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Recent studies have supported the relation between mitochondrial functions and

degenerative disorders related to ageing, such as Alzheimer’s and Parkinson’s diseases.

Since these studies have exposed the need for detailed and high-resolution analysis of

physical alterations in mitochondria, it is necessary to be able to perform segmentation

and 3D reconstruction of mitochondria. However, due to the variety of mitochondrial

structures, automated mitochondria segmentation and reconstruction in electron

microscopy (EM) images have proven to be a difficult and challenging task. This paper

puts forward an effective and automated pipeline based on deep learning to realize

mitochondria segmentation in different EM images. The proposed pipeline consists

of three parts: (1) utilizing image registration and histogram equalization as image

pre-processing steps to maintain the consistency of the dataset; (2) proposing an

effective approach for 3D mitochondria segmentation based on a volumetric, residual

convolutional and deeply supervised network; and (3) employing a 3D connection

method to obtain the relationship of mitochondria and displaying the 3D reconstruction

results. To our knowledge, we are the first researchers to utilize a 3D fully residual

convolutional network with a deeply supervised strategy to improve the accuracy of

mitochondria segmentation. The experimental results on anisotropic and isotropic EM

volumes demonstrate the effectiveness of our method, and the Jaccard index of our

segmentation (91.8% in anisotropy, 90.0% in isotropy) and F1 score of detection (92.2%

in anisotropy, 90.9% in isotropy) suggest that our approach achieved state-of-the-art

results. Our fully automated pipeline contributes to the development of neuroscience by

providing neurologists with a rapid approach for obtaining rich mitochondria statistics

and helping them elucidate the mechanism and function of mitochondria.

Keywords: electron microscope, deep learning, volumetric mitochondria segmentation, mitochondria

morphology, neuroinformatics
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1. INTRODUCTION

Known as the powerhouse of the cell, mitochondria have proven
to carry out all types of important cellular functions by producing
the overwhelming majority of cellular adenosine triphosphate
(ATP). At the same time, they also have substantial responsibility
for the regulation of cellular life and death, including disease
states. For example, mitochondrial dysfunction has been directly
linked to the ageing process, which is the largest risk factor
for Alzheimer’s disease (AD) (Roychaudhuri et al., 2009).
Since morphological alterations usually lead to disturbances in
mitochondrial functions and distribution (Mumcuoglu et al.,
2012), many meaningful research studies have focused on the
relationship between the mitochondrial distribution and shapes
and their corresponding functions. Increasing evidence has
suggested that the mitochondrial distribution inside a cell can
be strikingly heterogeneous (Anesti and Scorrano, 2006). For
example, they are often enriched at the cellular sites where
the demands for energy are greater or where their metabolic
functions are required, such as at the level of the synaptic
button. Equally, recent studies have shown that the regulation
of mitochondrial shapes is crucial for cellular physiology
since changes in mitochondrial shapes have been linked to
neurodegeneration, calcium signaling, lifespan, and cell death,
which further demonstrates the crucial role that morphological
changes in mitochondria play in the immune system (Campello
and Scorrano, 2010). Furthermore, it has been established
that the function of mitochondria is closely related to cancer
(Kroemer, 2006). For example, mitochondria in cancer cells can
alter the function of resisting apoptosis (Gogvadze et al., 2008;
Wallace, 2012), which has naturally led research studies on cancer
therapy to focus on mitochondria by stimulating mitochondrial
membrane permeability or by changing the mitochondrial
metabolism (Lee et al., 2007). All of these examples show that
the statistics and analysis of mitochondria are essential aspects
of neurobiological research.

Since mitochondrial structures vary in living cells and the
corresponding shapes range from punctuate structures to tubular
networks with sizes between 0.5 and 10 µm, optical microscopy,
with limited resolution, cannot provide sufficient resolution to
reveal these fine structures (Tasel et al., 2016). Fortunately,
several new scanning electron microscopy (SEM) imaging
methods have emerged, and their high-resolution capability has
provided new in-depth insights into mitochondrial structures
and functions (Mannella et al., 1997). Each of the available
methods involves tradeoffs in terms of resolution, acquisition
speed, and reliability. Here, we introduce two representative
SEM imaging methods: focused ion beam scanning electron
microscopy (FIB-SEM) (Knott et al., 2008) and automated
tape-collecting ultramicrotome scanning electron microscopy
(ATUM-SEM) (Briggman and Bock, 2012). The FIB-SEM
method provides aligned EM images with an isotropic resolution
up to 5 × 5 × 5 nm3. However, this method is destructive to
tissues since the sections are lost as soon as they are removed
from the block face. In contrast, the ATUM-SEM method
provides unregistered images with an anisotropic resolution up
to 4 × 4 × 30 nm3. It can be applied to large volumes to

obtain large-scale statistics and analysis of mitochondrial shapes,
and the preserved sections can be imaged and analyzed many
times without damaging the tissues. Furthermore, the image
acquisition time can be accelerated since the sections collected
on the tape can be imaged in parallel using multiple SEMs.

Note that electron microscopy (EM) images with higher
resolution will inevitably produce more data from the same
volume; thus, mitochondria validation requires a vast amount
of laborious manual work. Consequently, an automated
mitochondria segmentation method is essential for analyzing
large volumes of brain tissue. However, due to the variety of
mitochondrial structures, as well as the presence of noise, artifacts
and other subcellular structures, automated mitochondria
segmentation and reconstruction in EM data have proven to
be a difficult and challenging task. In recent years, various
attempts have been made to quantify the important properties of
mitochondria from EM data. For isotropic image stacks, Jorstad
et al. took advantage of the fact that mitochondria have thick
dark membranes and proposed an active surface-based method
to refine the boundary surfaces of mitochondria for the purpose
of segmentation (Jorstad and Fua, 2014). Rigamonti et al.
improved on the KernelBoost classifier by iteratively considering
the previous segmentation results and original images. The
recursion ensured that the classifiers focus on difficult-to-classify
locations progressively and exploited the power of the decision-
tree paradigmwhile avoiding over-fitting (Rigamonti et al., 2014).
Márquez et al. proposed a non-parametric higher-order model
for image segmentation that used a patch-based representation
of its potentials (Márquez-Neila et al., 2014). Lucchi et al. put
forward an automated mitochondria segmentation method,
which utilized an approximate subgradient descent algorithm
to minimize the margin-sensitive hinge loss in the structured
support vector machine (SSVM) frameworks (Lucchi et al.,
2013). For anisotropic image stacks, Tasel et al. first utilized a
parabolic arc model to extract membrane structures and then
employed the curve energy based on an active contour to obtain
the roughly outlined candidate mitochondrial regions (Tasel
et al., 2016). Finally, they achieved mitochondria segmentation
by means of a validation process in serial section transmission
electron microscopy (ssTEM) image stacks (Harris et al., 2006).
Márquez et al. presented a computationally efficient approach
that worked with anisotropic voxels, allowing the segmentation
of large image stacks in serial block-face scanning electron
microscopy (SBEM) image stacks (Denk and Horstmann, 2004;
Neila et al., 2016). Subsequently, they adopted the conditional
random field inference and surface smoothing techniques to
improve segmentation and visualization. Perez presented a
novel and effective method for segmentation of mitochondria,
lysosomes, nuclei and nucleoli in SBEM image stacks. They
trained organelle pixel classifiers with the cascaded hierarchical
model to generate a probability map and then used active
contours to obtain refined results (Perez et al., 2014). In a
recent approach, Li et al. used ridge detection to acquire
the mitochondrial membrane edges in the variational image
segmentation model and further utilized group-similarity in
order to optimize the local misleading segmentation (Li et al.,
2017a). However, the above methods are traditional machine
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learning algorithms and rely on hand-crafted features to build
classifiers. As the size of the data grows, the performance of these
methods will soon reach saturation. Thus, the generalization
performance and the segmentation accuracy are not satisfactory
enough, and these models are not suitable to handle massive
amounts of EM data.

Recently, due to their extraordinary performance, deep neural
networks (DNNs) have been widely applied in solving detection
and segmentation problems in medical imaging (Ciresan et al.,
2012; Beier et al., 2017; Lee et al., 2017). Therefore, the application
of DNNs to mitochondria segmentation in EM data holds great
promise. Dorkenwald et al. developed the SyConn framework,
which also used recursive networks to identify the location of
mitochondria (Dorkenwald et al., 2017). However, the proposed
networks were mainly focused on synapse segmentation; thus,
the accuracy of mitochondria segmentation is not satisfactory.
Oztel proposed a fully convolutional network (FCN) to segment
mitochondria and then used several types of post-processing,
such as 2-D spurious detection filtering, boundary refinement
and 3D filtering, to improve the segmentation (Oztel et al., 2017).
Xiao et al. proposed an effective approach using a deep network
for mitochondria segmentation, which combined Resnet (He
et al., 2016) and PSPnet (Zhao et al., 2017) with Inception-net
(Szegedy et al., 2015) to deepen the network. However, the above
methods applied only 2D FCN to segment mitochondria, which
ignored 3D information.

In this work, we proposed a simple yet effective 3D
residual FCN for mitochondria segmentation. Inspired by
previous studies, we applied a more spatially efficient and better
performing architecture to this approach in order to avert the
vanishing gradient problem. In the following, we evaluated
our approach on both FIB-SEM and ATUM-SEM datasets and
compared our results with other promising results obtained by
Lucchi et al. (2013), Rigamonti et al. (2014), Ronneberger et al.
(2015), Çiçek et al. (2016), He et al. (2016), Li et al. (2017a),
Oztel et al. (2017), and Xiao et al. (2018). In summary, the main
contributions of this work can be summarized in two different
aspects:

• Method: We design a fully automated pipeline for
mitochondria segmentation and reconstruction based
on a 3D convolutional network. This pipeline provides
neurologists with a high-efficiency approach for obtaining
rich mitochondria statistics. The experimental results on both
anisotropy and isotropy datasets suggest that our method
achieves state-of-the-art performance.

• Data: We provide a public mitochondria database of ATUM-
SEM images for facilitating neuroscience research1, which
consists of the original images and human-labeled ground
truth, corresponding to a 17.2× 16.8× 1.6 µm3 volume.

The remainder of the article is organized as follows. In section
2, we present the datasets and the proposed method in detail.
The experimental results and analysis are provided in section 3.
Finally, section 4 concludes the paper with some discussions.

1http://95.163.198.142/MiRA/mitochondria31/

2. MATERIAL AND METHODS

In this section, we provide a detailed description of the datasets
and pipeline of our proposed method. The datasets consist of
anisotropic and isotropic EM volumes, which are widely used
in the evaluation of mitochondria segmentation. As illustrated
in Figure 1, the proposed automatedmitochondria segmentation
method for EM datasets can be divided into three parts: image
pre-processing, mitochondria segmentation with the proposed
3D convolutional network and 3D visualization. All procedures
were approved by the Animal Committee of the Institute of
Neuroscience, Chinese Academy of Sciences (CAS).

2.1. Image Datasets
The details of each dataset are summarized in Table 1 and
Figure 2. The public FIB-SEM dataset2 from a rat hippocampus
was acquired by Graham Knott and Marco Cantoni at École
Polytechnique Fédérale de Lausanne (EPFL) (Lucchi et al., 2013).
In this dataset, the mitochondria were annotated in two volumes:
training volume and testing volume. The training dataset consists
of a stack of 165 slices from the FIB-SEM dataset, whichmeasures
approximately 3.84 × 5.12 × 0.83 µm3 with a resolution of 5
× 5 × 5 nm3 per voxel. The testing dataset with 165 slices was
obtained from a different part of the same specimens.

In the ATUM-SEM dataset from a mouse cortex, which was
acquired by the Institute of Neuroscience, CAS, 31 sections with
thicknesses of approximately 50 nmwere cut automatically (Yang
et al., 2016). Next, these sections were imaged through a Zeiss
Supra55 microscope at the Institute of Automation, CAS, where
the pixel size was set at 2 nm and the dwell time was set at 2
µs. The ground truths were annotated by neuroanatomists using
ImageJ (Schmid et al., 2010) with the TrakEm2 plug-in (Cardona
et al., 2012). Note that the production of such a ground truth
database required a great amount of human effort, which served
to justify that automated segmentation is liable to accelerate
neuroscience analyses.

2.2. Pre-processing
In this subsection, we presented the pre-processing method
consisting of image registration and histogram equalization. The
details are as follows.

As mentioned above, the data imaged with the ATUM-
SEM method were unregistered. The image registration method
adopted (Li et al., 2017b) for serial sections of biological tissue
was divided into three parts: (1) searching for correspondences
between adjacent sections; (2) displacement calculations for
the identified correspondences; and (3) warping the image
tiles based on the new position of these correspondences. For
correspondence searching, we adopted the SIFT-flow algorithm
(Liu et al., 2008) to search for correspondences between
adjacent sections by extracting equally distributed grid points
from the well-aligned adjacent sections. For the displacement
calculation, the positions of the identified correspondences
were adjusted throughout all sections by minimizing a target
energy function, which consisted of a data term, a small
displacement term, and a smoothness term. The data term

2http://cvlab.epfl.ch/data/em
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FIGURE 1 | The pipeline of our proposed method. (Left to Right) Image pre-processing with registration and histogram equalization; mitochondria segmentation

with the proposed 3D residual FCN; 3D connection and visualization in ImageJ.

TABLE 1 | Illustration of two datasets.

Dataset EM Voxel size (nm3) Train size Test size

Cortex ATUM-SEM 2 × 2 × 50 8,624 × 8,416 × 20 8,624 × 8,416 × 11

Hippocampus FIB-SEM 5 × 5 × 5 1,024 × 768 × 165 1,024 × 768 × 165

FIGURE 2 | Illustration of the datasets. (A) Isotropic image from mouse hippocampus obtained by FIB-SEM; (B) Ground truth of the FIB-SEM image; (C) Anisotropic

image from rat cortex acquired by ATUM-SEM; (D) Ground truth of the ATUM-SEM image. Scale bar: 500 nm.

keeps pairs of correspondences at the same positions in the
x-y plane after displacement. The small displacement term
constrains the correspondence displacements to minimize image
deformation. The smoothness term constrains the displacement
of the neighboring correspondences. For image warping, we used
the moving least squares (MLS) method (Schaefer et al., 2006) to
warp each section with the obtained positions. The deformation
results produced by MLS are globally smooth to retain the shape
of biological specimens. This image registration method not
only reflects the discontinuity around wrinkle areas but also
retains the smoothness in other regions, which provides a stable
foundation for follow-up works.

In addition, many factors, such as differences in slice
thickness, polluted or uneven surfaces and an unstable electron
beam, will produce an uneven grayscale between images. It
is hard to maintain the acquired images with consistent pixel
distributions during the imaging process. Occasionally, some

images are much brighter than others, and these differences
will inevitably increase the complexity of the images and
make segmentation more challenging. To this end, histogram
equalization was adopted to weaken the noise and enhance the
contrast of raw images, which reduced the complexity of the
images and improved the segmentation performance.

2.3. The Proposed Mitochondria
Segmentation Network
In this work, we combined the residual block with variant
3D U-Net to extend and deepen the network. There are three
advantages to our proposed architecture: (1) the 3D convolution
network is capable of exploiting the 3D spatial information
from volumetric EM data, (2) the variant U-Net structure and
residual convolutionmodule could better extract features, and (3)
injected auxiliary classifier layers could help avoid the problem of
vanishing gradients.
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FIGURE 3 | The architecture of the proposed network. Blue blocks denote feature maps, and numbers imply the channel of feature maps in each layer. The red arrow

represents the residual block, which consists of two 3D convolutional layers with a kernel size of 3 × 3 × 3 and a residual shortcut connection.

Figure 3 is a pictorial illustration of the proposed network.
The components, such as the convolutional layers of the
network, are implemented in a 3D manner; hence, the network
could effectively extract 3D information from serial EM data.
Additionally, the proposed network is a fully convolutional
architecture and thus is capable of taking arbitrary-sized 3D data
as input and producing corresponding size outputs, which is
suitable for dealing with a large-scale serial EM dataset.

As a variant of the U-Net, this network consists of a
contracting path and an expansive path. The contracting path
contains 13 convolutional layers, and the expansive path contains
15 convolutional layers; thus, the whole network is not entirely
symmetric. Specifically, each path could be divided into different
stages that operate in different receptive fields, and we adopted
a 3D residual module to extract the features in each stage. The
3D residual module consists of two convolutional layers with a
kernel size of 3 × 3 × 3 and a residual shortcut connection,
each of which was followed by batch normalization (BN) and
exponential linear unit (ELU) nonlinearity (to mitigate the
internal covariate shift). Zero padding was used to preserve the
size of the input feature maps. As confirmed by our empirical
experiments, this residual architecture increased the number of
ensemble sub-networks and was beneficial for feature extraction.
In contrast to previous methods (Milletari et al., 2016; Lee et al.,
2017), our residual block contains only two 3D convolutional
layers, which maintains the effectiveness and needs fewer
parameters.

Given anisotropic ATUM-SEM images with a resolution
of 2 × 2 × 50 nm3, the widely used max-pooling and
upsampling layers (with a stride of 2 × 2 × 2) might lower
the resolution of volumes in the z-dimension and reduce the
accuracy of predictions. Therefore, we chose the max-pooling
and upsampling layers with a stride 2 × 2 × 1 to deal with
anisotropy images, which minimized the inferior information
loss along the z-dimension.

In the following, several summation-based skip connections
were utilized to incorporate global information from higher
layers and local cues from lower layers. Compared to
concatenation-based skip connections, summation-based
skip connections fused multilevel contextual information more
thoroughly and helped handle the vanishing gradient problem.
To further solve the problem of vanishing gradients, we injected
auxiliary classifier layers into the hidden layers to train the
network. The details are discussed in section 2.4.

2.4. Deeply Supervised Strategy
Due to the problem of vanishing gradients (Glorot and Bengio,
2010), it is challenging to train such a deep 3D network directly.
Motivated by previous studies (Xie and Tu, 2015; Yu et al., 2016;
Dou et al., 2017), we utilized a deeply supervised strategy by
using injected supervision to train the network. As shown in
Figure 3, several upsampling layers (with a stride of 2 × 2 × 1)
were inserted into the hidden layers of the network, followed by
auxiliary classifier layers. During the training process, the loss of
auxiliary classifier layers was added to the total loss of the network
with a discount weight (the weight values of the auxiliary losses
were 0.15 and 0.3). During the testing process, these auxiliary
networks were discarded. This deeply supervised strategy would
propagate the back-propagation of the gradient back to the early
layers and effectively alleviate the vanishing gradient problem.
The total cross-entropy loss function is defined as

L (X ; θ) = L (X ;W) +
∑

c

[

ωcLc(X ;W ,Wc)

]

+
λ

2

(

∑

c

‖Wc‖
2
2 + ‖W‖22

)

. (1)

In Equation (1), the first two parts are the data loss terms,
which include the main and auxiliary classifiers. The last part is
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the regularization term. Specifically, ωc is the weight of the cth
auxiliary classifier, and λ is used for balancing. θ = (W ,Wc) are
the parameters of the proposed 3D fully convolutional network,
W denotes the parameters of the network and main classifier,
Wc denotes the parameters of the cth auxiliary classifier, and X

represents the training samples. Therefore, the cross-entropy loss
function of the main classifier can be expressed as

L (X ;W) =
∑

i∈Y+

− log P
(

yi = 1 | X ;W
)

+
∑

i∈Y−

− log P
(

yi = 0 | X ;W
)

. (2)

Here Y+ and Y− represent the mitochondria and non-
mitochondria ground truth label sets, respectively. P

(

yi = 1 |

X ;W
)

∈ [0, 1] is computed by the softmax function on the
activation value at pixel i. Similarly, the loss function from the
cth auxiliary classifier can be expressed as

Lc (X ;W ,Wc) =
∑

i∈Y+

− log P
(

yi = 1 | X ;W ,Wc

)

+
∑

i∈Y−

− log P
(

yi = 0 | X ;W ,Wc

)

. (3)

2.5. Implementation Details
2.5.1. Experimental Setup
The proposed deep network was implemented using the
Keras deep learning library and TensorFlow backend. In the
training process, our network was optimized by adaptive
moment estimation (Adam) with the following optimization
hyperparameters: learning rate = 0.0001, exponential decay rates
for moment estimates β1 = 0.9, β2 = 0.999, and epsilon = 10−8.
Binary cross-entropy was chosen as the loss function. It took
nearly 77 h to train our network for 30 epochs with a batch size
of 2 on a K40 GPU.

2.5.2. Data Augmentation
To avoid exceeding the memory of the GPU, smaller images were
used to train the proposed network. For the ATUM-SEM dataset,
we divided the original ATUM-SEM stack images (size of 8,624
× 8,416 × 20) into numerous small images (size of 256 × 256 ×
8). Similarly, we divided the original FIB-SEM stack images (size
of 768 × 1,024 × 165) into many small images (size of 256 ×

256 × 20). Next, we used rotation and flip strategies to enlarge
the training dataset. The transformations for each stack images
were combinations of rotations by -90, 0, +90, and 180 degrees
and vertical flips over the xy-plane and z-plane. Through data
augmentation, the number of images in both training sets was
greater than 6,000, which was sufficient for training our network.

2.5.3. Inference
Since the same padding strategy was used in the proposed
network, the size of the output patch was the same as that of
the input patch. However, this strategy utilized zero padding to
match the shapes during the convolution operation, which would
influence the segmentation accuracy near the edges of the patch.

To resolve this problem, we used overlapping patches and simply
blended them together at the time of the test. For the ATUM-
SEM dataset, the size of the patch was 1,152 × 1,152 × 8, with a
256 pixel overlap with the xy-plane and 5 pixel overlap with the
z-plane. For the FIB-SEM dataset, the size of the patch was 448×
576× 20, with a 128 pixel overlap with the xy-plane and 10 pixel
overlap with the z-plane.

In addition, due to the effectiveness of test-time augmentation,
it has been widely applied in improving the accuracy of
segmentation in EM datasets (Quan et al., 2016; Fakhry et al.,
2017). In this paper, we applied 16 variations of test-time
augmentation to further improve the segmentation results. The
testing images were rotated by 90◦ and flipped over the xy-plane
as well as in the z-dimension before passing into the proposed
network, and then we applied a reverse transformation to each
probability map and took the average of all variations as the final
result.

2.6. 3D Connection Method
Because the results produced by the proposed network were
probability maps, which were classified into mitochondria and
non-mitochondria, it was hard to obtain the shape and statistics
of individual mitochondria from these segmentation results.

To display the 3D reconstruction of each mitochondria and
obtain the mitochondrial biological statistics, it was necessary
to calculate the relationship of mitochondria in 3D. As an
approximate solution, the assumption that the 26-connected
component of the segmentations belong to the same structure
is commonly used. In this paper, we judge the connectivity
by calculating the intersection over union (IoU) of two
segmentations in adjacent slices. Considering that the small
connected components would bias the counting estimations, we
discard those components with an IoU smaller than the given
threshold T = 0.1. The main 3D connection procedure is
illustrated in Algorithm 1.

With Algorithm 1, we divided the whole segmentations
into several disjoint sets, where the segmentations in each
set belonged to the same mitochondrion. Next, these
segmentation results were imported into ImageJ to display
the 3D visualizations.

3. RESULTS

In this section, we present the experimental results on the
isotropy and anisotropy datasets to demonstrate the effectiveness
of the proposed method. We first introduce the evaluation
methods. Next, we utilize the different datasets to evaluate
the pixel-wise precision of our segmentation method and the
accuracy in terms of how many mitochondria are detected
correctly in 3D. Finally, we display the 3D reconstruction of
mitochondria from large-scale EM datasets and analyse the
biological statistics of the mitochondria.

3.1. Evaluation Methodology
Regarding the evaluation of the pixel-wise segmentation results
and detection results, the quantitative results are measured by
different metrics. For segmentation evaluation, the results are

Frontiers in Neuroanatomy | www.frontiersin.org 6 November 2018 | Volume 12 | Article 92

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Xiao et al. Mitochondria Autosegmentation by 3D Network

Algorithm 1: 3D Connection Algorithm

Input:
S : the set of the whole segmentations.
ni: the number of segmentations in the ith section.
Iip: the pth segmentation in the ith slice.
T: a given threshold.
Output:
Sk(k = 1, 2, ...): sets of connected segmentations.

1 for i = 1 : length− 1, p = 1 : ni, q = 1 : ni+1 do

2 Calculate the IoU cipq of I
i
p and Ii+1

q .

3 if cipq ≥ T then

4 Iip is connected with Ii+1
q .

5 end

6 end

7 Initialize k = 1.
8 repeat

9 Select a segmentation s from S .
10 Remove s from S , and set Sk = s.
11 repeat

12 Find the segmentations s̃ ∈ S that are connected with
any segmentation ŝ ∈ Sk.

13 Remove s̃ from S , and add s̃ to set Sk.
14 until There exist no segmentations in S and Sk that are

connected;
15 Set k = k+ 1.
16 until S = ∅;

measured by the Jaccard index, Dice coefficient and conformity
coefficient. For detection evaluation, the numbers of true
positives (TPs), false positives (FPs) and false negatives (FNs) are
computed and used to calculate the precision, recall and F1 score.
The details are as follows:

• Jaccard index. This metric, which is also known as the
VOC score (Everingham et al., 2010), calculates the pixel-
wise overlap between the ground truth (Y) and segmentation
results (X).

Jaccard index (X,Y) =
X
⋂

Y

X
⋃

Y
. (4)

• Dice coefficient. This metric, which is similar to the Jaccard
index, compares the similarity between the ground truth (Y)
and segmentation results (X).

Dice coefficient (X,Y) =
2×

∣

∣X
⋂

Y
∣

∣

|X| + |Y|
. (5)

• Conformity coefficient. It is a global similarity coefficient
(Chang et al., 2009), which is more sensitive and rigorous
than the Jaccard index and Dice coefficient due to its better
discrimination capabilities.

Conformity coefficient (X,Y) =
2× Jaccard(X,Y)− 1

Jaccard(X,Y)
. (6)

TABLE 2 | Mitochondria segmentation performance measured by the Jaccard

index, Dice coefficient and conformity coefficient on the ATUM-SEM dataset.

Methods Jaccard (%) Dice (%) Conformity (%) Trainable

parameters

Li 71.2 75.8 70.5 –

3D U-Net 86.1 92.5 83.8 7.3M

U-Net 87.4 93.8 85.3 7.8M

Fusion-FCN 90.4 94.9 89.3 89.9M

Ours 90.9 95.2 90.0 1.1M

Ours (without

auxiliary outputs)

90.7 95.1 89.7 1.1M

Ours (test-time aug8) 91.5 95.5 90.8 1.1M

Ours (test-time

aug16)

91.8 95.7 91.0 1.1M

• Precision and recall. These metrics are related to the
mitochondria counts in 3D. Precision is the probability that
the detectedmitochondria are true, and recall is the probability
that the true mitochondria are successfully detected.

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
. (8)

• F1 score. Since precision and recall are often contradictory, this
metric is the weighted average of precision and recall, which
shows the comprehensive performance of methods.

F1 score =
2× Precision× Recall

Precision + Recall
. (9)

Because the shape of mitochondria is sometimes irregular,
manual annotations near mitochondria borders are not always
accurate, which might influence the precision of the evaluation.
Motivated by Li et al. (2017b); Tasel et al. (2016), we defined that
a predicted mitochondria is considered a TP only if the voxel-
wise overlap between the prediction and corresponding ground
truth reaches at least 70%. For the sake of completeness, we also
conducted several experiments by considering different voxel-
wise overlapping thresholds for TP on both datasets. Details are
shown in section 3.3.

3.2. Segmentation Accuracy
For the sake of completeness, we evaluated the pixel-wise
segmentation performance of our approach and compared it
with recent mitochondria segmentation methods on both EM
datasets. As shown in Tables 2, 3, for the ATUM-SEM dataset,
our approach yields 91.8% Jaccard index, 95.7% Dice coefficient
and 91.0% conformity coefficient, indicating that it outperforms
other methods on all metrics. For the FIB-SEM dataset, the
Jaccard index (90.0%) of our approach is higher than those
of most algorithms, demonstrating that this approach achieves
state-of-the-art results. In addition, the approach with auxiliary
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classifiers outperforms the method without auxiliary classifiers,
and the number of trainable parameters in our proposed
3D network is much smaller than that in other 2D or 3D
convolutional networks.

To explicitly visualize the differences between our results and
the results of other methods, we displayed 3 surface-to-surface
comparison examples for each dataset in Figures 4, 5, where
green pixels denote TP, red pixels denote FN, blue pixels indicate
FP and black pixels represent true negative (TN).

Figure 4 shows the segmentation results in three continuous
sections from the ATUM-SEM dataset. Owing to the proposed
3D residual convolution network, our approach achieves more
accurate results than themethods fromRonneberger et al. (2015),
Çiçek et al. (2016), and Xiao et al. (2018). Figure 5 illustrates
the segmentation results on the FIB-SEM dataset, where the

TABLE 3 | Mitochondria segmentation performance on the FIB-SEM dataset.

Methods Jaccard (%) Dice (%) Conformity (%) Trainable

parameters

Rigamonti 77.6 – – –

Lucchi 86.7 90.1 83.6 –

3D U-Net 87.4 93.2 85.4 7.3M

Oztel 90.7 – – –

Ours 89.1 94.2 87.6 1.1M

Ours (without

auxiliary outputs)

88.2 93.7 86.4 1.1M

Ours (test-time aug8) 89.8 94.6 88.5 1.1M

Ours (test-time

aug16)

90.0 94.7 88.7 1.1M

chosen examples are the same as Oztel et al. (2017). Note that
our approach detects most of the mitochondria and effectively
reduces FPs as well as FNs, achieving better qualitative results
than Lucchi et al. (2013), Çiçek et al. (2016), and Oztel et al.
(2017).

3.3. Detection Accuracy
Until now, we have evaluated our method for pixel-wise
segmentation and achieved state-of-the-art results on standard
quality metrics. It is also interesting to assess the mitochondria
detection performance in 3D. As shown in Figures 4, 5, it might
be the case that one algorithm is better at predicting separate
mitochondria objects; however, each object is slightly “enlarged”
or “shrunken” compared to the ground truth. Is this case worse
than one in which the objects are pixel perfect but incorrect
mitochondria counts are obtained?

In this case, we evaluated the mitochondria detection
performance by the following steps. We first used the connection
method shown in 2.6 to perform mitochondria detection in 3D.
Next, we removed the detected mitochondria with less than 1,500
voxels, as in Becker et al. (2013). Finally, the numbers of TPs,
FPs and FNs are computed and used to calculate the detection
accuracy.

In Table 4, the overlapping threshold for TP is set as 70%
and the F1 score of our detection (92.2% in anisotropy, 90.9%
in isotropy) outperforms all of the baselines (Lucchi et al.,
2013; Ronneberger et al., 2015; Çiçek et al., 2016; Xiao et al.,
2018), which suggests that our method achieves state-of-the-art
detection performance. Specifically, in the ATUM-SEM dataset,
which contains 273 mitochondria in 3D, our approach detects
255 TPs and 25 FPs, and the missed (FN) number is 18. In

FIGURE 4 | The qualitative comparisons between different methods in three continuous sections from the ATUM-SEM dataset. Green pixels denote TP, red pixels

denote FN, blue pixels indicate FP and black pixels denote TN.
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FIGURE 5 | The qualitative comparisons between different methods on the FIB-SEM dataset. Note that our method significantly reduces the number of FNs (red) and

FPs (blue).

TABLE 4 | Quantitative detection performance on two EM datasets.

EM Methods Precision (%) Recall (%) F1 Score (%)

ATUM-SEM U-Net 79.5 90.8 84.8

3D U-Net 79.1 83.2 81.1

Fusion-FCN 91.2 91.2 91.2

Ours 90.4 93.4 91.9

Ours (test-time

aug16)

91.1 93.4 92.2

FIB-SEM Lucchi 78.8 81.3 80.0

U-Net 79.4 84.4 81.8

3D U-Net 81.8 84.4 83.1

Ours 85.3 90.6 87.9

Ours (test-time

aug16)

88.2 93.8 90.9

the FIB-SEM dataset, which contains 32 mitochondria in 3D,
our approach obtains 30 TPs and 4 FPs and misses only 2
mitochondria. Additionally, we conducted several experiments
by considering different overlapping thresholds for TP on both
datasets. As shown in Figure 6, the horizontal axis presents
the different overlapping thresholds ranging from 0.65 to 0.85,
and the vertical axis denotes the F1 score of the detection
results. From Figure 6, it is clear that our method with test-time
augmentation yields better performance than other methods for
the most of threshold values, which further demonstrates the
robustness of our method.

Note that our approach yields promising results in both
segmentation and detection evaluation, indicating that it is

conducive to computing and analysing mitochondria biological
statistics such as number, shape and size.

3.4. 3D Visualization
Sections 3.2 and 3.3 fully demonstrate the effectiveness of
our methods. Next, we applied our trained network to the
large-scale ATUM-SEM and FIB-SEM datasets, which consist
of 15.2 × 17.2 × 8.9 µm3 volume and 10.2 × 7.6 × 5.3
µm3 volume, respectively. After obtaining the segmentation
results, the 3D connection method was utilized to acquire the
relationship of mitochondria in 3D. Subsequently, we imported
the connection maps into ImageJ, and we display the 3D
visualization of mitochondria for each dataset in Figure 7. Here,
different colors represent different mitochondria. From the 3D
reconstruction results, it can be seen that most mitochondria are
intact and continuous, which shows the validity and feasibility
of our proposed network and 3D connection method. The
corresponding videos are shown in Additional file 1:Video 1 and
Additional file 2: Video 2.

3.5. Biological Statistics
Impairment of mitochondrial morphology by fusion/fission
disorder can be detrimental to neuronal cells, resulting in loss
of synaptic activity and cell death. Therefore, exploring the
3D morphology of mitochondria is essential for neurological
disorder research.

3.5.1. Mitochondrial 3D Morphology
Mitochondria are highly dynamic organelles that divide and fuse
in response to various factors, such as energy requirements,
developmental status, and environmental stimulus of the cell.
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FIGURE 6 | Detection performance of the different overlap thresholds on both EM datasets. Our approach achieves better performance than that of the baseline

approaches. (A) ATUM-SEM dataset. (B) FIB-SEM dataset.

FIGURE 7 | 3D reconstruction of mitochondria. (A) Reconstruction of mitochondria from the ATUM-SEM dataset with a volume of 15.2 × 17.2 × 8.9 µm3;

(B) Reconstruction of mitochondria from the FIB-SEM dataset with a volume of 10.2 × 7.6 × 5.3 µm3.

Mitochondria can continuously change their shape through
fusion and fission, as well as other processes, such as extension
or branching/de-branching. After 3D reconstruction of the
mitochondria in the cortex and hippocampus, we found that
the mitochondrial morphology in the neurons encompassed a
vast spectrum from small spheres and short tubules to elongated
tubules and reticular networks depending on their position in
the neurons (Figure 8). The mitochondria positioned at sites of
synapse, which were proposed to regulate the synaptic activity
though energy regulation, were usually flat (Figures 8A,D). In
the axons and dendrites, the mitochondrial network was adapted

into a long tubular organization that was wrapped around
the microtubules. The tubular mitochondria can provide ATP
for movement along the axons or dendrites (Figures 8B,E).
However, in the cell bodies, the mitochondria typically formed
a reticular network radiating from the nucleus. The volume
and surface area of the interconnected mitochondria network
were approximately 9.05 µm3 and 29.72 µm2, respectively,
which were far greater than those of the mitochondria
in the synapse, axons and dendrites (Figures 8C,F). This
interconnected mitochondrial system ensures that the neurons
are supplied with essential energy and metabolites. These
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FIGURE 8 | The 3D morphology of mitochondria in different positions in the neurons. (A,D) The mitochondria (in pink) positioned at sites of synapse; (B,E) the

mitochondria (in pink) located in the axons and dendrites; (C,F) the mitochondria (in purple) in the cell body. Scale bar: 800 nm.

TABLE 5 | The statistics of the mitochondria in the large-scale EM datasets.

Dataset Number Density

(N/ µm3)

Average

volume

Average

surface area

Surface

area/volume

(µm3) (µm2)

Mouse cortex 1,478 0.6352 0.0928 1.088 14.972

Rat hippocampus 319 0.7764 0.0625 0.855 16.105

data suggested different morphologies of the mitochondria are
associated with the energy-demanding activity of neuron cells.

3.5.2. Measurement of the Mitochondrial Morphology
We obtained the parameters of the mitochondria morphology
in the mouse cortex and rat hippocampus from the 3D
reconstruction of mitochondria. As depicted in Table 5, we
calculated the mitochondria number, density, volume, surface
area, and surface area/volume. The total volume of the mouse
cortex (data from ATUM-SEM) was 15.2 × 17.2 × 8.9 µm3,
including 1,478 mitochondria. The total volume of the rat
hippocampus (data from FIB-SEM) was 10.2 × 7.6 × 5.3
µm3, including 319 mitochondria. Both the average volume
and the average surface area of the mitochondria in the
mouse cortex were larger than those of the mitochondria
in rat hippocampus, but the surface area/volume ratio was
not (Figure 9). Additionally, we quantified the mitochondrial

TABLE 6 | The measurement of mitochondrial morphology in the large-scale EM

datasets.

Dataset Average length Average width Length/width Flatness

(µm) (µm)

Mouse cortex 1.611 ± 1.865 0.412 ± 0.236 3.418 ± 1.842 0.515

Rat hippocampus 1.293 ± 1.132 0.331 ± 0.128 3.597 ± 1.621 0.472

length, width, length/width ratio and flatness in rat and
mouse brain samples, and the results are summarized in
Table 6. The flatness metric denotes the degree of the
flatness, with flat objects having small values close to 0.
The above data suggested that the morphology of the
mitochondria was associated with the neuron type and the
species.

4. DISCUSSION

The mitochondrial morphology and networks are
regulated via the complex coordination of fission, fusion
and distribution events. Defects in the morphology or
distribution of mitochondria are correlated with the
progression of neurodegenerative diseases such as Alzheimer’s,
Huntington’s and Parkinson’s disease. Although much
has been learned about mitochondrial morphology in
neurological research, the current methods for assessing
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FIGURE 9 | Measurement of the mitochondrial statistics in mouse cortex and rat hippocampus. (A) Measurement of the mitochondrial volume in mouse cortex and

rat hippocampus. (B) Measurement of the mitochondrial surface area in mouse cortex and rat hippocampus. (C) Measurement of the mitochondrial volume/surface

area ratio in mouse cortex and rat hippocampus. N = 319 mitochondria from rat, N = 1478 mitochondria from mouse. ∗P ≤ 0.05,∗∗ P ≤ 0.01.

mitochondrial morphology still leave much to be desired.
It is troubling that most current methods for assessing
mitochondrial morphology cannot measure mitochondrial
morphology objectively. Therefore, we put forward an
effective and fast 3D mitochondria segmentation and
reconstruction method for large-scale EM data, which
provides neurologists with a rapid approach for mitochondrial
morphology detection in neuron and neurological disorder
research.

As mentioned in Section 3, our approach outperforms several
promising approaches on both datasets and achieves state-of-
the-art results. For the ATUM-SEM datasets, we compare our
results with He et al. (2016), Ronneberger et al. (2015), Çiçek
et al. (2016), Li et al. (2017a), and Xiao et al. (2018). By
using the 3D convolutional architecture, residual block and
deeply supervised strategy, the performance of our approach
(Jaccard = 0.918 , Dice = 0.957 and Conformity = 0.910)
is higher than that of these algorithms. For the FIB-SEM
datasets, we compare our results with Lucchi et al. (2013),
Rigamonti et al. (2014), Çiçek et al. (2016), and Oztel et al.
(2017). As illustrated in Table 3, our method ranks behind
only the approach from Oztel et al. (2017), which also utilized
a fully convolutional network to segment mitochondria. Note
that the above method adopted a series of post-processing
methods, which increased the complexity of the algorithm. By
comparison, our method achieves satisfactory results without
post-processing. Furthermore, Figure 5 illustrates that the
qualitative result of our method is better. Although our
method yields favorable results for mitochondria segmentation,
there is doubt regarding the performance of the proposed
method in detection. Thus, we evaluated our method in
voxel-wise detection at different overlapping thresholds and
compared it with other methods. As shown in Table 4 and
Figure 6, the detection results demonstrate the superiority of our
method.

The favorable performance of the proposed method can
be attributed to the following reasons. First, the use of a 3D
fully residual convolution network is beneficial for extracting
3D information and increasing the number of ensemble
sub-networks, which helps handle mitochondria segmentation
in serial EM data. Another advantage lies in its small
number of trainable parameters, which avoids the over-fitting

problem. Additionally, we utilize deeply supervised and test-time
augmentation strategies to further improve the accuracy of
segmentation and detection.

Despite the promising segmentation and detection results, the
main limitation of the approach is the high computational cost.
For the ATUM-SEM testing dataset (volume of 17.2× 16.8× 0.6
µm3), the operation times of U-Net, 3D U-Net, Fusion-FCN and
our method are 408, 1,776, 3,542, and 2,199 s, respectively. For
the FIB-SEM testing dataset (volume of 3.8 × 5.1 × 0.8 µm3),
the running times of U-Net, 3D U-Net and our method are 66 s,
265 s and 356 s. It can be seen that the proposed method is faster
than Fusion-FCN but slower than U-Net and 3D U-Net, which
might be ascribed to the complex structure of network. However,
the benefit of our method is that it is likely to decrease human
proofreading time since its detection and segmentation accuracy
is better than that of other approaches. In the future, we will
optimize the structure of the proposed network and reduce the
computational complexity to improve the speed of the pipeline.

In conclusion, this paper proposes an effective and automated
pipeline to segment and reconstruct mitochondria based on deep
learning. The experimental results demonstrate the effectiveness
of our algorithm in mitochondria segmentation and detection
on two different EM datasets. We also implement our pipeline
on other larger datasets and obtain measurements of the
mitochondrial morphology. The statistics indicate that different
morphologies of the mitochondria are associated with the
energy-demanding activity of neuron cells, neuron types and
species. In addition, we provide a public mitochondria dataset
of ATUM-SEM images, which can be used for facilitating
neuroscience research.
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