et al., 2007b)
or spectral clustering (Lou et al., 2012, 2014). Others combine
local adaptive pre-processing with decomposition based on line
of sight to separate apparently touching cell nuclei (Mathew
et al., 2015). A graph based segmentation technique has been
developed (Arz et al., 2017) for a fast and efficient binarization,
and a nucleus model constructed to partition the foreground.
Finally, machine learning approaches (Sommer et al., 2011) are
also available and we have previously reported the use of a multi-
layer perceptron for cell detection on similar data sets (Mayerich
et al., 2011).

Iterative voting (Parvin et al., 2007; Han et al., 2011) is a
highly robust algorithm that relies on radial symmetry. It requires
minimal initial information and can be applied to cells of various
sizes. However, this algorithm requires a significant amount of
computation, making it generally impractical for large data sets
and video. However, iterative voting can be highly parallelized
for use on large data sets. GPUs are widely used to accelerate
computationally expensive algorithms for volumetric datasets
(Pan et al., 2008; Shi et al., 2012; Eklund et al., 2013).

In this paper, the iterative voting algorithm is used to localize
cell nuclei. We describe a highly parallel 3D algorithm that can be
readily extended to whole brain data sets.
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2. METHODS

Iterative voting (Parvin et al., 2007) is an automated technique
based on radial symmetry that requires very little user input.
We first provide an overview of the iterative voting method
and propose a novel 2D GPU implementation. Using these
principals, we then develop a novel 3D voting technique that
takes advantage of additional optimizations that are possible in
higher dimensions. Finally, we validate these methods, provide
profiling results, and discuss avenues for future work.

2.1. Two-Dimensional Iterative Voting
Raw images are first optionally blurred by a Gaussian filter (σG ≈
2 pixels) to remove noise, creating an input image I. The gradient
is computed to initialize three fields:

M = |∇I| (1)

20 = tan−1
(

Iy

Ix

)

(2)

V0 = 0 (3)

where M(x, y) ∈ R is the gradient magnitude, 20(x, y) ∈ [0, 2π)
is the initial direction field specified in angular coordinates, and
V0(x, y) ∈ R is the initial vote field.

The gradient direction 2 and magnitude M are used to
initialize a set of T voters consisting of a position t ∈ R

2, a
magnitude mt ∈ R [where mt = M(t)], and direction θt,i ∈

[0, 2π) which is iteratively updated such that i ∈ [1,N]. During
each iteration i, a vote image Vi is initialized to zero. Each voter
t = [1,T] applies a vote with weight mt to all pixels within
a voting cone oriented along θt with length r (Figure 2). The
voting cone will be narrowed after each iteration by reducing φ.
A new vote direction is determined for each voter by orienting
θt,i+1 toward the maximum value Vi within the voting cone. This
results in a series of iteratively refined vote images Vi (Figure 2).

After a specified number of iterations, local maxima within the
final vote image VN are calculated to determine the set of K cell
locations C = [c1, c2, . . . , cK]. The final vote image provides a
score sk = VN[ck] that can be used to infer the likelihood that ck
corresponds to a cell position.

We first reformulate the iterative voting algorithm to
minimize input parameters. Our proposed algorithm is outlined
in Algorithm 1 and shown in Figure 3. We propose the following
modifications:

• Uniform voting grid. Previous implementations reduce
evaluation time by limiting voters to locations where
M[x, y] > m. Our implementation assumes that all pixels
as voters, which are represented using the uniform grids M
and 2. While this significantly increases the voter count, it
removes the need for a threshold m and provides several
advantages for parallelization (section 2.2).
• Vote field weighting. Previous algorithms (Parvin et al.,

2007) apply a user-defined weight to each vote. We found
no significant reduction in performance by eliminating this
weighting.

FIGURE 2 | (A) The cone for a voter at t is overlayed on the vote image V,

where green dots represent points within the vote cone that will receive votes.

The orientation of the cone is given by 2(t). When updating the voter direction,

the maximum value of V within the vote cone determines the new value for 2.

(B–E) Important steps in the iterative voting process are also shown. (B) The

gradient of the input image is calculated and used to initialize 2. Cones are

shown for voters in their initial state (D) as well as after several iterations (E).

The local maxima (X) indicates the cell location.

• Iteration count. Previous algorithms require an initial voting
angle φ0 and number of iterations n. We found that iterative
voting is insensitive to values of φ0 > π

4 , so we use φ0 =
π
2

as a conservative starting point. The number of iterations is
determined by performing a binary search until φ < φt . The
terminating condition φt is selected such that the voting angle
is less than one pixel wide, at which point no new information
can be extracted from the image.
• Vote cone bounding volume. We implement a bounding

volume to limit the number of points tested for vote cone
membership.

These modifications remove all input values except a cell radius
estimate r, which is based on the magnification and resolution
of the input image I. In the following sections, we will detail
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FIGURE 3 | Diagram showing the proposed iterative voting algorithm steps.

The first step computes the input gradient. The main step is generating vote

image, the same size image as the input. This algorithm iterates through voting

steps, to update voting fields and generate a converged vote image. Third

step localizes cell positions by using the last vote image.

how our modified algorithm is implemented in two dimensions
(Algorithm 1).

2.1.1. Calculating Vote Cones
All pixels (x, y) ∈ [X × Y] in the input image act as voters. Since
a high gradient magnitude correlates with the presence of cell
boundaries, votes are weighted by M (Equation 1) at the voter
location. Votes are applied to pixels in the vote field V based on
their position relative to voters. A pixel at p in V will receive a
vote from t if it lies within the vote cone of t defined by:

−
φ

2
< tan−1

(

ty − py

tx − px

)

−2(t) <
φ

2
(4)

and
∣

∣t− p
∣

∣ < r (5)

where t is a voter position and p is a position inV that receives the
vote (Figure 2). This allows us to define a membership function
F(p, t,2(t), r,φ) ∈ B that is true if p is within the voting cone of
t (Algorithm 1, line 8).

We limit the number of pixels tested by generating a bounding
volume around the vote cone. We describe this method in detail

Algorithm 1 Iterative voting in two dimensions.

Input: I ∈ R is an [X × Y] input image
r is a maximum radius (in pixels)

Output: C = [c1, c2, . . . , ck] is a list of cell locations
S = [s1, s2, . . . , sk] scores for each point

1: M← calculate |∇I| // gradient magnitude
2: 2← calculate ∡∇I // gradient angle
3: φ← π/2 // initialize vote angle
4: φt ← tan−1(1/r) // set stopping condition
5: while φ > φt do

6: V ← 0 // initialize vote field
7: for t ∈ [X,Y] do // for each voter
8: P← {p : F(p, t,2(t), r,φ)}
9: for p ∈ P do // for points in vote cone
10: V(p)← V(p)+M(t)
11: end for

12: end for

13: for t ∈ [X,Y] do // update voter directions
14: P← {p : F(p, t,2(t), r,φ)}
15: p← arg max(V , P) // find local maximum
16: 2(t)← ∡

(

t− p
)

// update voter direction
17: end for

18: φ← φ/2 // reduce vote angle
19: end while

20: C← maxima(V) // find all maxima
21: S← V(C) // get cell scores

in our 3D algorithm, since the 2D case is a trivial modification of
the 3D method (section 2.3).

2.1.2. Calculating Vote Images
The vote image V is re-calculated every iteration (Algorithm 1,
line 10), providing progressively more refined estimates of cell
locations. This field can be calculated in two ways:

• Collect Votes - For each point p in the vote image V , find
the set of voters T with vote cones containing p: T ∈

{t : F(p, t,2(t), r,φ)}. Finally, sum the contributions of all
voters:

V(p) =
∑

t∈T

M(t) (6)

• Project Votes - For each voter t, find the set of points P in
its vote cone: P ∈ {p : F(p, t,2(t), r)}. Finally, add the value of
M(t) to V at each point in P.

By optimizing the calculation of P ∈ {p : F(p, t,2(t), r,φ)}
and parallelizing, we demonstrate that the second case can be
implemented efficiently on a GPU and is therefore expressed in
Algorithm 1 (line 8). This technique saves a significant number of
data fetches, providing tremendous efficiency gains whenmoving
into higher dimensions.

2.1.3. Update Voter Directions
The voter direction (2), vote angle φ, and r determine the
orientation and size of the vote cone at each iteration. While
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the update function for φ is simple (Algorithm 1, line 18), the
update function for 2 is based on the vote image V (line 16).
For each voter t, we first find the position p corresponding to
the maximum value of V within the vote cone. The new vote
direction is oriented toward the location of this local maximum:

2(t) = tan−1
dy

dx
(7)

where

d =

(

argmax
p∈P

V(p)

)

− t (8)

2.1.4. Cell Localization
The vote image V is iteratively refined until the stopping
condition φ < φt is reached (Algorithm 1, line 18). The final vote
image is then processed to find local maxima and corresponding
score values. Local maxima are selected subject to the constraint
that peaks are separated by at least a distance r. If multiple local
maxima are clustered within a distance r, the maximum with the
highest score is maintained. A demonstration of the results of
this algorithm on 2D images is provided in the Supplementary
Material.

2.2. Data Parallel Implementation
When the input is large, or consists of several images (e.g.,
video), the voting and update steps require a large number of
data fetches and calculations, resulting in detection time that
cannot keep up with image acquisition. In this section, we
show that iterative voting can be highly data parallel, making it
amenable to inexpensive (GPU based) acceleration. Instead of
using a multi-core CPU, we take advantage of thousands cores
in a GPU to speed up the algorithm. Even though CPU cores
are more powerful, using thousands GPU cores increases the
throughput of the algorithm for volumetric datasets. In addition,
each streaming multiprocessor (SM) on a GPU is equipped with
a shared memory unit that is close to the processor and therefore
decreases memory latency. Atomicmemory operations also allow
several cores to concurrently access a block of memory by locking
access until the operation is completed for each core (Figure 4).

We implemented the proposed algorithm using the CUDA
platform using the following kernels:

• Gradient - ∇I is calculated in parallel using finite differences
as a stencil operation. We use an O(h2) calculation (central
differences) for central values with O(h) at the edges. A larger
stencil may be more robust, or serve as a replacement for
blurring, in high-SNR applications.
• Voting - Voting, described in detail below, is implemented as

a stencil operation where each thread is assigned a voter and
given the task of writing data to V within the corresponding
vote cone.
• Direction Update - The voter direction is updated by tasking

each thread to search the corresponding vote cone for the local
maximum value and updating the angle in 2.
• Maxima - Local maxima are calculated using a simple stencil

operation and collected into a list of point/score pairs using
the CPU.

In the first kernel, each thread computes the gradient magnitude
and direction, saving the necessary values to M and 20

(Algorithm 1, lines 1–2). The voting kernel (Algorithm 1, lines
8–11) adds the gradient magnitude of each voter to V at all pixels
within its vote cone. Each voter is assigned a thread that uses
Equations (4) and (5) to find the cone. In order to keep the
application data parallel, all pixels within an (r + 1) × (r + 1)
window are considered. Note that a large number of pixels
outside of the vote cone are considered, particularly as φ becomes
small. While this must be addressed in the 3D case (section 2.3),
there is no significant improvement in 2D unless r is extremely
large. In that case, down-sampling the image is more practical.

To improve efficiency, 2 was descretized and a look-up table
is used for the necessary tan−1 calculations (Equation 4). Global
memory fetches are reduced by calculating V for each block
in shared memory. Since each pixel in V may be a member
of multiple vote cones, atomic additions are required, leading
to potential stalls. However, these occur with low probability
during early iterations due to the large vote cone coverage. As the
probability of a conflict increases with reduced φ, the smaller vote
cones result in a fewer fetches that offset the reduced occupancy.
A third kernel updates voter directions as outlined in Algorithm

FIGURE 4 | Minimizing memory latency and write conflicts. (A) The vote image V at iteration i is mapped to a CUDA grid composed of square thread blocks. (B) Each

thread block writes votes to shared memory using atomic adds to ensure that simultaneous votes (+) are correctly cast. (C) The shared region for each block is copied

to global memory using atomic operations to ensure that votes from adjacent blocks (+) are cast correctly.
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1 lines 14–16. Again, each voter is assigned to a thread. Since
no writes to V will be performed, the vote-cone membership
test is optimized by copying the tan−1 look-up table to shared
memory. Each pixel of V within the vote cone is accessed to find
the maximum value, which is then used to update 2(t). The final
kernel calculates the local maxima of the vote image (Algorithm
1, lines 20, 21) using a stencil of r. Local maxima are stored in a
list with scores equal to V at the corresponding points.

If cell localization is the final desired step, a threshold can
be applied based on score using manual or automated (Otsu,
1979) methods. However, cell localization is usually followed
up with further segmentation (Merouane et al., 2015), taking
the localization score into account as a measure of posterior
probability.

2.3. Three-Dimensional Implementation
The principals of three-dimensional iterative voting have been
previously explored for cell culture fluorescent images (Han et al.,
2011). However, the required number of image fetches limits a
single-threaded algorithm to relatively small data sets. Due to the
recent availability of large 3D data (Yuan et al., 2015; Xiong et al.,
2017), the need has arisen for fast algorithms that can be applied
on terabyte-scale data with more complex labeling.

We first reformulate the iterative voting algorithm for
efficient implementation in three dimensions. Since the proposed
algorithm is orders of magnitude faster than a CPU-based
implementation, we limit discussion to the data parallel
implementation (Algorithm 2). Modifications from the 2D
parallel implementation include:

1. Cartesian coordinates - We store the gradient direction
using a Cartesian vector field G, which allows us to avoid
discretization of the 3D spherical vector space to generate
look-up tables and increases the efficiency of vote cone
membership calculations.

2. Memory-usage - We quickly encounter device memory
limitations for large-scale data sets. In order to preserve
memory, the vector magnitude field M is embedded in the
Cartesian vector field G. As with the 2D algorithm, this allows

Algorithm 2 Parallel iterative voting in three dimensions.

Input: I ∈ R is an [X × Y × Z] input
r is a maximum radius (in pixels)

Output: C = [c1, c2, . . . , ck] is a list of cell locations
S = [s1, s2, . . . , sk] scores for each point

1: φ← π/2 // initialize vote angle
2: φt ← tan−1(1/r) // set stopping condition
3: G← kernel: |∇I| // compute gradient
4: while φ > φt do

5: V ← 0 // initialize vote field
6: V ← kernel: vote // calculate vote field
7: G←kernel: update // update gradient direction
8: φ← φ/2 // reduce vote angle
9: end while

10: C, S←kernel: localize // localize cell centers

us to represent the vote magnitude and orientation in the
same number of dimensions as the input image. However,
additional calculations are required to separate the orientation
and magnitude components.

3. Vote Cone Bounding - We generate a bounding volume for
the vote cone to reduce the number of pixels in V considered
for membership. This is because the ratio of pixels within the
vote cone to those near the voter increases significantly with
dimension.

The main objective of modifications (1) and (2) is to minimize
both computation and memory usage, while both (2) and (3)
address the constraints imposed by increasing dimensionality.

The vote angle φ and stopping condition (φt), in this case
solid angles, are initialized as explained previously (section 2.1).
The first kernel computes the gradient G = ∇I in Cartesian
coordinates (Algorithm 2, line 3), such that G(x, y, z) ∈ R

3.
This calculation is represented as a separable convolution, and
standard methods are used to optimize this calculation using
CUDA (Pang et al., 2016). The second kernel calculates the vote
field (Algorithm 2, line 6) by assigning a thread to each voter and
applying the gradient |G| to each pixel within the vote cone. A
point p is within the vote cone of t if it satisfies the following
inequalities:

t− p
∣

∣t− p
∣

∣

·
G(t)
∣

∣G(t)
∣

∣

> cos
φ

2
(9)

and

∣

∣t− p
∣

∣ < r (10)

where t is a voter position, and p is a pixel position in V that
receives the vote. Atomic additions are used to sum the vote score
in shared memory. The scores for a thread block are copied to
global memory after execution.

The third kernel updates G to reflect the new voter direction
(Algorithm 2, line 7) by using Equations (9) and (10) to find
pixels within the vote cone. Valid pixel values in V are fetched
to find the maximum:

Gi+1(t) =

∣

∣Gi(t)
∣

∣

|d|
d (11)

where

d =

[

argmax
p∈cone

V(p)

]

− t (12)

Finally, last kernel (Algorithm 2, line 10) localizes cell centers as
described in section 2.2.

As the vote angle φ becomes small, the ratio of accessed
candidates within a window around the voter t becomes
increasingly small, leading to stalls in a parallel implementation.
In order to mitigate this problem, we limit the number of
candidate points by tightly bounding the vote cone using an
axis-aligned bounding box defined by the points:

B = {t, bc, b0, b1, b2, b3} (13)
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where t is the tip of the voter cone and bc is the furthest
candidate point from the voter and corresponds to the center of
the spherical cap (Figure 5).

Limiting candidate points to the bounding volume specified
by b− and b+ significantly reduces the number of membership
tests necessary to both evaluate the vote image and update
voter directions. The main benefit is a significant reduction
in the number of stalls encountered, resulting in greater GPU
occupancy. Without this constraint, almost every test in the local
2r + 1 × 2r + 1 pixel region will in a memory fetch, stalling
execution for several threads. Note that we are using an axis-
aligned bounding volume, so the efficiency of the fit is dependent
on angle. While a more robust constraint may be possible, the
axis-aligned approach is simple to implement and provides a
10X - 100X execution speedup, particularly as φ becomes small.
Additional details regarding the implementation of the vote cone
bounding volume can be found in the Supplementary Material.

FIGURE 5 | Calculating an axis-aligned bounding box to minimize candidate

points for the vote cone. (A) The bounding box is initialized with two points t

and bc on either end of the vote cone. The basis vector u is used to find the

remaining points along the cone ridge. (B) All six points used to define the

bounding region, with b0 to b3 lying on the ridge parameterized by g(s) (more

details about calculating the points could be found in supplementary material).

3. RESULTS

In this section, we demonstrate the effectiveness of the proposed
algorithm on two groups of data: (1) nissl stained images
collected using KESM, and (2) 3D fluorescent images, including
publicly available data sets. In all cases, the only input parameter
is the maximum radius r in pixels. Since the pixel size of all of the
sample images is known, we provide this value in micrometers,
which makes our algorithm independent of sampling resolution
and anisotropy. If the pixel size is not known, this value must be
expressed in pixels.

3.1. Cell Localization in KESM Images
Figure 6 shows a slice of nissl-stainedmouse cortex imaged using
KESM. Cells detected using the proposed method are indicated
in a closeup section. The three dimensional structure for one
neuron is shown along the z axis.

Precision-recall curves are used to compare results produced
by the proposed algorithm (ivote3) to several cell localization
methods and software packages, including FARSIGHT (Al-
Kofahi et al., 2010), MINS (Lou et al., 2014), 3D object
counter plug-in imageJ (Bolte and Cordelières, 2006), Laplacian
of Gaussian (LoG) filter (Marr and Hildreth, 1980), 3D-MLS
(Chinta and Wasser, 2012), and LoS (Mathew et al., 2015)
(Figure 7).

LoG blob detection is frequently used for localization, and
several of the tested algorithms utilize LoG filtering as a
pre-processing step (Al-Kofahi et al., 2010). However, our
experiments indicate that these types of dense data result in
LoG performance that is highly sensitive to input parameters
(Figure 8). The proposed ivote2 and ivote3 algorithms mitigate
much of this sensitivity with very little reduction in performance,
even when compared to a parallel LoG implementation.

We also tested performance across multiple data sets, given
that optimal segmentation parameters tend to vary across large
images. We manually segmented 4,5123 cubes from the KESM
dataset and compared the variance in performance for both

FIGURE 6 | (a) A KESM slice of thionin stained mouse cortex is shown along with a close-up (b) indicating detected cell positions using iterative voting in the showing

slice (white labels) and in two adjacent slices (labels filled with diagonal lines). (c) Cross-sections along the z-axis of a neurons indicated with an arrow in (b) are

shown, highlighting the structure. The nucleolus of the cell are visible in c-4, the same slice that is detected by the proposed algorithm.
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FIGURE 7 | The precision recall curve for applying state of the art and iterative

voting algorithms on the KESM dataset. Some pre-processing steps are

applied on the KESM datasets to get best results. Intensity provided by some

of algorithms are used to generate precision recall curves.

FIGURE 8 | Comparing validation results for 3D iterative voting and LoG

implementations for blob detection of KESM dataset. Average values of

precision and recall features for four datasets are computed, which are

enveloped by standard deviations.

ivote3 and LoG filter (Figure 8). The variance for LoG uses
optimal parameters selected from Figure 9.

3.2. Cell Localization in 3D Confocal
Microscopy
We demonstrate the effectiveness of our algorithm on several
fluorescent data sets. Two data sets were acquired from publicly
available sources and demonstrate the viability of parallel iterative
voting on traditional images. We also acquired a larger-scale 3D
confocal data set to demonstrate the benefit of our method on
large-scale images using traditional fluorescence microscopy:

FIGURE 9 | The precision-recall curve for applying the Laplacian of Gaussian

method for blob detection in KESM dataset. Different values are set to

Gaussian standard deviation to find the best validation result. Area under curve

are computed and based of that standard deviation of four was selected.

• Confocal microscopy/ GFP transfection stained:

(Maška et al., 2014; Ulman et al., 2017), available at
celltrackingchallenge.net (Fluo-N3DH-CE).
• Confocal microscopy/ Hoechst stained: (Maška et al., 2014;

Ulman et al., 2017), available at celltrackingchallenge.net
(Fluo-N3DH-SIM+).
• Confocal microscopy/ DAPI stained: The hilus region of the

dentate gyrus in the mouse hippocampus was imaged using
a 40X oil objective on a Leica TCS SP8 confocal microscope.
The DAPI signal was excited by a 405nm laser. Acquisition
speed was set to 600 Hz, with a 0.75 zoom factor. Raw images
for all data analysis were exported as TIFFs. Transgenic mice
that model Dravet syndrome with spontaneous seizure onset
at postnatal day 15 were housed in a 12 hour light/dark cycle.
These mice have a knock-in mutant Scn1A gene containing
a nonsense substitution (CgG to TgA) in exon 21 (Ogiwara
et al., 2007). All animal experiments were approved by
the Institutional Animal Care and Use Committee of the
University of Houston. This method was used to create two
datasets: one from adult mice (mouse-HPC), and the other one
from postnatal day 11 mouse pups (mouse-HPC.11).

Figure 10 shows one slice of each dataset along the z axis.
Information about these datasets is shown in Figure 11. Area
under curve (AUC) is calculated from the precision recall curve
of the proposed algorithm.

As a pre-processing step, we use the Gaussian kernel to blur
these datasets and then localize the cells using the proposed
algorithm. The only parameter that has to be set is maximum
radius of cells in pixels. A ground truth is manually annotated
for each dataset, which includes the location of cells, to validate
localization results. Figure 12 indicates the validation results
using the proposed algorithm for cell detection on different
datasets.

3.3. Profiling
In this section, we extensively profile the proposed algorithm, and
discuss current performance limitations. These optimizations
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FIGURE 10 | Four different datasets are used for cell localization using ivote3. One slice of them along z axis is shown (a) C. elegan developing embryo

(Flou-N3DH-CE). (b) Simulated nuclei of HL60 cells (Flou-N3DH-SIM+). (c) The hilus region of the dentate gyrus in the adult mouse hippocampus (mouse-HPC). (d)

The hilus region of the dentate gyrus in the day 11 mouse hippocampus (mouse-HPC.11).

FIGURE 11 | The table shows the information of tested datasets including name, method of collection, resolution, label, number of annotated cells, and area under

precision recall curve of applying ivote3 method.

open several doors for 2D image processing at a large scale, and
are critical for 3D localization.

Our algorithm was implemented on a nVvidia GeForce (GTX
970) with 1664 CUDA cores, 4GB of global memory, 1.75MB of
L2 cache size, and 48kB of on-chip shared memory. The compute
capability is 5.2, the global memory bandwidth is 224.32GB/s,
and the single precision FLOP/s is 4.423TeraFLOP/s.

Theoretical occupancy of 50% is limited by the number
of registers (46) used per thread. Our algorithm was able to
achieve ≈ 44% occupancy during the first iteration, which
dropped off during consecutive iterations (Figure 13B). This
falloff is likely due to the increase in stalls due to shared
memory write conflicts caused by the required atomic addition.
Consecutive iterations result in a reduced φ and a vote cone
more likely to overlap with adjacent voters. In two dimensions,
theoretical occupancy is 100%, and ≈ 90% was achieved by
the proposed algorithm. Since vote cones have less members,
there is lower chance of writing conflicts, and so active
warps and occupancy are not effected by the iteration number
(Figure 13A).

FIGURE 12 | The precision recall curve for applying the iterative voting

algorithm on different datasets. A detected cell is considered as a true positive

(TP) if its distance of an annotated nuclei is less than or equal to fifty percent of

maximum radius.
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Given the theoretical occupancy, our algorithm is primarily
compute limited, owing to a large number of vote cone
calculations (Figures 14A,B). A large number of stalls are

FIGURE 13 | Vote kernel occupancy is shown for (A) two dimensional (ivote2)

and (B) three dimensional (ivote3) implementation. In ivote2, occupancy and

active warps are consistent during iterations, suggesting that there are very

few stalls due to atomic writes. In ivote3 the occupancy falls with consecutive

iterations, leading to reduced occupancy (≈ 10%). This is due to an increased

number of write conflicts with higher dimension and increased latency since

writes are applied directly to global memory. Note that the theoretical

occupancy decreases from 100% (ivote2) to 50% (ivote3) due to increased

register use.

due to execution dependencies within warps, largely due to
thread divergence. The use of a bounding volume for the
cone (section 2.3) was largely done to mitigate these stalls and
further tightening of this volume could significantly increase
performance.

Overall performance shows a significant speedup of
2–3 orders of magnitude over a highly optimized CPU
implementation (Figure 14C) using a consumer nVidia GeForce
GTX 970, making this code practical for 3D images. The ivote3
algorithm is also fully parallizable, allowing the data set to be
split across multiple GPU co-processors as necessary.

4. DISCUSSION AND FUTURE WORK

Other approaches were tested to improve performance. In
particular, the gradient vector flow (GVF) method (Xu and
Prince, 1997) was implemented to replace the blurring step.
While we expected better accuracy, the final results did not
show any improvement beyond blurring for the KESM dataset.
Our next approach will focus on the use of a convolutional
neural network (CNN) (Lee et al., 2015; Apthorpe et al., 2016;
Zlateski et al., 2017) to replace the blurring step. Since the cell
types in this mouse cortical data set are highly variable and
not always rotationally symmetric, we expect a trained pre-
processing method to produce structures that are more readily
localized. In addition, the resulting features may be utilized to
automatically identify cell types. Methods for classifying cells
based on local features is also promising, since recent advances
in KESM imaging may allow collection of up to 3 channels
of multispectral data (Zheng et al., 2013). We also expect that
CNNs will provide a robust set of features that can be used for
classification.

We see two areas where performance improvements are
most likely: increasing the theoretical occupancy and reducing
thread divergence. Theoretical occupancy is limited by the
number of available registers, and an increased register file size
could potentially increase the number of threads that can be
executed simultaneously. Alternative hardware, such as newer
Pascal GPU architectures which support single-precision (16-bit)

FIGURE 14 | Computation due to a huge number of vote cones calculations at each thread is the bottleneck for ivote3 (A). Using bounding volume improved time

performance and decreases branch divergence, but the main reason of stalls still is thread divergence (B). Time performance is significantly improved through data

parallel in comparison with a highly optimized CPU implementation (C).
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floating point (Ho and Wong, 2017), may provide a significant
advantage since iVote does not require 32-bit processing. Tests
on alternative architectures, such as the Intel Xeon Phi, may
yield better results in terms of thread divergence since they are
more robust to these issues than the CUDA SIMD warp-based
architecture.

5. CONCLUSION

In this paper, we propose several advances in iterative voting
to make it more applicable to large-scale 2D and 3D images.
We re-formulate several components of the algorithm in
order to significantly reduce the required input parameters,
thereby reducing the need for human intervention during
computation. We also propose a data parallel formulation
that provides accurate localization results in real-time image
processing. Finally, we extend the iterative voting algorithm
into three-dimensional images, which is only practical using
our data parallel framework. Our software exhibits localization
performance superior to all of the 3D algorithms that we’ve
tested, and is the only algorithm we’ve found that performs
acceptably on dense and feature-rich images such as those
acquired using KESM. Validation results demonstrate that
iterative voting works well for detecting cell nuclei in volumetric
datasets with varying size and shape, and it is a robust algorithm
where cells are densely packed, which is often seen in KESM brain
data.

Profiling results indicate the efficiency of the algorithm
which is practical for big images, videos, and volumetric
dataset. Minimal user input and no user feedback, making this
algorithm amenable to fully automated processing of terabyte-
scale data sets. We believe that this framework is particularly

suitable as a first-pass localization step for several segmentation
algorithms.We are currently exploring applications in improving
performance in 2D large-scale images acquired using TIMING
(Merouane et al., 2015) as well as cell identification and
segmentation in KESM images.
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