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A well-developed visual system can provide significant sensory information to guide
motor behavior, especially in fruit-eating bats, which usually use echolocation to navigate
at high speed through cluttered environments during foraging. Relatively few studies
have been performed to elucidate the organization of the visual system in bats. The
present work provides an extensive morphological description of the retinal projections
in the subcortical visual nuclei in the flat-faced fruit-eating bat (Artibeus planirostris)
using anterograde transport of the eye-injected cholera toxin B subunit (CTb), followed
by morphometrical and stereological analyses. Regarding the cytoarchitecture, the
dorsal lateral geniculate nucleus (dLGN) was homogeneous, with no evident lamination.
However, the retinal projection contained two layers that had significantly different
marking intensities and a massive contralateral input. The superior colliculus (SC) was
identified as a laminar structure composed of seven layers, and the retinal input was
only observed on the contralateral side, targeting two most superficial layers. The medial
pretectal nucleus (MPT), olivary pretectal nucleus (OPT), anterior pretectal nucleus (APT),
posterior pretectal nucleus (PPT) and nucleus of the optic tract (NOT) were comprised
the pretectal nuclear complex (PNT). Only the APT lacked a retinal input, which was
predominantly contralateral in all other nuclei. Our results showed the morphometrical
and stereological features of a bat species for the first time.

Keywords: visual system, chiropteran, phyllostomidae, cholera toxin subunit b, retinal projections, pretectal
region, superior colliculus, lateral geniculate nucleus

Abbreviations: 3V, 3rd ventricle; APT, Anterior pretectal nucleus; Aq, Aqueduct; CL, Centrolateral thalamic nucleus; CM,
Central medial thalamic nucleus; CTb, Cholera toxin subunit B; dLGN, Dorsal lateral geniculate nucleus; DpG, Deep gray
layer superior colliculus; DpWh, Deep white layer superior colliculus; fr, Fasciculus retroflexus; IAM, Interanterodorsal
thalamic nucleus; InG, Intermediate gray layer superior colliculus; InWh, Intermediate white layer superior colliculus;
LD, Laterodorsal thalamic nucleus; LHb, Lateral habenular nucleus; LP, Lateral posterior thalamic nucleus; LPLR, Lateral
posterior thalamic nucleus, laterorostral; LPMR, Lateral posterior thalamic nucleus, mediorostral; MD, Mediodorsal
thalamic nucleus; MHb, Medial habenular nucleus; MPT, Medial pretectal nucleus; OP, Optic nerve layer superior
colliculus; OPT, olivary pretectal nucleus; NOT, nucleus of the optic tract; pc, Posterior commissure; Pcom, Nucleus
posterior commissure; PF, Parafascicular nucleus; PNT, pretectal nuclear complex; PO, Posterior thalamic nucleus; PPT,
posterior pretectal nucleus; PrC-, Precommissural nucleus; PV, Paraventricular nucleus; Re, Reuniens thalamic nucleus;
Rh, Rhomboid thalamic nucleus; SC, Superior colliculus; SGS, Superficial gray superior colliculus; str, Superior thalamic
radiation; vLGN, Ventral lateral geniculate nucleus; VP, Ventral posterior thalamic nucleus; ZS, Zonal layer superior
colliculus.
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INTRODUCTION

The order Chiroptera is the second most diverse taxon among
the class Mammalia, comprising approximately 1,100 living
species (Simmons, 2005). Most bats are nocturnal and usually
use echolocation to navigate in the dark (Altringham, 2011).
Additionally, most species of bats have an inconspicuous
pair of eyes (Altringham and Fenton, 2003), which leads to
questions about the functional significance of the visual system
in these animals. For example, which structures in the bat
brain are involved visual processing, including visuomotor or
multisensory integration? What proportion of these structures is
linked to the visual functions?

Interestingly, bats are notably absent from the list of species
for which the visual system has been deeply described. Much
of the research on the visual pathways has been performed in
rodents, in which the general patterns of the retinal projection
to the dorsal lateral geniculate nucleus (dLGN), superior
colliculus (SC) and accessory optic system (AOS) structures
have been described (Sefton and Dreher, 1995; Morin and
Blanchard, 1997, 1998; Ling et al., 1998; Major et al., 2003;
Horowitz et al., 2004; Gaillard et al., 2013). Functional studies
have shown evidence of the importance of visual cues under
specific environmental conditions, such as luminosity, foraging
behavior, predator avoidance and long-range navigation, in
bats (Chase, 1981; Greif et al., 2014; Gutierrez et al., 2014),
suggesting congruent functions between echolocation and visual
information to mediate goal-directed orienting movements
(Hoffmann et al., 2016). These recently identified novelties in
bat visual functions have created excitement in the scientific
community and generated an interest in better understanding
the neural framework that underlies the visual system in bats
(Melin et al., 2014; Butz et al., 2015; Scalia et al., 2015). On
the other hand, several features of the neural arrangement have
been neglected in the bat visual neuroanatomy, e.g., regarding
the morphologies of the retinal fibers and varicosities that
project to a given downstream region (see Sherman and Guillery,
2011) because slight morphological variations in retinal fibers
can dramatically alter visual functions (Gauvain and Murphy,
2015).

Fruit-eating bats use echolocation to segregate fruits from
vegetation (Kalko andCondon, 1998; Thies et al., 1998); however,
fruit in tree branches may produce a very confusing background
that is difficult to differentiate using echolocation only, which
makes the use of vision critical for accessing food (Korine
and Kalko, 2005; Gutierrez et al., 2014; Hoffmann et al.,
2016). Recent studies have suggested that several echolocating
bats have color vision due the presence of two cone opsins
and cone photoreceptors in some species (Feller et al., 2009;
Zhao et al., 2009; Melin et al., 2014; Gutierrez et al., 2018).
Additionally, a laminar segregation of the retinal fibers in
the dLGN is relatively clear in pteropodid bats (Cotter,
1981; formerly classified as Megachiropterans). This laminar
segregation is present in species that are heavily reliant on
visual cues for their normal behavior, such as carnivores,
primates, tree shrews and flying foxes (e.g., Kaas et al., 1978;
Dreher, 1986; Casagrande and Norton, 1991; Garey et al., 1991;

Rosa et al., 1996; Ichida et al., 2000; Lyon et al., 2003; for
reviews).

The present study reports projections from the retina to
the primary visual system and pretectal complex in Artibeus
planirostris (Chiroptera, Phyllostomidae) using the cholera
toxin B subunit (CTb). The CTb is considered the most
sensitive technique for mapping retinal projections into the
brain (Angelucci et al., 1996; Gaillard et al., 2013; Morin and
Studholme, 2014). To date, the pattern of retinal projections
in bats is usually identified according to axonal transport of
WGA-HRP or unconjugated HRP or via less sensitive methods
that reveal the retinal projections (Reimer, 1989; Thiele et al.,
1991). On the other hand, a modern description of the retinal
projection using CTb as a tracer was recently performed in
another Phillostomid bat, the short-tailed fruit bat (Carollia
perspicillata) and extensively compared with retinal projections
in mice (Scalia et al., 2015).

Artibeus planirostris is a relatively large bat with a total length
ranging from 7.5 cm to 11 cm and body mass between 39 g and
69 g (Barquez et al., 1999). The external cranial measurements of
A. planirostris reveal that it has small and frontalized eyes (8 mm
in interorbital width) despite the distance between the eyes
exceeding the distance between the eye and end of the muzzle.
A. planirostris is a fruit-eating bat that is widely distributed
throughout tropical lowland areas of South America (Hollis,
2005) and is a common species in many regions of Brazil (e.g.,
Barros et al., 2017). This species inhabits different types of rain
and dry forests and roosts in trees (Hollis, 2005). Although it
was recorded at different times during the night, A. planirostris
is most active in the early evening, especially in the second and
third hour after sunset (Bernard, 2002; Figure 1).

Understandably, there is great interest in analyzing the
auditory system of bats because bats are notable for their
echolocation ability. As opposed to visual imaging, a biosonar
image of spatial object properties is a challenge for the
auditory system because the sensory epithelium is not arranged
along space axes. For echolocating bats, the object width is
encoded by the amplitude of its echo (echo intensity) as
well as by the naturally covarying spread of the angles of
incidence from which the echoes impinge on the bat’s ears
(sonar aperture; Heinrich et al., 2011). Thus, bats are able
to detect changes in object width according to the absence
of intensity of echo cues. On the other hand, several studies
have focused on the bat visual system and have provided
evidence of vision being used by bats for diurnal navigation
(Layne, 1967), pattern discrimination (Suthers et al., 1969),
homing (William and Williams, 1970), escape behavior (Chase,
1983), obstacle avoidance (Orbach and Fenton, 2010), locating
roosting sites (Ruczyński et al., 2011) and foraging behavior
(Gutierrez et al., 2014). Interestingly, there are few detailed
reports on the morphologies of the visual structures in these
microphthalmic flying mammals (Cotter and Pierson Pentney,
1979; Cotter, 1985; Covey et al., 1987; Reimer, 1989; Scalia
et al., 2015). Further, neither morphometric nor stereological
information have been collected from bats on this subject to
date. The present investigation was conducted to obtain a
complete description of the bat retinorecipient brain regions

Frontiers in Neuroanatomy | www.frontiersin.org 2 August 2018 | Volume 12 | Article 66

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Santana et al. Visual Subcortical Structures in Bat

FIGURE 1 | Artibeus planirostris (Photo/Image courtesy of Frederico Horie Silva).

with stereological measures, comparing them with patterns
identified in others species. In summary, this study may
provide clues about the evolution of the complex visual system
in bats.

MATERIALS AND METHODS

Animals and Housing
Ten A. planirostris adult males (body weight range, 40–47 g)
captured at the campus of the Federal University of Rio
Grande do Norte (UFRN), Natal, Northeast Brazil were used
in this study as authorized by the Chico Mendes Institute
for Biodiversity Conservation (ICMBio Register SISBIO N◦

25233-2). We captured bats using three nylon Ecotoner

mist nets with dimensions of 3 m × 12 and mesh size of
19 × 19 mm. The nets were opened after sunset and remained
exposed for two consecutive hours. The animals were housed
at Biosciences Center, UFRN in 0.70 m × 0.50 m × 0.35 m
cages, which included 0.15 m × 0.13 m × 0.29 m nest boxes.
The individuals were exposed to controlled light, temperature
and humidity, with food and water freely available. All
experimental procedures strictly followed the rules established
by the Ethics Committee on Animal Use (CEUA) of UFRN
and were approved by this committee (protocol number 009/
2012).

Eye Injections, Perfusions and Section
Collection
Animals were anesthetized with an intramuscular injection of
ketamine (5 mg/Kg; Agener), xylazine (0.5 mg/kg; Rhobigarma),
diazepam (0.5 mg/Kg; Compaz) and tramadol hydrochloride
(5 mg/kg; Cristália). Following topical applications of tetracaine
hydrochloride (Allergan) to the cornea, bats were given a
unilateral eye injection (left eye) of an aqueous solution that
included 15 µl of 5% of the B subunit of cholera toxin (CTb,
List Biological Laboratories, Inc., Campbell, CA, USA) in 10%
dimethyl sulfoxide (DMSO). This solution was injected into
the vitreous humor using a 30-gauge needle catheter attached
to a micropump, which pushed the solution at a rate of 0.8
µl/min. To minimize the reflux and spread of the tracer to the
extraocular muscles, the needle was left on the site until 15 min
post-injection and then withdrawn. To avoid post-operatory
local infection, the ocular surface was cleaned with saline during
the surgical procedure. Then, the ocular surface was washed
with saline and an antibiotic ointment was topically applied.
Five days post-injection, bats were reanesthetized with the same
anesthetic and perfused transcardially with 150 ml of phosphate-
buffered saline, pH 7.4, containing 500 UI heparin (Liquemine,
Roche, Brazil), followed by 300 ml of 4% paraformaldehyde in
0.1 M phosphate buffer (PB), pH 7.4. The brain was removed
and, after postfixation in the same fixative for 2 h, were cut
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serially into coronal 30 µm sections using a freezing microtome.
The sections were collected individually and placed into a series
of six jars filled with PB for subsequent staining. Thus, the
anteroposterior interval among sections stained for CTb or
thionin was 180 µm.

Nissl Staining and Immunohistochemistry
Sections from one series were immediately mounted onto
electrostatic glass (Fisherbrand) and were then Nissl stained
with thionin to visualize the cytoarchitectonic delimitation
of the neuronal groups. Sections from another series were
submitted to immunohistochemistry to reveal CTb. All of
the immunohistochemistry procedures were performed at
room temperature. The sections, previously submitted to
pre-treatment with hydrogen peroxide (H2O2), were free floating
incubated in a blocking solution containing bovine serum
albumin (BSA); diluted in 5% Triton X-100 for 1 h; and
incubated for 18–24 h with the primary antiserum, a goat
anti-CTb IgG (List Biological Labs, Campbell, CA, USA; RRID:
AB_10013220) diluted 1:1,000 in solution containing 2% BSA,
0.4% Triton X-100 and 0.1 M PB, pH 7.4. The sections were
then incubated with a biotinylated secondary antiserum (donkey
anti-goat IgG, JacksonLabs,Westgrove, PA, USA) diluted 1:1,000
for 90 min. The sections were subsequently incubated with an
avidin–biotin–peroxidase solution (ABC Elite kit, Vector Labs,
Burlingame, CA, USA) for 90 min in 0.4% Triton X-100 NaCl.
The sections were then reacted for peroxidase in a solution
of diaminobenzidine tetrahydrochloride (DAB, Sigma, St Louis,
MO, USA) and 0.01% H2O2 in 0.1 M PB, pH 7.4. The sections
were washed with 0.1 M PB, pH 7.4 (5 × 5 min) between
each step and at the end of the procedure. The sections were
then allowed to dry, dehydrated through a graded alcohol
series, cleared in xylene, and cover-slipped with the neutral
mounting medium ERV-MOUNT (EasyPath). Specificity tests
were performed based on omission of the primary or secondary
antibodies in some sections. In all cases immunolabeling
was completely abolished. Furthermore, as a control for the
possibility of transsynaptic labeling, the occipital lobes of one
animal were sectioned and processed for CTb immunostaining.
The visual cortex of these animals was examined to verify the
presence of CTb. As a result, immunolabeling was completely
abolished.

Digital Photography
The sections were examined under bright field illumination on
a Nikon microscope (Nikon Eclipse/Ni-U), and digital images
of representative sections were taken by a video digital camera
(Nikon DS-Ri1). The images were minimally processed for
brightness and contrast, and drawings were made using Canvas
12 with the aid of The Rat Brain in Stereotaxic Coordinates
(Paxinos and Watson, 2007) and Forebrain Atlas of the Short-
tailed Fruit Bat, Carollia perspicillata (Scalia et al., 2013).

Relative Optical Density
For quantitative analysis, all images were obtained under
brightfield illumination at a fixed intensity for each of the
rostrocaudal levels per individual. The resulting brightfield

images were 3840 × 3072 pixel, with a resolution of
0.59 pixel/µm (with a 4× objective). Relative Optical Density
(ROD) analysis was performed using Image J software (Version
1.49i, NIH). The images were converted to gray scale images
(8-bit). The images were then binarized and the contrast
was adjusted to 100%. After this procedure, the images only
had two values, which were expressed on a histogram: zero,
which corresponded to black, and 255, which corresponded
to white. Finally, the program provided the number of black
pixels in the sampled areas (Santos et al., 2013). The mean
gray value of each sampled area was measured using a square
(0.3 × 0.3 mm) in the area of interest (AOI). For dLGN and
SC, eight squares were sampled, four in each layer, and for
each Pretectal Nuclear Complex (PNT) nucleus, one square was
sampled on well-defined DAB stained sections throughout the
rostrocaudal levels. The mean gray values were calculated. The
medium number of black pixels in the target area was subtracted
from the median values of a control region (areas that should
not have specific CTb staining). The value of the optical density
(OD) of the AOI was related to the mean of the black pixel values
in the target area and the mean background value calculated the
formula: ROD = [(OD AOI − OD background)/(OD AOI + OD
background)]. The data from each target area are expressed as the
mean of pixels in the AOI. Manual selection of the chromogen
that stained positively for DAB was performed (Cuesta et al.,
2013). All results are expressed as the mean and standard
deviation of the mean (SD).

Stereology and Morphometry
The Cavalieri principle (Howard and Reed, 2005) was used
to estimate the nuclear volume in the primary visual system.
We selected 7–9 sections of the dLGN, 3–4 sections of the
PNT and seven sections of the SC from Nissl-stained coronal
sections with had a 30 µm thickness and were obtained from
five animals using systematic and uniform random sampling
(SURS; Gundersen et al., 1999) for each area. These sections
were analyzed under a 5× microscope objective with the aid of
MBF microsystem Stereo Investigator Software coupled to the
Zeiss Imager M.2 Microscope with ApoTome.2. The following
formula was used to estimate the nuclear volume: V = Σp. a/p.
t. F−1. The error coefficient (EC) for the volume estimation
according to the Cavalieri Principle was calculated according to
the formula: EC =

√
Var [total]/

∑
p (see Gundersen et al., 1999

for EC measurement details).
For the cellular area measurement, we used all of the Nissl

stained coronal sections that were found in the regions of
interest from five animal brains, and we obtained the cellular
profile of all of the extensions of the nuclei. The sections were
analyzed under a 20× microscope objective with the aid of NIS
ELEMENTS AR software coupled to a Nikon Ni-U Microscope.
We selected 10 cells per section of the dLGN, five in the
outer layer and five in the inner layer, totaling 360 measured
cells; 10 cells per section of the SC, five cells in zonal stratum
(ZS) layer and five cells in superficial gray superior colliculus
(SGS) layer, totaling 500 measured cells; and finally, 10 cells
per section of each nucleus of the NPT, totaling 120 cells for
nucleus of the optic tract (NOT), 120 for olivary pretectal nucleus
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(OPT), 110 for PMT and 80 for posterior pretectal nucleus
(PPT).

Statistical Analysis
The General Linear Mixed Model (GLMM) was used to analyze
the influence of the animal, section and layer (fixed factors) on
the variation of the cellular area (response variable) and the
influence of the animal, section, layer and hemisphere (fixed
factors) on the variation of the ROD values (response variable).
These model analyses were performed separately for each
nucleus. Another GLMM was performed to verify differences
among nuclei (fixed factor) with respect to their volume
(response variable). Pair wise comparisons were performed using
Bonferroni’s post hoc test. A significance level of 5% or less
was considered for all tests. The statistical software IBM SPSS
Statistics 21 was used for all data analyses.

RESULTS

We used stereological methods to estimate the volume of
the studied nuclei as well as the average of the neuronal
areas to distinguish nuclei and their subdivisions. Additionally,

to differentiate the density of the retinal fibers among the
investigated nuclei, we used the ROD. Finally, the quality of
fibers was accessed from high magnification photomicrographs
of the sampled areas. The rostrocaudal length of the encephalon
of A. planirostris from the olfactory bulb to the bulb-spinal
transition was approximately 17.65 mm. Nissl-stained sections
helped us to establish the anatomical boundaries of the nuclei
and cytoarchitecture. To provide a comparative morphometric
analysis between neurons in the various subdivisions of the
studied nuclei, we considered large neurons to be those with
areas ranging between 150 µm2 and 100 µm2. Medium neurons
were considered to be those with areas between 99 µm2 and
50 µm2, and small neurons were considered to be those with
areas under 50 µm2.

Cytoarchitectonic, Morphometrical and
Stereological Analysis
In the coronal sections of the brain of A. planirostris, the
dLGN was easily identified as a cluster of cells in the most
dorsal edge of the thalamus in the rostral sections, which lies
laterally in the mid- and caudal-levels of the dorsal thalamus
(Figures 2A–C). It was not possible to identify differences

FIGURE 2 | Photomicrographs of the brain sections of flat-faced fruit-eating bat showing the dLGN in bright field stained by Nissl technique at rostral, middle and
caudal levels (right) and drawings (left; A–C), respectively. The boxed area in (B) are shown in high magnification in (D), illustrating the detailed morphology of the cells
in the dLGN. Black arrows indicating rounded shape neurons in the dLGN. Scale bar 100 µm (A–C) and 10 µm (D). Abbreviations: see list.
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TABLE 1 | Morphometrical and stereological analysis.

Dorsal lateral geniculate nucleus Superior colliculus

Animala/
Weight
(g)

Superficial layer
Mean ± SD

(µm2)

Deep layer
Mean ± SD

(µm2)

Volume
(µm3)

CE = 4.5%

Animala/
Weight
(g)

ZS
Mean ± SD

(µm2)

CGS
Mean ± SD

(µm2)

Volume
(µm3)

CE = 4.9%

B2/45.5 140.9 (±32.7) 165.3 (±33.0) 1.20 B5/46.0 39.1 (±13.7) 66.3 (±21.2) 6.20
B4/40.0 137.6 (±32.6) 139.0 (±31.3) 1.08 B7/41.0 36.0 (±12.5) 58.2 (±19.2) 6.01
B8/39.5 110.7 (±37.6) 114.0 (±33.7) 0.91 B8/39.5 29.8 (±9.6) 48.7 (±15.3) 5.75
B9/41.0 199.2 (±128.7) 195.3 (±79.9) 1.14 B9/41.0 25.4 (±8.1) 49.8 (±13.0) 6.39
B10/40.5 136.4 (±30.4) 139.0 (±40.5) 1.10 B10/40.5 31.1 (±12.0) 56.3 (±16.2) 6.59
Mean 146.5 (±73.2) 151.8 (±55.8) 1.08 Mean 32.2 (±12.2) 55.8 (±18.2) 6.19

NS p < 0.001 ∗p < 0.001

Pretectal nuclear complex

Animala/
Weight
(g)

MPT
Mean ± SD

(µm2)

OPT
Mean ± SD

(µm2)

NOT
Mean ± SD

(µm2)

PPT
Mean ± SD

(µm2)

Volume
(µm3)

CE = 5.7%

B1/40.5 57.4 (±25.6) 69.1 (±24.8) 24.9 (±9.3) 107.4 (±35.3) 1.02
B7/41.0 50.4 (±44.7) 69.6 (±31.0) 26.2 (±10.6) 89.5 (±32.2) 0.95
B8/39.5 57.5 (±30.1) 57.6 (±18.2) 55.4 (±13.4) 35.8 (±6.4) 0.81
B9/41.0 35.7 (±15.6) 58.4 (±22.8) 26.3 (±21.0) 76.1 (±27.8) 1.17
B10/40.5 42.3 (±18.0) 64.0 (±25.0) 33.7 (±15.6) 84.8 (±32.0) 0.79
Mean 46.8 (±30.2) 64.7 (±25.7) 29.5 (±16.6) 84.4 (±36.5) 0.95

a∗∗ b∗∗ c∗∗ d∗∗

Mean values of cellular area and standard deviations in the investigated cases per retinorecipient subdivision and total estimated volume of dorsal lateral geniculate
nucleus (dLGN), superior colliculus (SC) and pretectal nuclear complex (PNT). ∗Related to dLGN and PNT; ∗∗Different letters represent significant differences among PNT
nuclei (Bonferroni post hoc test, p < 0.001). Animala: B. bat. NS: non significant. CE: coefficient of error.

among layers in the dLGN of A. planirostris using Nissl-stained
coronal sections of the thalamus, despite the observation of large
and round shaped neurons in Nissl preparations being present
throughout the nucleus (mean area = 149.1 µm2; Figure 2D). In
A. planirostris, the neurons in the dLGN had the largest average
cellular area among the visual nuclei investigated (p < 0.001;
Table 1). The coronal sections in the midbrain revealed all of
the classical nuclei of the PNT. The anterior pretectal nucleus
(APT) lied ventrally to the remaining nuclei of the PNT and
medial to the dLGN (Figure 3A). Neurons in the APT were
medium-sized in area (mean area = 65.1 µm2; Table 1) and
predominantly round shaped. The APT extended caudally to
the level of the posterior commissure (pc; Figures 3B,C). The
medial pretectal nucleus (MPT) was observed dorsal to the
habenular complex in the rostral sections (Figure 3A) as well
as dorsal to the NOT and OPT in the mid sections of the PNT
(Figure 3B). The PPT in the caudal sections of the midbrain
was visualized to lie dorsal to the OPT at the caudal sections
(Figure 3C). Cytoarchitectonic analysis revealed predominantly
elliptical shaped neurons in the MPT and OPT (Figures 4A–D).
Otherwise, round shaped neurons dominated the microscopic
fields in the NOT and PPT (Figures 4E,F). In addition, neurons
in the PPT had the largest average area among nuclei in the
PNT (mean area = 84.4 µm2). Meanwhile, the NOT neurons had
the smallest average area among PNT nuclei (mean area = 29.5
µm2; Table 1). The SC in A. planirostris lies dorsal in the
midbrain at the same level of the most caudal OPT section.
Analysis of Nissl-stained sections in the midbrain provided
unequivocal evidence of seven layers in the SC of A. planirostris
(Figures 5A,B). The ZS was the most superficial layer in the SC,
with small (mean area = 32.2 µm2) and elliptical shaped neurons

(Figure 5C). Nissl preparation and posterior morphometrical
analyses revealed round shaped neurons in the superficial gray
layer (SGS; Figure 5D), with neurons that were significantly
larger in area (mean area = 55.8 µm2) than those in the ZS
(p < 0.001; Table 1). Together, ZS and SGS represent the most
superficial layers in A. planirostris’ SC, which are collectively
the main target of the retinal projection in the SC of this
species.

Stereology of the primary visual nuclei to estimate volumes
was performed. The SC (6.19 mm3) volume in A. planirostris was
higher (p < 0.005) than those of the dLGN (1.08 mm3) and PNT
(0.95 mm3). On the other hand, no significant difference was
detected between the LGN and PNT (p < 0.001; Table 1).

Retinal Projections
The retinal fibers in the primary visual nuclei of A. planirostris
were revealed according to CTb anterograde transport after an
intraocular injection. The distinctive features of the fibers in
the terminal field were clearly demonstrated in the dLGN, PNT
and SC, suggesting that the CTb accumulated in the arbors
of the optic axons prior to sacrifice. The retinal projection
in A. planirostris was predominantly contralateral to the eye
injections. Normally, stained CTb fibers densely and completely
fill nuclei, which are generally opaque, impairing qualitative
analysis of retinal fibers. Qualitative evaluation was performed
when discrete preterminal axons and boutons could only be
resolved on the projection that appeared lighter, as on the
fringes of densely innervated areas and on the ipsilateral
side. In general, three types of terminals were identified in
A. planirostris’ visual primary nuclei: (1) type R1-like terminals,
which consisted of large, elliptical varicosities along the length
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FIGURE 3 | Photomicrographs of the brain sections of flat-faced fruit-eating bat showing the PNT in bright field stained by Nissl technique at rostral, middle and
caudal levels (right) and drawings (left; A–C), respectively. Scale bar 100 µm (A–C). Abbreviations: see list.

of the caliber axons, and type R2-like terminals, which consisted
of medium and small varicosities forming rosette-like clusters of
boutons; (2) string-like configurations, which consisted of axons
collaterally studded with boutons of various sizes; and (3) simple
en passant varicosities and terminal swellings, which were
present in poorly branched fibers decorated with a varicosity at
the end of fiber.

The retinal projection to the dLGN of A. planirostris was
completely contralateral (Figures 6A–C). In addition, the dLGN
appeared to be divided into two layers in accordance with the
types of fibers (Figures 6D–F). The superficial division of the
dLGN had predominantly R1/R2-like terminals (Figure 6E). On
the other hand, simple en passant fibers were predominantly
observed in the deep layer of the nucleus (Figure 6F). Consistent
with that observation, layering suggested by the type fibers
distribution analysis in the dLGN was confirmed by use of the
ROD approach, in which the LGN also presented significant
differences in ROD values between these sectors of the nucleus

(p < 0.001; Figure 7). The PNT nuclei have shown retinal
fibers with a contralateral predominance in all nuclei of
the complex, except APT, in which no fibers were observed
throughout rostrocaudal extension (Figures 8A,B). Although,
slight differences were resolved according to ROD analysis,
there were no significant differences among retinorecipient
areas in the PNT, suggesting a relatively homogeneous retinal
fiber distribution in this nuclear complex (Figure 9). High
magnification analysis of the fibers in the PNT showed that
simple end-like fibers, as well as string-like fibers, were
homogeneously distributed throughout the MPT, OPT and PPT
nuclei (Figures 8D,E). On the other hand, R2-like terminals were
seen predominantly in the NOT, despite few R1-like terminals
have been visualized in this area (Figure 8C). Coronal brain
sections of A. planirostris were also used to revealed that the
pattern of retinal fibers in the SC had an exclusively contralateral
distribution (Figures 10A–C). Retinal fibers were restricted
to the most superficial collicular layer ZS and immediately
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FIGURE 4 | Photomicrographs of the brain sections of flat-faced fruit-eating bat showing the PNT in bright field stained by Nissl technique at middle and caudal
levels (A,B). The boxed area in (A,B) are shown in high magnification in (C–F), illustrating the detailed morphology of the cells in the MPT, OPT, NOT and PPT
respectively. Black arrows indicating elliptical shaped neurons and black arrow heads indicating round shaped neurons. Scale bar 100 µm (A,B) and 10 µm (C–F).
Abbreviations: see list.

deeper layer SGS in the SC of A. planirostris (Figure 10D).
The ROD of these two retinorecipient collicular layers had
significantly higher ROD values in the ZS compared to those
in the SGS layer (p < 0.001; Figure 11). Furthermore, high
magnification of the retinal fibers inside the SC showed that
R1 and R2-like terminals were predominantly distributed in
the ZS layer (Figure 10F), differing from that observed in the
SGS layer, which predominantly contained string-like terminals
(Figure 10E).

DISCUSSION

The present study is the first to reveal subcortical projections
of the retina to the primary visual structures in the brain of
A. planirostris and provides a detailed anatomical description

of these visual nuclei using reliable quantitative tools, such as
stereological and morphometrical analysis, as well as the ROD
of the retinal projections. Surprisingly, retinal projections that
usually target the three nuclei of the rostral midbrain: DTN,
MTN and LTN of the AOS (Weber, 1985; Zhang and Hoffmann,
1993) and are functionally involved in mediating visuomotor
reflex such as underling the generation of optokinetic nystagmus
(Precht and Strata, 1980; Hoffmann and Distler, 1986), as well as
visual regulation of the vestibular ocular reflex (Ito et al., 1979)
seem to be absent in A. planirostris.

Dorsal Lateral Geniculate Nucleus
Cytoarchitecturally, the dLGN in A. planirostris does not appear
to be laminated, even using a morphometrical approach in which
no significant difference was observed among neuronal areas. A
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FIGURE 5 | Photomicrographs of the brain sections of flat-faced fruit-eating bat showing the SC in bright field stained by Nissl technique at middle level (right) and
drawing (left; A) The boxed areas in (B) are shown in high magnification in (C,D), illustrating the detailed morphology of the cells in the SC. Black arrows indicating
elliptical shaped neurons in the ZS and black arrow heads indicating round shaped neurons in the SGS. Scale bar 100 µm (A,B) and 10 µm (C,D). Abbreviations:
see list.

FIGURE 6 | Photomicrographs of the dLGN coronal sections of flat-faced fruit-eating bat at rostral (A), middle (B) and caudal (C) levels, illustrating the distribution
pattern of retinal projections in the ipsi and contralateral sides. The boxed areas in (D) are shown in high magnification in (E,F) respectively, illustrating the detailed
morphology of the retinal axons in the superficial (E), and deep layers in the contralateral side of the dLGN. White arrows indicating R1and R2-like terminals in the
superficial layer (E), and black arrows indicating simple endings (F). Scale bar 100 µm (A–D) and 10 µm (E,F). Abbreviations: see list.
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FIGURE 7 | Relative optical density (ROD) values in the dLGN layers of flat-faced fruit-eating bat (n = 5). To compare across layers, the ROD in each layer was
schematically displayed as levels of gray in the drawings (A) through rostrocaudal length. The bars represent the means (± standard error) of the mean ROD values
of individual animals by layer (B). The dashed and solid lines represent the overall mean of ROD for the deep and superficial layers, respectively. General Linear Mixed
Model (GLMM) revealed ROD significant difference between the layers analyzed (F(1,109) = 60.6, p < 0.001). Different letters represent significant individual
differences (Bonferroni post hoc test, p < 0.05). Scale bar 500 µm in (A). Abbreviations: see list.

similar pattern was observed in the genus Rhinolophus (Niimi
et al., 1963), Myotis lucifugus (Pentney and Cotter, 1976), and
Carolia perspicilata (Scalia et al., 2015). Larger (mean area = 149.1
µm2) cells were observed in the dLGN compared to those in
the SC and PNT of A. planirostris. A previous study in the
gray-headed flying fox (Pteropus poliocephalus) revealed small
neurons (106 µm2) in the dLGN (Ichida et al., 2000) compared
to those in the dLGN in A. planirostris. Scalia et al. (2015) have
performed an extensive study of subcortical visual centers in the
bat Carolia perspicilata. These authors have reported neurons
as being larger in the dLGN, despite no quantitative data being
provided. Finally, we used stereological methods to estimate
the volume of the dLGN (1.08 mm3) of A. planirostris. As a
result, we attest that the dLGN in A. planirostris is surprisingly
larger than that reported in the Nile grass rat (Arvicanthis
niloticus; 0.55 mm3), mice (0.32 mm3) and rats (0.95 mm3;
Gaillard et al., 2013), suggesting a well-developed dLGN in bat
species.

The retinal fibers that travel to the dLGN are substantially
contralateral inA. planirostris, with a slight ipsilateral component
at the deep layer revealed by ROD values. The projection from
the retina distributed uniformly in the rostrocaudal extension

of the dLGN, and contrary to morphometrical analysis, a ROD
approach revealed superficial and deep layers in the dLGN.
Previous studies in bat, using fiber degeneration after eye
removal or an intraocular CTb injection have shown lateral
and medial layers in the dLGN, even though no quantitative
approach has been performed (Cotter and Pierson Pentney,
1979; Cotter, 1985; Covey et al., 1987). In addition, three
layers were identified in Pteropus poliocephalus (Ichida et al.,
2000; Manger and Rosa, 2005) and six layers are classically
described in primates (Fitzpatrick et al., 1980; Callaway, 2005).
Taken together, these findings suggest that the visual system
in bats, including A. planrostris, might function as a series
of parallel pathways, conveying different aspects of the visual
information, similar to that seen in upper vertebrates, which
to a great extent orient their behavior by sight. In contrast, a
recent study in Carolia perspicilata showed a relatively uniform
distribution of retinal fibers only in the posterior half of the
dLGN, which seem to be largely clustered at various loci into
islands or nests in the middle of neurophils (Scalia et al.,
2015).

At high magnification, the appearance of retino-dLGN axon
arbors in A. planirostris resembles that of other terminal
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FIGURE 8 | Photomicrographs of the PNT coronal sections of flat-faced fruit-eating bat at middle (A) and caudal (B) levels, illustrating the distribution pattern of
retinal projections. The boxed areas in (A,B) are shown in high magnification in (C–E), respectively. The boxed area in (A) is shown in high magnification in (C),
illustrating the detailed morphology of the retinal axons in the NOT. The boxed areas in (B) are shown in high magnification in (D,E), respectively, illustrating the
detailed morphology of retinal axons in the PPT (D,E). Black arrows indicating R2-like terminals; Black arrow heads indicating R1 like-terminals; White arrows
indicating simple ending-like terminals; and White arrow heads indicating string-like terminals. Scale bar 100 µm (A,B) and 10 µm (C–E). Abbreviations: see list.

FIGURE 9 | ROD values in the PNT of flat-faced fruit-eating bat (n = 5). To compare among nuclei, the ROD in each nucleus was schematically displayed as levels of
gray in the drawings (A) through rostrocaudal length. The bars represent the means (± standard error) of the mean ROD values of individual animals by nuclei (B).
GLMM did not reveal ROD significant difference among nuclei analyzed (F(3,78) = 1.61, p = 0.193). Different letters represent significant individual differences
(Bonferroni post hoc test, p < 0.05). Scale bar 500 µm in (A). Abbreviations: see list.
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FIGURE 10 | Photomicrographs of the SC coronal sections of flat-faced fruit-eating bat at rostral (A), middle (B) and caudal (C) levels, illustrating the distribution
pattern of retinal projections in the ipsi and contralateral sides. The boxed areas in (D) are shown in high magnification in E (SGS) and F (ZS), respectively. White
arrows indicate R2 and R1-like terminals; and Black arrows indicating string-like terminals. Scale bar 100 µm (A–D) and 10 µm (E,F). Abbreviations: see list.

specializations of retinofugal axons in the mediodorsal thalamic
nucleus, Zona Incerta of the rock cavy and suprachiasmatic
hypothalamic nucleus of the A. planirostris (do Nascimento
et al., 2010; de Góis Morais et al., 2014; Santana et al.,
2018). R1/R2 types terminals observed in the superficial layer
of the dLGN in the A. planirostris have a morphology
dramatically distinct, by virtue of their large-sized boutons
and rosette-like configuration, from terminals found in the
deep layer of the dLGN. These morphological diversities of
the endings observed in the superficial and deep layers of
the dLGN of A. planirostris could be due to source-specific
factors, such as subpopulations of retinal ganglion cells, forming
cell-specific terminals in the dLGN. Additionally, these distinct
morphologies of retinal afferents in the dLGN suggest a
differential influence on postsynaptic cells (Sherman, 2005;
Petrof and Sherman, 2013) as well as a functional dichotomy in
the dLGN.

Pretectal Nuclear Complex
The dorsocaudal region of the diencephalon, just rostral to
the midbrain, develop from prosomere 3 of the diencephalic
embryonic vesicle (Puelles and Rubenstein, 1993; Puelles, 1995)
and contains an important structure which forms a landmark
in the brain of all vertebrates, the pc. The nuclei groups
around the pc form an often poorly defined anatomical
region named pretectum because of its relative position just
anterior to optic tectum (SC in mammals). Interestingly, the
retinorecipient pretectal regions are the best characterized nuclei

in the pretectum. The PNT in A. planirostris is composed
of five classical subdivisions that were previously described in
mammals: APT, NOT, OPT, MPT and PPT (Kaas and Huerta,
1988; Matteau et al., 2003; Scalia et al., 2015), even though the
PPT in the present work has been displaced caudally, resembling
topographically to the PPT in the Carollia perspicillata (Scalia
et al., 2015) and similar to the tectal gray, which have been shown
in recent rodent atlases (Puelles et al., 2012).

Despite their diverse nuclear organization, PNT nuclei have
been reported in bats (Cotter and Pierson Pentney, 1979),
Nile grass rats (Arvicanthis niloticus; Gaillard et al., 2013),
mice (Morin and Studholme, 2014), and hamsters (Morin and
Blanchard, 1998). The APT and PPT are apparently the largest
structures in the PNT complex in A. planirostris. In fact,
this feature corroborates that previously described in Carollia
perspicillata (Scalia et al., 2015). Furthermore, PPT apparently
contains the largest neurons among pretectal nuclei in Carollia
perspicillata, as in A. planirostris. In addition, the neurons in
the APT of A. planirostris are medium-sized compared to the
neurons in the PPT based on morphometrical measurements,
as observed in the APT of Carollia perspicillata (Scalia et al.,
2015). On the other hand, NOT neurons are described as being
large in rats (Scalia and Arango, 1979), Nile grass rats (Gaillard
et al., 2013), and Carollia perspicillata (Scalia et al., 2015), but
seem to be the smallest neurons among pretectal nuclei in A.
planirostris.

Few reports on subcortical visual structures have used
stereology to provide a three-dimensional interpretation of these
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FIGURE 11 | ROD values in the SC of flat-faced fruit-eating bat (n = 5). To compare across layers, the ROD in each layer was schematically displayed as levels of
gray in the drawings (A) through rostrocaudal length. The bars represent the means (± standard error) of the mean ROD values of individual animals by layer (B). The
dashed and solid lines represent the overall mean of ROD for the SGS and ZS layers, respectively. GLMM revealed ROD significant difference between the layers
analyzed (F(1,117) = 117.4, p < 0.001). Different letters represent significant individual differences (Bonferroni post hoc test, p < 0.05). Scale bar 500 µm in (A).
Abbreviations: see list.

nuclei. In the present work, the PNT was 0.95 mm3, indicating
a relatively small volume compared to the dLGN and SC.
Crish et al. (2006) estimated the volume of the OPT in the
naked mole-rat (Heterocephalus glaber; 0.01 mm3) and mouse
(0.03 mm3). On the other hand, Gaillard et al. (2013) performed
a morphometrical analysis in the PNT of the Nile grass rat
(Arvicanthis niloticus) and revealed a total rostrocaudal extension
of the PNT (1450 µm). Generally, the PNT volume results of A.
planirostris could not be compared with others species.

The analysis using ROD revealed an uneven retinal projection
among nuclei in the PNT. Similarly, high magnification analysis
of the retinal fibers throughout the PNT demonstrated both
small and large differences in the wiring configuration among
nuclei in A. planirostris. The ROD measurements note the
PPT as the main target of retinal projections in this nuclear
complex of A. planirostris, followed by OPT, NOT and MPT.
It is generally accepted the PPT, OPT, and NOT are involved
in the pupillary light reflex and the detection of luminance
(Tokunaga et al., 1981; Weber, 1985; Klauer et al., 1990; Zhang
and Hoffmann, 1993). Our findings indicate that the retina has
denser projections to PPT, OPT, and NOT compare to that
one in the MPT. Curiously, R1/R2-like terminals were observed
in the entire NOT full length and some parts of the OPT. As

expected, no retinal fibers appeared to invade the APT, which
is thought to be associated primarily with the somatosensory
system and has been implicated in the processing of pain-related
information (Reis et al., 2012) and also in the memory functions
involved in visual discrimination learning (Thompson, 1979).
A distinct retinal fibers distribution has been reported in two
bat species, the Indian flying fox (Pteropus giganteus) and little
brown bat (Myotis lucifugus; Cotter and Pierson Pentney, 1979).
In P. giganteus, the fibers reached all subdivisions of the PTN,
except the MPT. On the other hand, fibers from the retina in
Myotis lucifugus only reached the NOT and OPT. The retinal
projection in A. planirostris is on superficial cellular edge of the
PPT. This pattern of retinal fiber distribution is quite similar to
that reported in Carollia perspicillata (Scalia et al., 2015).

Superior Colliculus
The SC in A. planirostris is composed of seven distinct layers
according to Nissl staining as well as morphometrical analysis.
This pattern of cellular organization in the SC seems to be usual
among mammalian orders (Kanaseki and Sprague, 1974; Kaas
and Huerta, 1988; Zhang and Hoffmann, 1993; Major et al., 2000,
2003; Crish et al., 2006; Nemec et al., 2008; Gaillard et al., 2013;
Morin and Studholme, 2014). The stereology performed in this
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study revealed a relatively large SC in A. planirostris (6.19 mm3).
In the naked mole-rat (Heterocephalus glaber), the volume of the
SC is 1.41 mm3 (Crish et al., 2006). Furthermore, the SC has been
shown to be 6.07mm3 in the Nile grass rat (Arvicanthis niloticus),
3.00 mm3 in mice, and 11.45 mm3 in rats (Gaillard et al., 2013).
In summary, comparative analysis of the SC in A. planirostris
indicates the relevance of movement orientation in bats since
the SC volume in this species had a similar layering pattern and
volume to that of rodents.

The earliest reports, which utilized a functional approach,
revealed that superficial layers (ZS, SGS and OP) are related
to visual information, while deeper layers (Intermediate gray
layer superior colliculus, InG, Intermediate white layer superior
colliculus, InWh, Deep gray layer superior colliculus, DpG and
Deep white layer superior colliculus, DpWh) are concerned
with auditory and somatosensory information (Grantyn and
Berthoz, 1985; Meredith and Stein, 1986; Kaas and Huerta,
1988; May, 2006). Remarkably, the present work found that
retinal projections were entirely in the contralateral SC in
A. planirostris. Moreover, retinal fibers were restricted and
uniformly distributed throughout the rostrocaudal extension of
the ZS and SGS layers inA. planirostris. Interestingly, the ZS layer
exhibited a significantly higher value of ROD compared to that in
the SGS, and R1/R2-type terminals were predominantly observed
in the ZS layer. Overall, this morphological arrangement suggests
a strong effect of light on cellular activity in these layers
of the CS in order to influence movement orientation in A.
planirostris. In Carollia perspicillata, retinal projections to the
SC are directed entirely to the contralateral side, but just reach
the SGS and do not cover the collicular surface uniformly.
They also seem to be weak or absent in the anterior and
posterior thirds of the SC (Scalia et al., 2015). The retinal
projections in the SC of the large naked-backed bat (Pteronotus
gymnonotus) and blyth’s horseshoe bat (Rhinolophus lepidus)
are also predominantly in the most superficial layer (ZS),
with few retinal fibers distributed in the SGS layer (Cotter
and Pierson Pentney, 1979), similar to the present results in
A. planirostris.

Final Considerations
For more than 30 years, the distribution of retinal retinal
projections has been described in several species of rodents, bats,
and primates via intraocular injections of tracers. This method
has become a powerful tool for elucidates the organization and
evolution of the visual system and also provides substantial
evidence to boost new investigations. In the present study,
we described a well-developed visual system in a bat species.
Interestingly, no accessory optic nuclei were noted in A.
planirostris, which raises some functional speculations on control
of the compensatory eye movements. The results found in
AOS in A. planirostris are similar to that observed in Myotis
(Cotter and Pierson Pentney, 1979). The morphometrical and
stereological analyses performed in this study support previous
findings of functional studies, which suggest the use, to some
degree at least, of vision in prey detection, spatial navigation,
color perception, and roost location in bats. Notably, the
dLGN in A. planirostris is larger than that reported in rodents.

Furthermore, different from rodents, the dLGN in A. planirostris
was shown to have two distinct layers according to the mean
of the ROD measurement and qualitative analysis of retinal
fibers. The previous report by Ling et al. (1997) anatomically
distinguished terminals, showing R1/R2-like terminals with large
varicosities and thick axons. The authors also showed string-like
configurations that comprised axon collaterals studded with
buttons of various sizes and simple en passant varicosities and
terminal swellings. These anatomical findings fit the functional
descriptions provided by Petrof and Sherman (2013), in which
different classes of terminals induced two distinct classes of
responses. Class 1 is defined as driver input, which induces
paired-pulsed depression, all-or-none responses, and the absence
of metabotropic components. On the other hand, class 2 of
terminals is defined as modulator fibers that raise paired-
pulse facilitation, graded responses and have a metabotropic
component. The qualitative analysis performed in the present
study connects these findings in bats. In the dLGN, PNT and
SC were shown to have different classes of terminals with
preferences for certain visual areas, suggesting a driver effect
in some nuclei or modulatory effect in others. Taken together,
these findings strongly suggest functional subdivisions in the
dLGN, PNT and SC. In summary, the light intensity, color of the
object, size and mobility of prey, feeding strategies of potential
predators and particular aspects of the species’ ecological niche
contribute to the adaptative nature of the arrangement of the
cells in the visual nuclei in bats, as well as induce different wiring
configurations in the retinal fibers among species. Finally, these
findings in A. planirostris are compatible with the significance
of vision in bats. These findings provide undoubted anatomical
evidence that supports the use of visual cues by echolocating bats
guide their behaviors.
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