
METHODS
published: 23 May 2018

doi: 10.3389/fnana.2018.00037

Frontiers in Neuroanatomy | www.frontiersin.org 1 May 2018 | Volume 12 | Article 37

Edited by:

Shawn Mikula,

National Institute for Physiological

Sciences (NIPS), Japan

Reviewed by:

Fiorenzo Conti,

Università Politecnica delle Marche,

Italy

Maria Medalla,

Boston University, United States

*Correspondence:

Gherardo Varando

gherardo.varando@upm.es

Received: 28 February 2018

Accepted: 24 April 2018

Published: 23 May 2018

Citation:

Varando G, Benavides-Piccione R,

Muñoz A, Kastanauskaite A, Bielza C,

Larrañaga P and DeFelipe J (2018)

MultiMap: A Tool to Automatically

Extract and Analyse Spatial

Microscopic Data From Large Stacks

of Confocal Microscopy Images.

Front. Neuroanat. 12:37.

doi: 10.3389/fnana.2018.00037

MultiMap: A Tool to Automatically
Extract and Analyse Spatial
Microscopic Data From Large Stacks
of Confocal Microscopy Images

Gherardo Varando 1*, Ruth Benavides-Piccione 2,3, Alberto Muñoz 2,3,4,

Asta Kastanauskaite 2,3, Concha Bielza 1, Pedro Larrañaga 1 and Javier DeFelipe 2,3

1Computational Intelligence Group, Department of Artificial Intelligence, Universidad Politécnica de Madrid, Madrid, Spain,
2Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Madrid, Spain, 3 Laboratorio Cajal de

Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain, 4Departamento de

Biología Celular, Universidad Complutense, Madrid, Spain

The development of 3D visualization and reconstruction methods to analyse microscopic

structures at different levels of resolutions is of great importance to define brain

microorganization and connectivity. MultiMap is a new tool that allows the visualization,

3D segmentation and quantification of fluorescent structures selectively in the neuropil

from large stacks of confocal microscopy images. The major contribution of this tool is

the posibility to easily navigate and create regions of interest of any shape and size within

a large brain area that will be automatically 3D segmented and quantified to determine

the density of puncta in the neuropil. As a proof of concept, we focused on the analysis

of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal

region to demonstrate its use as a tool to provide putative excitatory and inhibitory

synaptic maps. The segmentation and quantification method has been validated over

expert labeled images of the mouse hippocampus and over two benchmark datasets,

obtaining comparable results to the expert detections.

Keywords: segmentation, object detection, fluorescent image, puncta segmentation, vglut1, vgat, brain atlas,

ImageJ

1. INTRODUCTION

The brain works as a whole and it is well established that the principles of structural design
(spatial distribution, number and types of neurons, and synapses per volume, etc.) and functional
organization differ considerably in the different parts of the nervous system (DeFelipe, 2015).
Therefore, one of the first steps toward understanding how brain circuits contribute to the
functional organization of the brain is to integrate neuroanatomical information with genetic,
molecular and physiological data in brain atlases. This integration would allow the generation of
models that present the data in a form that can be used to reason, make predictions and suggest
new hypotheses to discover new aspects of the structural and functional organization of the brain
(e.g., Kleinfeld et al., 2011; da Costa and Martin, 2013; Egger et al., 2014; Markram et al., 2015; for
a review see DeFelipe, 2017).

In the field of neuroanatomy, the use of classical techniques and the introduction of
new procedures and powerful tools to examine the organization of the nervous system
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(reviewed in Jones, 2007; Smith, 2007; DeFelipe, 2010, 2017;
Kleinfeld et al., 2011; Osten and Margrie, 2013) have allowed a
noticeable enlargement of the acquisition of data, generating a
high volume of complex data to be examined and interpreted.
Thus, the development of 3D visualization and reconstruction
methods to analyse structures at different levels is of great
importance as the large volume of data generated is critical to
define brain connectivity and function.

In the present study we developed a tool, called MultiMap,
that allows the visualization, easy navigation, creation of regions
of interest of any shape and size within a large brain area, 3D
segmentation and quantification of fluorescent structures from
large stacks of confocal microscopy images. We implement in
MultiMap [through ImageJ (Schneider et al., 2012; Schindelin
et al., 2015)] a new approach to deal with fast detection and
counting of fluorescent puncta over large 3D stacks of confocal
images with a low signal-to-noise ratio, containing several
thousands of objects. As a proof of concept, we focused on
the analysis of glutamatergic and GABAergic synapses which
represent the majority of synaptic types in the brain (Peters
and Palay, 1996). Specifically, we used a genetically modified
mouse that expresses the flourescent protein vGlut-1 to label
glutamatergic terminals (Alonso-Nanclares et al., 2004; Herzog
et al., 2011), whereas to identify the GABAergic synapses we
used immunocytochemistry for the vesicular GABA transporter
(vGAT) known to correspond to GABAergic inhibitory axon
terminals (Chaudhry et al., 1998; Minelli et al., 2003). Since
most synapses are found in the neuropil (the gray matter regions
between neuronal and glial somata and blood vessels which is
made up mainly of axonal, dendritic and glial processes) the
vast majority of synaptic markers (puncta) are found in the
neuropil. Importantly, the structures and amount of neuropil
varies considerably, depending not only on the brain region and
subregions (i.e., different subfields, layers, etc.) but also in any
given region (for example, between the fundus of a sulcus and
the crown of a gyrus). Even within the same subregions, the
amount of neuropil varies between section to section. Thus, it is
critical to determine the amount of neuropil in order to compare
the density of puncta between different subjects or experimental
conditions. In confocal images labeled for the above synaptic
markers, the cell bodies, the blood vessels, the fiber tracts and the
section artifacts (such as incomplete or fragmented histological
sections) appear in the images as almost black structures that
for simplicity we call “holes.” Therefore, a major aim of the
present study was to detect these holes automatically to avoid
their inclusion in the estimation of the density of puncta.

Regarding visualization, there are several software tools that
allow visualizing microanatomical details from stacks of confocal
microscopy images [i.e., Imaris software (Bitplane), Neurolucida
(Microbrighfield), ImageJ (Schneider et al., 2012; Schindelin
et al., 2015)]. However, they only include the possibility to
create a right-angled region of interest or do not support large
(> 20 GB) tile scan stacks of images. MultiMap displays, as a
main advantage, the possibility to easily navigate within a large
brain area and create one or several regions of interest without
any restrictions on their shapes. Additionally, it allows for the
creation and visualization of several working layers storing

different kind of information (e.g., visual, calibration, regions of
interest, clouds of points, pixel-wise information and markers).

Regarding sementation and quantification of fluorescent
structures, several methods in 2D and 3D exist. Even if the
development of automatic methods for object detection has
been revealed impelling in neuroscience, the current state
of the art in 3D automatic object detection and counting
does not present definite solutions. To the best of our
knowledge the majority of 3D object detection and counting
algorithms are designed for cells’ counting (see Schmitz
et al., 2014 for a review), which are relatively easier to
quantify. However, regarding the estimation of fluorescent
puncta, the available methods have some limitations. What
follows is a brief description of the methods available in the
literature.

Fish et al. (2008) use an iterative procedure using thresholding
and morphological segmentation. The 3D nature of the problem
does not allow the use of density estimation techniques such
as the density estimation without detection implemented in
Ilastik (Sommer et al., 2011) and described in Fiaschi et al.
(2012); in our case it is important to actually detect the
objects, since a single punctum can appear in multiples slices
of the stack while the sizes, orientations and distribution of
the objects are not known a priori. Others methods such as
those presented in Sturt and Bamber (2012) and Dumitriu
et al. (2012) are not fully automatic and require an expert (e.g.,
to choose an appropriate threshold of the image). Moreover,
they rely on thresholding, a global procedure that cannot be
applied uniformly over different stacks where objects could be
imaged at different intensity. In Heck et al. (2014) an automated
3D detection method of synaptic contacts is described. The
segmentation is obtained with a region growing algorithm, using
local maxima as seeds. The method obtains very good results
over images with high signal-to-noise ratio but it is not able to
deal with low signal-to-noise ratio and not deconvolved images.
Danielson and Lee (2014) developed SynPAnal, a software for
semi-automatic quantification of density and intensity of puncta
from flourescence microscopy images that operates only on 2D.
3D stacks are projected via a maximum operator along the z-
axis thus losing the 3D information. Also, despite the fact that
3D light microscopic techniques are limited to a lower level of
resolution, they remain the method of choice to obtain large-
scale spatial information regarding the number and the size of
presynaptic terminals in large brain regions, in order to know the
number of chemically identified synapses and provide putative
synaptic functional parameters. Having in mind that we will
apply the method to sets of various stacks, a key issue is to
develop a fast algorithm, with a simple parametrization and
without the need of being trained over expert segmentations.
Briefly, the present method includes a segmentation procedure
using maximum of Laplacians of Gaussian filter. Thereafter, an
automated object detection process is performed using a fast tag
propagation algorithm.

Maps created with MultiMap can be easily shared and
published as standalone visualizations on simple web pages,
simplifying enormously collaborations and the communications
of relevant findings.

Frontiers in Neuroanatomy | www.frontiersin.org 2 May 2018 | Volume 12 | Article 37

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Varando et al. MultiMap Tool

The paper is organized as follows: section 2.1 describes
the data acquisition procedure. In section 2.2 we present
the MultiMap software. In section 2.3 we describe the novel
algorithm to detect and count objects. In section 2.4 we describe
how we detect the neuropil and in section 2.5 the estimation of
the puncta volume number densities is described. In section 2.6
the validation of the object detection is described.We present our
conclusion and some future directions in section 3.

2. METHODS AND RESULTS

2.1. Data Acquisition and Preparation
2.1.1. Tissue Preparation
Genetically modified VGLUT Venus Knock-in mice (vGlut-1)
adult male mice (n = 6; 2 months old) were sacrificed by
lethal intraperitoneal injection of sodium pentobarbital and then
intracardially perfused with saline solution, followed by 4%
paraformaldehyde in sodium phosphate buffer (PB: 0.1 M, pH
7.4) at room temperature. The brains were extracted from the
skull and post-fixed in the same fixative overnight at 4 ◦C. After
washing in PB, coronal vibratome sections of the brains (150 µm
thick) were then cut with a Vibratome. For immunofluorescence,
sections were preincubated for 1 h at room temperature in a stock
solution containing 3% normal goat serum (Vector Laboratories,
Burlingame, CA) in PB with Triton X-100 (0.25%). Then,
sections were incubated in the same stock solution with rabbit
anti-vGat (1:2,000, Synaptic Systems, Germany) and mouse-anti
NeuN (1:2,000, Chemicon) antibodies that recognize vesicles
in GABAergic axon terminals and neuronal cell bodies (to
identify and classify laminar and cytoarchitectonic structures),
respectively (Figure 1). After rinsing in PB, the sections were
incubated for 2 h at room temperature in biotinylated goat
anti-rabbit antibodies (1:200 Vector laboratories), rinsed in PB
and then incubated with Alexa 594-coupled goat anti-mouse
antibodies and Alexa 647-coupled streptavidin (1:2000Molecular
Probes). After rinsing sections were stained with the nuclear
stain DAPI (4,6 diamidino-2-phenylindole; Sigma, St. Louis, MO,
U.S.A.) that label cell nuclei (neurons, glia and perivascular cells)
and then mounted in ProLong antifade mounting medium (Life
Technologies).

2.1.2. Confocal Laser Microscopy
Sections were then directly analyzed with the aid of a Zeiss LSM
710 Confocal microscope. Fluorescently labeled profiles were
examined through separate channels, using excitation peaks of
401, 488, 594, and 634 nm to visualize DAPI, vGlut-1, NeuN,
and vGat, respectively. Consecutive stacks of images, at high
magnification (63×; oil immersion), using tile scan mode, were
acquired in all layers of the hippocampal region, including the
molecular layer, the granular cell layer and the polymorphic cell
layer of the dentate gyrus, the stratum oriens, the pyramidal
cell layer, the stratum radiatum and the stratum lacunosum-
moleculare of the hippocampal subfields CA1, CA2, and CA3.
Each stack was composed by images (0.14 µm z-step) of 1, 024×
1, 024 pixels (8 bit). Confocal parameters were set so that the
fluorescence signal was as bright as possible while ensuring that
there were no saturated pixels. A total of 2,658 stacks of 15

images, 44 × 28 stacks for the vGlut-1 marker (Figure 1G) and
55 × 32 stacks for the vGat marker (Figure 1H), were acquired
comprising approximately a surface of 4mm2 of tissue and
over 47GiB of data. The stack of images were processed with
MultiMap and two interactive maps were created.

2.2. User Interface
MultiMap is developed as a basic graphical user interface
(GUI) and distributed as an open-source multi-platform desktop
application. The main goal of MultiMap is to create and
visualize maps anchoring spatial data (e.g., point clouds and
densities), allowing the easy navigation and selection of regions
of interest (ROI) within a large brain area from consecutive
stacks of confocal microscopy images. We developed MultiMap
as a modular application with the capabilities to use externals
programs and libraries to perform specific tasks (e.g., ImageJ
Schneider et al., 2012 for image analysis). In the following
sections we explain the basic capabilities of MultiMap, see the
online user guide for further explanations and tutorials1. An
example map can be downloaded from the Cajal Blue Brain
website2.

2.2.1. Maps Management
The core of MultiMap can display, create, modify, load and
export maps comprising several layers storing different kind of
information: visual, calibration, regions of interest, clouds of
points, pixel-wise information and markers. The maps display
implementation (Figure 2) is based on Leaflet3, the leading open-
source JavaScript library for interactive maps.

The information of every map (map configuration) is stored
in a object, that is a collection of name/value pairs. We thus
developed a leaflet plugin4 capable of creating all the layers from
a map configuration object that we can store as a JSON file5. The
map configuration object contains a layers field that stores the
configurations of all the layers (layer configuration objects) in the
map.While the map configuration object can be saved as a simple
JSON file, each layer information (e.g., the actual images or the
points coordinates) can be stored locally on the user machine or
remotely, the layer configuration object has all the information
needed to retrieve such information when needed (e.g., when
displaying the images or when counting the points).

The user can easily create an empty map, add any type of
layer and eventually export the configuration object as a JSON
file directly from MultiMap.

2.2.2. Layers Type
We describe now the main types of layers6 that can be added
to the map, thus the types of information that can be stored,
visualized and analyzed.

1https://computationalintelligencegroup.github.io/MultiMap-documentation/
2Download the configuration.json file from http://cajalbbp.cesvima.upm.es/maps/

hippocampus_mouse_HBP21_id4_40_vglut1/ and load it into MultiMap
3http://leafletjs.com/
4https://github.com/gherardovarando/leaflet-map-builder
5http://json.org/
6For an extensive list see https://github.com/gherardovarando/leaflet-map-builder

Frontiers in Neuroanatomy | www.frontiersin.org 3 May 2018 | Volume 12 | Article 37

https://computationalintelligencegroup.github.io/MultiMap-documentation/
http://cajalbbp.cesvima.upm.es/maps/hippocampus_mouse_HBP21_id4_40_vglut1/
http://cajalbbp.cesvima.upm.es/maps/hippocampus_mouse_HBP21_id4_40_vglut1/
http://leafletjs.com/
https://github.com/gherardovarando/leaflet-map-builder
http://json.org/
https://github.com/gherardovarando/leaflet-map-builder
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Varando et al. MultiMap Tool

FIGURE 1 | Low- (A–D) and higher- (E–H) power photomicrographs obtained with a conventional fluorescence microscope (tile scan; 10x objective), showing

patterns of Dapi staining, and NeuN and vGat immunostaining of a brain section from a vGlut-1-transgenic mouse. The hippocampal region, squared zones in A–D, is

shown at higher magnification in E–H, respectively. Scale bar (in H): 1,200µm in A,B; 275 µm in E–H.

• Graphical map tiles, that is “bitmap graphics displayed
in a grid arrangement”7. The actual images can be stored
both locally in the user machine, and remotely. They
represent the visual information and allow the visualization
of very large images since just few tiles are rendered.
Since the output of confocal microscopy are stacks of
images, MultiMap can visualize maps with different
levels (that is slices), the user can easily switch between
levels.

• ROIs and Markers can be drawn directly by the user in
the application. They are saved and exported in the map
configuration files allowing easily sharing of results and
information.

7http://wiki.openstreetmap.org/wiki/Tiles

• Layers of tiled points are used to visualize cloud of points
stored in tiled csv files (locally or remotely). They permit to
handle millions of points tiled across thousands of files.

2.2.3. Density Estimation and Statistics
MultiMap can compute density estimations of points in ROIs
and compute some simple statistics. For each selected region it is
possible to compute the number of points included in the region,
the density over the area or over the volume represented. The user
can then export the results as a csv file, or display them directly
in the application.

2.2.4. ImageJ Integration
MultiMap is shipped with an extension that permits to use ImageJ
(Schneider et al., 2012) for some image analysis andmanipulation
tasks. It is possible to perform the object detection algorithm (see
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FIGURE 2 | Graphical Interface of MultiMap.

section 2.3) and the holes detection workflow (see section 2.4)
to automatically obtain the 3D segmentation and quantification
of the elements present in the selected brain areas. Bio-Formats8

plugin can be used to convert images and it is possible to build
graphical map tiles from any image9.

8https://www.openmicroscopy.org/bio-formats/
9Using Map Tools ImageJ plugin https://github.com/

ComputationalIntelligenceGroup/Map_tools

2.3. Object Detection Method
The object detection algorithm developed here receives as input

a raw stack of images and produces as output a map of objects

detected and a list of object centroids. The algorithm we designed
is a combination of simple steps derived from classical image
analysis algorithms combined with a novel one for objects
tagging. The aim of the algorithm is to be fast, robust to
noise and intensity changes, and able to handle big stacks of
confocal images. The complete work flow is implemented as an
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independent ImageJ toolset10 and moreover is accessible from
MultiMap via the ImageJ extension menu.

We will denote by I(x, y, z) the intensity of the stack of images
at pixel (x, y, z), where x, y represent the coordinates in the plane
of every slice of the stack and z is the coordinate in the dimension
of the stack depth. Next we list step by step the work-flow, a
schematic representation is pictured in Figure 3.

The original stack of images is initially duplicated. The
segmentation procedure (section-2.3.1) and the denoising phase
(section-2.3.2) are performed independently on the copies of the
original stack. The results of the segmentation (binary mask) and
the denoised stack are then joined (pixel-wise minimum) and the
result is used to perform the object tagging (section-2.3.3).

2.3.1. Segmentation
For our purpose, segmentation is considered the task of
producing a binary mask, differentiating background and
foreground pixels. We employ a classical method of blob
detection based on Laplacian-of-Gaussian filter (LoG)
(Lindeberg, 1994). The method is robust to noise and fast
to apply. LoG filter is obtained by convolving every image in
the stack with a 2D Gaussian kernel with standard deviation
σ , and successively applying the Laplacian operator. The LoG
filter outputs a strong response for bright blobs of radius r
approximately equal to

√
2σ . We thus indicate with LoG(r) the

LoG filter with σ = r√
2
. LoG(r) filter is sensible to the choice of

the scale parameter r. To obtain a less scale-dependent filter we
apply the LoG(r) with r varying in a given range of values (from
rmin to rmax by steps of length δ) and for every pixel we select
the maximum response among the computed ones. We indicate
with MaxLoGs(rmin, rmax, δ) the result of the above procedure.
Intuitively the MaxLoGs(rmin, rmax, δ) filter finds blobs of size
varying approximately from rmin to rmax.

The MaxLoGs filter is implemented in Java as an ImageJ
plugin.11

Successively the output of the MaxLoGs(rmin, rmax, δ) filter is
automatically converted into a binary mask using an automatic
method (thrMethod). We found that the moments preserving
algorithm (Glasbey, 1993) was the best suited to the fluorescent
puncta detection.

2.3.2. Denoising
We apply two-scale median filter (radius 1 and 2) to remove noise
from the original stack while preserving edges (Arias-Castro
and Donoho, 2009). Next we apply the mask obtained with the
MaxLoGs filter retaining the foreground pixels and setting to zero
the background ones. This step is achieved by computing the
pixel-wise minimum between the binary mask and the denoised
image.

2.3.3. Object Tagging
Once the foreground and background pixels have been
detected, we proceed to tag the objects with an automating

10https://github.com/ComputationalIntelligenceGroup/obj_detection_toolset
11https://github.com/ComputationalIntelligenceGroup/MaxLoGs

algorithm. We wish to associate every foreground pixel in
the stack with a positive integer i, indicating that the given
pixel belongs to the i-th object. The procedure is divided
into three steps: slice tagging, slice connection and size
checking.

• Slice tagging: Independently on every slice, we identify
connected objects by nearest-neighbor propagation of object
tags. Specifically, we start at a foreground pixel that has
not been tagged, say (x, y). We tag the pixel with a new
positive integer and we propagate the number to every
(tagged or untagged) nearest pixels that have a positive
intensity less or equal to the intensity of (x, y) plus a positive
tolerance parameter (toll). From the new tagged pixels we
keep propagating the number until no further propagation is
possible. We move to a new, untagged pixel and we repeat.
Since the propagation can overwrite the already tagged pixels
we deduce that the results obtained are equivalent to propagate
tags from the relative maxima of the intensity. We obtain in
every slice a complete tagging of every foreground pixel in
distinct objects.

• Slice connection: We connect the objects in different slices
basing on the Bhattacharyya coefficient (Bhattacharyya, 1946).
In particular, for every pair of objects i and j on adjacent
slices we compute the Bhattacharyya coefficient between the
distribution of the intensity of two objects, that is,

BC(i, j) =
∑

(x,y)

√

NI(i, x, y)NI(j, x, y),

where NI(i, x, y) is the normalized intensity of object i in the
pixel (x, y),

NI(i, x, y) =
I(x, y, z)

∑

(t,q,s)∈ object i I(t, q, s)
.

If the Bhattacharyya coefficient between two objects surpasses
a given parameter, φ, we join the two objects and tag themwith
a unique number accordingly.

• Sizes checking: In this last phase we check the size in pixels of
the tagged objects. If the size of an object, in pixels, is less than
a given parameter (minSize) we try to assign the object’s pixels
to adjacent objects. If no adjacent objects are found we assign
the pixels to the background.

The final output of the algorithm is a stack of the same dimension
as the original, where every pixel has the value 0 if it is a
background pixel or it carries the positive integer tag representing
the object that the pixel belongs to. Moreover, the algorithm
computes, for every object detected, the centroid, that is, the
average of the object’s pixels coordinates, the volume and the
surface area.

For further stereology-based analysis and estimations (see
section 2.5), centroids of objects touching the borders of the
stack are properly identified. In particular in the centroid list we
specify, for every centroid, if its corresponding object is touching
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FIGURE 3 | Diagram of the objects detection workflow, the steps of the algorithms are labeled in rectangular boxes. Scale bar is 5 µm and pixel intensity is enhanced

for visualization.

some of the exclusion borders (defined as three of the six faces of
the parallelepiped defining the stack).

The object tagging algorithm is implemented in Java as an
ImageJ plugin.12

12https://github.com/ComputationalIntelligenceGroup/ObjCounter

2.4. Holes Detection
To estimate the density of puncta in the neuropil it is essential
to detect what we called the holes (cell bodies, the blood vessels
and artifacts of the histological sections) in order to subtract their
volume from the final density estimation. To detect the holes we
invert the normalized gray-scale of the image, then we employ
a median filter with a large radius to remove noise. Next, we
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FIGURE 4 | Detail of the Graphical Interface of MultiMap, showing CA1 hippocampal region (A) and the computed holes layer (B) and the result of the density

estimation over a selected region (inset). (C,D) Higher magnification images of selected region shown in A,B, respectively. Scale bar is 20 µm.

set to zero every pixel with intensity less than a given threshold
(holesThr) and to 1 the remaining pixels. The output is a binary
(0–1) stack where pixels with values 0 belong to neuropil. To
obtain a more compact representation (better suited both for
visualization purposes and computational issues) we project the
holes stack, summing along z-dimension, and we obtain a two
dimensional holes mask where each pixel carries a non-negative
integer that indicates how many of the slices are detected as not
belonging to neuropil (See Figure 4).

2.5. Density Estimation
Once the object detection and holes detection work-flows have
been executed we obtain the centroids list and the holes mask
stack. We are now able to obtain the density of puncta in
whatever volume of the stack. Since in our case the depth of the
stack is much smaller than the x-y dimensions, the volumes we
are considering are defined by 2D regions in the x-y plane. The
volume number density d(R) of puncta in a given volume define
by a 2D region R, is estimated by following fraction:

d(R) =
Ns(R)

V(R)
,

where Ns(R) is the stereology unbiased estimation of the number
of objects in R, obtained counting the centroids of the objects not

touching some of the exclusion borders. V(R) is the volume of
the solid with x-y section equal to R and depth equal to the stack’s
depth (δ), that is, V(R) = A(R)× δ where A(R) is the area of the
polygon that defines the border of R.

The volume number density in the neuropil can similarly be
estimated as

dn(R) =
Ns(R)

V(R)−H(R)
,

whereH(R) is the volume of the holes computed by summing the
values of the holes mask inside the region R and multiplying by
the appropriate factor (the volume of a single voxel).

2.6. Validation
As pointed out in Carpenter et al. (2006) the direct comparison

of image analysis software and procedures is difficult mainly
because the results are influenced by how the softwares are

tuned and, we suggest, also by the pre-processing steps. Usually
the original images and the experts ground truth are not
released making impossible to replicate the validation and to

compare with new methods. In the bioimaging community it has
become clear, as in other areas (see for example Lichman, 2013),

the importance to benchmark and validate the image analysis

methods over publicly available datasets with clear validation
techniques and measures (Kozubek, 2016). Unfortunately to
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TABLE 1 | Parameters used in the vGlut-1 and vGat experiments.

parameter value

rmin 4

rmax 10

δ 1

thrMethod Moments

φ 0.4

minSize 40

toll 0

the present day there is no available benchmarking dataset for
flourescent puncta segmentation. Thus we asked two experts to
annotate a sample of the images as a ground truth. The data is
publicly available in the Broad Bioimage Benchmark Collection13

(Ljosa et al., 2012) with instructions on how to perform the
validation.

To prove the flexibility and performance of our method we
also validated it using two image sets from the Broad Bioimage
Benchmark Collection (Ljosa et al., 2012) (see Supplementary
Material).

2.6.1. vGlut-1 and vGat Puncta Detection
Each of the two experts was asked to detect the centroid of each
puncta he/she sees in a bounded region and to mark it with
a point in the original stack. We validated the procedure on
subregions of 6 stacks for each marker for a total of 12 stacks
analyzed, covering different distributions of puncta.

To match the results of the algorithm (obtained with
parameters fixed as in Table 1) with the results each of the given
experts we computed, apart from the raw number of objects
detected, two scores: precision and recall. For that we consider
an object as correctly detected if a point given by the expert lies
inside one of the objects detected by the algorithm, obviously
without associating in this way more than one point with the
same object. Then, precision was computed as the fraction
of correctly detected objects over the total number of objects
detected by the algorithm. Recall is the fraction of correctly
detected objects over the total number of objects identified by the
expert. Both precision and recall measures ranged between 0 and
1 being 1 the best score value. The F1 score, that is, the harmonic
mean of precision and recall, was used as a summarizingmeasure.

The results of the validation are reported in Tables 3, 2 and
presented graphically in Figures 5. As we can see the automatic
method obtains a number of objects included between the two
experts results in four of the six samples for the vGat marker and
in five of the six samples for the vGlut-1 marker. Quantitatively
we observe that for the vGat marker the average relative error
between the experts and the mean count of the two experts
is 0.38 while the average relative error between the automatic
method and the mean count of the experts is 0.64, being this
result due only to the error made by the algorithm in the sample
vGAT_X8_Y8. The large error is possibly caused by the fact that
the algorithm is able to see objects at a low intensity while the

13https://data.broadinstitute.org/bbbc/ dataset to appear soon.

TABLE 2 | Comparison with the two experts, vGlut-1 marker.

Sample Expert 1 Algorithm Recall Precision F1 Score

VGlut1_X13_Y7 148 143 0.59 0.62 0.61

VGlut1_X26_Y12 826 1060 0.60 0.49 0.53

VGlut1_X35_Y7 127 225 0.87 0.49 0.63

VGlut1_X8_Y8 105 134 0.71 0.55 0.62

VGlut1_X10_Y24 21 48 0.61 0.27 0.38

VGlut1_X40_Y20 170 145 0.54 0.63 0.58

Sample Expert 2 Algorithm Recall Precision F1 Score

VGlut1_X13_Y7 126 143 0.67 0.59 0.62

VGlut1_X26_Y12 1061 1060 0.60 0.60 0.60

VGlut1_X35_Y7 241 225 0.64 0.69 0.67

VGlut1_X8_Y8 157 134 0.58 0.68 0.63

VGlut1_X10_Y24 42 48 0.62 0.54 0.57

VGlut1_X40_Y20 123 145 0.67 0.57 0.62

TABLE 3 | Comparison with the two experts, vGAT marker.

Sample Expert 1 Algorithm Recall Precision F1 Score

vGAT_X13_Y7 23 23 0.83 0.83 0.83

vGAT_X26_Y12 126 214 0.87 0.51 0.64

vGAT_X35_Y7 110 111 0.76 0.76 0.76

vGAT_X8_Y8 78 657 0.92 0.11 0.20

vGAT_X10_Y24 39 117 0.82 0.27 0.41

vGAT_X40_Y20 197 264 0.70 0.52 0.60

Sample Expert 2 Algorithm Recall Precision F1 Score

vGAT_X13_Y7 47 23 0.51 1 0.69

vGAT_X26_Y12 363 214 0.47 0.79 0.59

vGAT_X35_Y7 178 111 0.45 0.72 0.55

vGAT_X8_Y8 285 657 0.74 0.32 0.45

vGAT_X10_Y24 140 117 0.49 0.58 0.53

vGAT_X40_Y20 234 264 0.67 0.59 0.63

experts see just the brightest objects. The proposed algorithm
incurs in similar errors in all stacks with very few or none puncta.
The problem is due to the fact that in stacks with no puncta
the algorithm detects noise (or other artifacts) as foreground
since no real object is present to set a reference for the true
foreground intensity. It is worth to observe that the relative error
between the experts in the sample vGAT_X8_Y8 is among the
highest showing that, without information on the stack position
in the hippocampus, detections of puncta in regions with few or
none objects is extremely difficult. This problem is absent in the
neuropil. Thus, the holes detection procedure (section-2.4) could
be used to filter-out areas where few or none puncta are expected.
We preferred to report validation results for the segmentation
and detection method alone to highlight such difficulties and
limitations of the algorithm.

The automatic method obtains better results in the vGlut-1
marker. In this case the average relative error between experts
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FIGURE 5 | Results of the validation. Experts 1 and 2 are represented by red and blue points while algorithm counts are marked by black points.

and the mean count is 0.20 while the relative error between the
algorithm and the mean count of the experts is 0.16.

As a proof of concept we compute the density and distribution
of volumes (Figure 6) of individual vGlut-1 puncta in a region
(surface 8.15× 104 µm2; volume 1.71× 105 µm3) of the stratum
radiatum of CA1 extracted with the MultiMap interface. In this
region the average density of vGlut-1 puncta was 0.92 puncta per
µm3.

3. DISCUSSION

The present paper presents a new approach to deal with large
stacks of confocal microscopy images. It allows to easily explore,
select and analyse structures (fluorescent puncta) present in
the neuropil of large brain areas, that will be automatically
3D segmented and quantified. The possibility to create regions
of interest, without any restrictions in its shape, within a
large brain area is a great advantage of the tool compared to
other available tools. Therefore, it will contribute to explore
the large volume of data that is currently being generated to
possibly develop large-scale computer simulation of the brain.
Additionally, it permits a 3D segmentation and quantification
(number and volumetry) of elements in a fully automated
procedure. The segmentation procedure used in the present work
(maximum of Laplacians of Gaussian filter and an automated
object detection process, performed using a fast tag propagation

FIGURE 6 | Histogram of volumes (log scale) of individal vGlut-1 puncta in the

stratum radiatum of CA1.

algorithm) allowed for a fast and accurate 3D quantification of
the numerous puncta present in the selected hippocampal region.
The segmentation using maxLoGs has shown to perform well on
images with low signal-to-noise ratio and very low resolution, in
particular no previous deconvolution was applied to the stacks
of images used in the validation. Since the segmentation is
performed independently on every stack, some errors have to be

Frontiers in Neuroanatomy | www.frontiersin.org 10 May 2018 | Volume 12 | Article 37

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Varando et al. MultiMap Tool

expected when the algorithm is asked to detect objects where
none are present. The segmentation and detection algorithm
presented has been intentionally kept simple and with few
tunable parameters. The aim was to implement a fast and easily
usable method that could thus be embedded in the MultiMap
interface.

The execution of the object detection algorithm in a single
stack requires about 1.5min of computing time14. Moreover,
we observe that the time needed to process the stacks with
the proposed algorithm is comparable to the time needed
for the image acquisition. Ideally it would be possible to
process very large regions of the brains, and even a whole
brain; the algorithm could be applied to the obtained stacks
of images while the confocal microscopy would extract the
next set of stacks, thus not adding a significant amount of
time to the whole process. Moreover, since the detections are
performed independently on every stack the process can be easily
parallelized.

Other available counting methods can also be easily
implemented in MultiMap since it is linked to the widely
used ImageJ software tool (Schneider et al., 2012). MultiMap
has been developed as a basic GUI interface and all the
capabilities are implemented as extension. We developed basic
example extensions to compute and visualize region statistics15,
to use GraphicsMagick16 image processing capabilities17 and to
connect with R18 (R Core Team, 2017) through shiny (Chang
et al., 2017). In the near future, we plan to implement spatial
statistical procedure to test and fit spatial point process (Anton-
Sanchez et al., 2014) and a three dimensional viewer. We built
the MultiMap API19 in a way that permits the development
and integration of future extensions. Moreover, we plan to
include, through the ImageJ extension, various state of the art
segmentation and image processing techniques that could be
useful in different problems.
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