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The inner ear and its two subsystems, the vestibular and the auditory system,
exemplify how the identification of distinct cellular or anatomical elements ahead of
elucidating their function, leads to a medley of anatomically defined and recognition
oriented names that confused generations of students. Past attempts to clarify this
unyielding nomenclature had incomplete success, as they could not yet generate an
explanatory nomenclature. Building on these past efforts, we propose a somewhat
revised nomenclature that keeps most of the past nomenclature as proposed and
follows a simple rule: Anatomical and explanatory terms are combined followed, in
brackets, by the name of the discoverer (see Table 1). For example, the “organ of
Corti” will turn into the spiral auditory organ (of Corti). This revised nomenclature build
as much as possible on existing terms that have explanatory value while keeping the
recognition of discoverers alive to allow a transition for those used to the eponyms.
Once implements, the proposed terminology should help future generations in learning
the structure-function correlates of the ear more easily. To facilitate future understanding,
leading genetic identifiers for a given structure have been added wherever possible.

Keywords: ear, development, sensory epithelia, sensory neurons, auditory nuclei

INTRODUCTION

The ear was recognized as the organ for hearing since antiquity, but its function could only be
understood mechanistically after Corti (1851) described some of the cells on the basilar membrane
of what Kölliker soon referred to as the organ of Corti (Kölliker, 1852, 1867). Nearly overlapping in
time, Reissner (1851) described the membrane separating the scala media from the scala vestibuli,
now bearing his name (Reissner’s membrane) to identify three distinct channels in the cochlear
canal instead of two as previously identified based on ever improving anatomical work. With
the event of better preservation, decalcification and histological sections, many new features were
discovered in the second half of 19th century. Naming those novel ear structures in the 1850-70
time frame continued a tradition of eponyms that dates back to Falloppio’s canal [now known as
facial nerve canal (Politzer, 1907, 1981)] and followed the rational that names of first identifiers
were associated with the structure they identified (Claudius, 1856; Boettcher, 1859; Hensen, 1863).
Since discovery of new cell types outpaced for many years any reasonable understanding of their
function, this approach was the most logical way forward to avoid over speculating on unclear
function. In parallel to anatomical discoveries, functional ideas were proposed by Willis (1672).
He believed that sound enters with movement of the stapes footplate through the oval window,
is reflected and amplified in the semicircular canals before it is received by the “acoustic nerve”

Frontiers in Neuroanatomy | www.frontiersin.org 1 November 2018 | Volume 12 | Article 99

https://www.frontiersin.org/journals/neuroanatomy/
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2018.00099
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnana.2018.00099
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2018.00099&domain=pdf&date_stamp=2018-11-23
https://www.frontiersin.org/articles/10.3389/fnana.2018.00099/full
http://loop.frontiersin.org/people/106406/overview
http://loop.frontiersin.org/people/421307/overview
https://www.frontiersin.org/journals/neuroanatomy/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-12-00099 November 22, 2018 Time: 10:36 # 2

Fritzsch and Elliott Auditory Nomeclature

in the cochlea. Duverney (1730) noticed the different diameters
of the cochlea duct and used his anatomical insights to invoke
a resonance theory of hearing only much later elaborated on
by Helmholtz (1859) and ultimately demonstrated as tonotopic
organization of the cochlea by Békésy (1930). Neither name is in
any way associated with their insights as eponyms, emphasizing
the lopsided distribution of credit given by the somewhat random
use of eponyms.

For example, it was only in 1789 that Scarpa (1800) surpassed
the detailed description of Duverney (1730) and fully described
the membranous labyrinth of the inner ear. And yet Scarpa’s
name is only used as an eponym of the vestibular (or Scarpa’s
ganglion; Table 1). The excellent illustrative work of von
Sömmering (1806) which laid the foundation of much of the
histology and comparative work of the 19th century, including
the comparative work of Retzius (1881, 1884) never earned
him any eponym. Even Retzius’ name was not associated with
the amphibian papilla he described but is only associated with
the Retzius’ bodies in the outer hair cells (Lim, 1986). After
the foundation of the histology of the mammalian organ of
Corti was established, details that were added later through
more refined histological analysis did not earn eponyms such
the newly described border cells for Held (1902, 1926). This
contrasts sharply with the fact that Held’s earlier description of
large contacts in brainstem auditory nuclei are now known under
the eponym “endbulbs” and “calyx” of Held (1893).

Many years of continued insight into the cellular and
subcellular details of the organ of Corti, organization and
function allow now to go beyond the purely descriptive and
initially disputed original work. Today, the entrenched use
of eponyms in otolaryngology confuses students and blocks
understanding through enforced learning of eponyms that
have no meaning beyond honoring the original descriptor and
conserve an anatomical terminology that is in part unrelated to
the function that was mostly unclear at the time the structures
were first described. Eponyms were less fashionable from 1880
to today, novel features nevertheless received trivial names that
do not convey the level of understanding detailed anatomy,
physiology and molecular development of the ear now allows.
Inconsistencies abound, such as the inner border cells [Grenzzelle
(Held, 1902)] are not called Held’s cells whereas the outer border
cells are now referred to as Hensen’s (1863) cells . Likewise,
the outer phalangeal cells are now mostly referred to as Deiters
(1860) cells whereas the inner phalangeal cells have no eponym.
Complicating cochlear nomenclature even further, some trivial
names are redundant and confusing such as type 1 and 2 hair
cells in the vestibular system and Type I and II spiral ganglion
neurons in the cochlea, evoking false associations in students
new to the ear nomenclature. And some names were differently
translated such as the German “Pfeilerzelle” is now referred to
in US English as “pillar cells” but in United Kingdom English
as “pilar cells,” with only the former presenting a translation
according to the German meaning. Some of these issues have
been partially rectified by taking traditional/scientific terms,
multilingual discrepancies, role of Latin terms, usage of adjectives
vs. genitive, usage of poorly defined words, usage of eponyms
into account in previous nomenclature revisions (FCOA, 1998;

FIPAT, 2017). The motivation for the present revision is to
build on these past considerations reflected in the most recently
proposed nomenclature (Table 1) while taking a more novel
molecular and functional considerations into account.

Obviously, eponyms avoided associating mistaken functions
to various parts of the ear (Politzer, 1907, 1981; Lustig et al., 1998;
Mudry, 2001) and isolated the morphological description from
functional speculations, certainly an important consideration at a
time when vestibular and auditory function of the ear were mostly
unknown and in many cases simply misinterpreted. Adding to
this confusion in the more recent literature were mistranslations
[the border cells of Held are now mostly referred to as “inner
border cells” (Held, 1902) due to a mistake in one summary
image] that identified what appears to be the same cell by
different names. It was only later that hearing and vestibular
function could be associated with different parts of the ear
through the works of Mach (1865a,b), Breuer (1873), Barany
(1906), Békésy (1930) and Helmholtz (1859). Both the function
of the ear as a gravistatic and angular motion detection system
and the function of the cochlea as a frequency and intensity
monitoring system have been clarified as distinct functions of the
mammalian ear (Hudspeth, 1989). The detailed understanding of
the organ of Corti was advanced by modern techniques beyond
the excellent description of Held (1902, 1926) using electron
microscopy, summarized by Lim (1986) and Slepecky (1996) and
quantitative ratios of different cell types of the organ of Corti
(Jahan et al., 2015). We now know that hair cells function as
polarized mechanotransducers (Hudspeth, 1989) with a distinctly
different function of the inner and outer hair cells in amplification
and reception of sound (Zheng et al., 2000). For example, sound
stimulation of the organ of Corti was long been depicted as a
simple up-down movement that directly caused shearing forces
of the tectorial membrane on the inner hair cell stereocilia (Lewis
et al., 1985). In contrast, more recent work suggest that the
adult inner hair cell is not connected to the tectorial membrane
(Lim, 1986) but acts as a hydrodynamic receptor monitoring
endolymph flow in and out of the subtectorial space (Elliott et al.,
2018).

More recent work on early development using gene expression
and functional assessments of afferent, efferent, and hair cell
proteins provides novel ways of identifying cells of the ear not
only based on their topology and function but on their molecular
signature (Liu et al., 2014). Unsurprisingly, such molecular data
open again issues of identification of cell types and regrouping
previous anatomical distinctions into smaller subgroups. For
example, spiral ganglion neurons were initially described as
homogenous (Corti, 1851) or as multiple types (De No, 1981),
regrouped eventually into just two types based on diameters and
innervation (Spoendlin, 1971), but subsequently again expanded
to three types based on physiological properties (Merchan-Perez
and Liberman, 1996; Rutherford and Moser, 2016). The latter
suggestions are now supported by their molecular signatures
(Petitpré et al., 2018; Shrestha et al., 2018; Sun et al., 2018). While
all papers agree on the major expression they use inconsistent,
albeit similar nomenclature: for example, what is Type Ia in
two papers (Shrestha et al., 2018; Sun et al., 2018) is Type Ic
in the third paper (Petitpré et al., 2018). The solution to this
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TABLE 1 | Terminology for the inner ear.

Latin terms English terms English terms Molecular Related terms

(TNA, 2017) (US spelling, (UK spelling; signature and Eponyms

proposed terms) TNA, 2017)

Cochlea Cochlea Cochlea

Inner spiral sulcus

Outer spiral sulcus

Modiolus cochleae Modiolus Modiolus

Canalis spiralis modioli Spiral canal of Rosenthal Spiral canal of modiolus Canal of Rosenthal

Canales longitudinales
modioli

Longitudinal canals of
modiolus

Longitudinal canals of
modiolus

Scala vestibuli Vestibular scala Scala vestibuli

Helicotrema Helicotrema Helicotrema Orifice of Scarpa

Scala tympani Tympanic scala Scala tympani

Ductus endolymphaticus Endolymphatic duct Endolymphatic duct

Saccus endolymphaticus Endolymphatic sac Endolymphatic sac

Ductus reuniens Ductus reuniens Ductus reuniens Duct of Hensen

Ductus cochlearis Middle duct Cochlear duct Canal of Reissner

Membrana vestibularis Vestibular membrane of
Reissner

Vestibular membrane Membrane of Reissner

Lamina basilaris Basilar membrane Basal lamina Spiral membrane of
Duverney

Membrana tectoria Tectorial membrane Tectorial membrane

Organum spirale Spiral organ of Corti Spiral organ Organ of Corti

Cochleocytus Hair cells Hair cells Hair cells of Corti

Cochleocytus internus Inner hair cell Inner hair cell Fgf8

Cochleocytus externus Outer hair cell Outer hair cell Prestin

Cellulae ductus
cochlearis

Cells of cochlear duct

Epitheliocyti limitantes
sulcus internus

Inner sulcus cells Cuboidal inner sulcus cells

Epitheliocytus limitans
internus

Cnner border cell Inner border cell GLAST, S100 Inner border cell of Held

Epitheliocytus limitans
externus

Outer border cell Outer border cell Outer border cell of
Hensen

Epitheliocytus glandularis
externus basalis

Outer glandular cell Basal external glandular cell Glandular cell of Boettcher

Epitheliocytus cuboideus
sulcus externus

Outer sulcus cells Cuboidal external sulcus
cells

BMP4 Epithelial cell of Claudius

Epitheliocyti sustenantes Supporting cells Supporting cells

Epitheliocytus internus pilae Inner pillar cell Internal pilar epithelial cell p75, Prox1 Inner pillar cell of Corti

Epitheliocytus phalangeus
internus

Inner phalangeal cell Internal phalangeal
epithelial cell

GLAST, S100 Inner phalangeal cells

Epitheliocytus externus
pilae

Outer pillar cell External pilar epithelial cell Prox1 Outer pillar cell of Corti

Epitheliocytus phalangeus
externus

Outer phalangeal cell External phalangeal
epithelial cell

Prox1, S100,
GLAST

Epithelial cell of Deiters

Membrana reticularis Reticular membrane Reticular membrane Reticular membrane of
Koelliker

Cuniculi Tunnels

Cuniculus externus Outer tunnel of Held External tunnel Tunnel of Held

Cuniculus internus Pillar tunnel Inner tunnel Tunnel of Corti

Cuniculus intermedius Outer phalangeal space Intermediate tunnel Space of Nuel

Ganglion cochleare Spiral ganglion Cochlear ganglion Neurod1, NeuN,
TrkB, TrkC

Ganglion cochleare of Corti

Perikaryon nonmyelinatum Outer spiral ganglion
neuron (oSGN)

Nonmyelinated perikaryon Peripherin, Th,
Cgrp

Type II neuron of
Spoendlin

(Continued)
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TABLE 1 | Continued

Latin terms English terms English terms Molecular Related terms

(TNA, 2017) (US spelling, (UK spelling; signature and Eponyms

proposed terms) TNA, 2017)

Perikaryon myelinatum Inner spiral ganglion neuron
(iSGNa,b,c)

Myelinated perikaryon iSGNa = Calb2
iSGNb = Calb1
iSGNc = Pou4f1

Type I neuron of Spoendlin

Gliocytus ganglionicus
ganglii cochlearis

Satellite cell of spiral
ganglion

Satellite cell of cochlear
ganglion

Sox10, ErbB2

Neurofibra radialis ganglii
cochlearis

Radial fiber of spiral
ganglion

Radial fiber of cochlear
ganglion

Mix of afferents and
efferents

Fasciculus spiralis internus Inner spiral bundle Inner spiral bundle

Fasciculus
intraganglionicus

Intraganglionic spiral bundle Intraganglionic spiral bundle AChE, Chna9,
Chna 10

Intraganglionic efferent
bundle

Fasciculus spiralis externus Outer spiral bundle Outer spiral bundle

Ganglion vestibulare Vestibular ganglion Vestibular ganglion

Neuron bipolare ganglii
vestibularis

Bipolar neuron of vestibular
ganglion

Neurod1, Pou4f1,
TrkB

Ganglion of Scarpa (with
variable neuron size)

Gliocytus ganglionicus
ganglii vestibularis

Satellite cell of vestibular
ganglion

Sox10, ErbB2

Nervus
vestibulocochlearis

Vestibulocochlear nerve Vestibulocochlear nerve

Nervus vestibularis Vestibular nerve Vestibular nerve

Ramus communicans
cochlearis

Vestibulocochlear
anastomosis

Cochlear communicating
branch

AChE, Chna9 Vestibulocochlear
anastomosis of Oort

Pars superior Utriculoampullary nerve Superior part Related term: Nervus
vestibularis superior.

Nervus utricularis Utricular nerve Utricular nerve

Nervus ampullaris anterior Anterior ampullary nerve Anterior ampullary nerve

Nervus ampullaris lateralis Lateral ampullary nerve Lateral ampullary nerve

Pars inferior Inferior part Inferior part

Nervus ampullaris posterior Posterior ampullary nerve Posterior ampullary nerve Related term: Nervus
vestibularis inferior.

Nervus saccularis Saccular nerve Saccular nerve Related term: Nervus
vestibularis posterior.

Nervus cochlearis Auditory nerve Cochlear nerve Related term: Nervus
auditus.

This table was modified after (FCOA, 1998; FIPAT, 2017).

emerging nomenclature problem is to adopt a more meaningful
nomenclature such as inner Spiral Ganglion Neurons, subtype a
(iSGNa) as proposed in Table 1. It is to be expected that further
single cell sequencing will likely lead to subdivisions of vestibular
ganglion neurons as well given their cellular heterogeneity.

While some genes such as Sox2 are associated early in
development with all neurosensory cells of the ear, they later
become restricted to supporting cells following upregulation
of high levels of Atoh1 in hair cells (Dabdoub et al., 2008).
Interestingly enough, such gene expression over time depends
on the level of expression of other transcription factors, as inner
pillar cells show only limited expression of Atoh1 that does not
affect Sox2 expression (Matei et al., 2005). Thus, while anatomical
features and their physiological implications are largely settled,
molecular signatures are still in flux due to technical advances
that permit cell specific expression profile assessment to
understand the complex cell type development and maintenance
(Booth et al., 2018) as well as the gene expression profiles
leading to specific structures such a stereocilia development

(Ellwanger et al., 2018). Past research has stepwise improved the
understanding of how sound moves the basilar membrane/organ
of Corti/tectorial membrane complex to provide topology specific
amplification (Ren et al., 2016; Dewey et al., 2018), including a
detailed understanding of the function of the cochlear amplifier
in the three rows of outer hair cells (Xia et al., 2018). Increasingly
detailed insights into the function of the various sections of
the organ of Corti have revealed major distinctions as an outer
section playing a role in sound amplification and an inner section
playing a role in sound conversion (Elliott et al., 2018). Molecular
signatures that highlight nearly all outer section cells, including
the inner pillar cells, such as Prox1, have been described (Fritzsch
et al., 2010) that set the organ of Corti apart from vestibular
sensory epithelia (Bermingham-McDonogh et al., 2006). Other
transcription factors are uniquely found in a single cell type
of the organ of Corti such as Fgf8 in inner hair cells that
is found in many vestibular hair cells (Jahan et al., 2018) or
the p75 neurotrophin receptor in inner pillar cells but also in
sensory neurons (Von Bartheld et al., 1991). As more single cell
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FIGURE 1 | The cellular organization of the organ of Corti is shown in a radial section (A) and the details of the inner hair cell (B) and outer hair cell (C) as revealed by
transmission electron microscopy. Radial sections suggest a simple numerical relationship of cells of the inner section (1IBC, 1IHC, 1IPhC, 1 IPC) and other section
(1OPC, 3 OHC, 3 OPhC, 3+ OBC). Note that the inner pillar cell (IPC) sits on the bony lip of the spiral canal (of Rosenthal). Equivalent cells of the outer and inner
section are in different shades of the same color. Modified after Elliott et al. (2018) and Lim (1986).

transcriptome analyses are published, the current insights will
likely be supplemented by both better characterization of unique
expression profiles but will likely also end up indicating that some
specificity is only a matter of thresholds of detection inherent to
applied techniques.

GOALS OF THE PROPOSED REVISION

With this caveat of some future refinement based on deeper
molecular understanding in mind, we propose here a revision of
the most recent nomenclature (FCOA, 1998; FIPAT, 2017) that

primarily builds on topology, physiology and, wherever possible,
unique molecular signature (Figures 1, 2 and Table 1), taken
ultrastructural details and their functional significance revealed
over the last 70 years into account (Engström et al., 1964; Kimura,
1975; Lim, 1986; Slepecky, 1996). We propose to divide the spiral
auditory organ (of Corti) into an inner and an outer section with
appropriate expansion of the existing nomenclature to name each
element accordingly:

The inner section is the sound receiving section. We
propose to expand the already partially consistent nomenclature
(inner spiral sulcus, inner hair cell, inner pillar cell, inner
phalangeal cells (FCOA, 1998; FIPAT, 2017)) that excludes
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FIGURE 2 | In contrast to radial sections, top views on the reticular lamina (a) or horizontal sections below the reticular lamina (a∗) indicate a different numerical
ration between the cells of the inner section and outer section (right). Note that the largest number of cells are the iIPC with no clear numeric ratio to any of the
adjacent cells. Note that the outer section has a simple 1:1 ratio between all elements of a given row also the details of most cells differ. For example, the reticular
lamina is formed by the out rudder of the OPC between the first row of OHC (blue) but by the 1+2 second rows of OPhCs between the 2+3 row of OHC. The third
row of OPhCs forms a continuous boundary along the reticular lamina flanking OBCs. IHC are in direct contact to IPCs only at the reticular lamina (a) whereas they
are in contact with each other below the reticular lamina and are completely separated from IPC by the IPhC. Modified after Jahan et al. (2015).

some other relevant features. For example, it is now clear that
the two major types of spiral ganglion neurons, type I and
II, innervate the inner and outer hair cells, respectively. We
therefore propose to use a new nomenclature of inner spiral
ganglion neuron and outer spiral ganglion neuron instead of
type I and type II. With the exception of transient expansion
of some inner spiral neurons into the outer section during
development (Druckenbrod and Goodrich, 2015; Goodrich,
2016) and under certain conditions of hair cell disorganization
(Jahan et al., 2018), these neuronal processes of type 1 spiral
ganglion neurons remain within the inner section and are
named inner spiral ganglion neurons. Beyond possible transient
developmental expansions to outer hair cells, the so-called lateral
olivo-cochlear (LOC) system of inner ear efferents (Simmons
et al., 2011) remains also restricted to the inner section and
should thus be referred to as the inner (olivo-cochlear) efferents.
Past use was also inconsistent with respect to (inner) border
cells, dating back to the original description of this cell (Held,
1902) and extending into more detailed histology (Lim, 1986;
Slepecky, 1996). We propose to use inner border cells to
highlight these transitional cell type from the inner sulcus
cells and propose to use the term outer border cells for the
transitional cell type to outer sulcus cells, both with appropriate
eponyms [inner border cells (of Held), outer border cells (of
Hensen)].

The outer section is the sound amplifying section. The
nomenclature of this section is less consistent overall (FCOA,
1998; FIPAT, 2017). The outer pillar cells (of Corti) and outer
sulcus cells (of Claudius) are in the existing nomenclature as

well as outer phalangeal cells (of Deiters). Neither the Hensen
cells (here referred to as outer border cells of Hensen) nor the
Boettcher cells (restricted to the basal turn) have been included
into a consistent nomenclature. As with the inner section, both
afferent and efferent innervation can be renamed to reflect
their exclusive projection to outer hair cells in the adult organ
(Rubel and Fritzsch, 2002; Goodrich, 2016). With this exclusive
connection in normal adult mammals in mind, type II spiral
ganglion neurons should be renamed as outer spiral ganglion
neurons. Likewise, the clear exclusive connection of the medial
olivo-cochlear neurons to outer hair cells (Simmons et al., 2011)
necessitates to rename them as outer (olivo-cochlear) efferents.
Note that this nomenclature proposal for afferent and efferent
neurons reflects to terminals in spiral auditory organ (of Corti)
and not the distribution of their cell bodies near the superior
olivary complex as in the past.

Adopting this nomenclature would help to entrench the
functional differences of the two sections in the context of
their topology: the inner section is the “hearing” section that
has all the inner hair cells with associated inner supporting
cells, inner afferents and inner efferents needed for hearing.
In contrast, the outer section is the “amplifier” section with
the contractile outer hair cells innervated predominantly by the
outer efferents with outer spiral afferents playing a role only in
very loud sound hearing related to damage (Liu et al., 2015).
Both sections are mirror symmetric with respect to cell type
distribution.

The inner section cell types progresses from medial
(modiolar) to lateral as follows: inner sulcus cells (ISC), inner
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border cells (IBC), inner hair cells (IHC), inner phalangeal cells
(IPhC), inner pillar cells IPC (Figure 1).

The outer section cell types progresses (in reverse cellular
order) from lateral to medial as follows: outer sulcus cells
(OSC), outer border cells (OBC), outer hair cells (OHC),
outer phalangeal cells (OPhC), and outer pillar cells (OPC;
Figure 1). The pillar tunnel (of Corti) divides the numerical
and organizationally distinct (Jahan et al., 2015) inner and outer
section.

While the two sections have similar overall numbers of cell
types (excluding the basal outer border cells [of Boettcher] in
the apex, the total numbers of cellular units to each section
vary dramatically. For example, the inner section receives the
vast majority of afferents (∼95%) and efferents (∼60%) but
has overall fewer units of each cell type in a radial section
(one IBC as compared to 2–4 OBC, one IPhC as compared
to three OPhC, one IHC compared to three OHC [except for
reduced numbers in the base and increased numbers in the apex].
The only symmetry in terms of numbers of elements are IPC
and OPC. However, this apparent symmetry even of these cells
is a consequence of the radial section perspective (Figure 1).
Viewed from the reticular lamina, the OHC and OphC/OPC
form a nearly perfectly alternating cellular network (Figure 2).
In contrast, near the basal lamina, all supporting cells in the outer
section are in broad contact with each other without any outer
hair cell in between. Interestingly enough, while IPC and OPC are
in broad contact both basally and apically (Lim, 1986; Slepecky,
1996), the numbers of IPC and OPC cells are in a 3:2 ratio (Held,
1902). Whereas OHC are never in contact with each other, IHC
are in very broad contact with each other being separated only at
the reticular lamina by the IPhC and IBC [Lim, 1986; Held, 1902;
Slepecky, 1996] and touching only at the reticular lamina the IPC
(Figures 1, 2). Thus, while lateral inhibition with the delta–notch
interaction may explain the formation of the outer section mosaic
it fails to explain the inner section cell assembly. In fact, the real
numerical relationship of each cell type for a given stretch of the

spiral auditory organ (of Corti) for humans is: IBC = 8; IHC = 7;
IPhC = 7; IP = 12; OP = 8; IHC = 8 × 3 rows; OPhC = 8 × 3 rows;
OBC = 8 × 3 − 4 rows (Jahan et al., 2015).

While some of these odd numerical relationships have been
known since Retzius (1884) and Held (1902) counted them, their
implication for developmental biology in terms of regulating
their differential numbers has been nearly universally ignored.
Various studies have revealed that this ratio is extremely
dependent on diffusible factors and cell–cell interactions (Groves
and Fekete, 2012, 2017; Jahan et al., 2018). More recent emphasis
on effects of gene replacement on these cellular numeric ratios
and their distribution have re-emphasized these differences
between the two sections that need to be understood for any
forward looking strategy to restore a functional spiral auditory
organ (of Corti) and thus hearing from a flat epithelium (Jahan
et al., 2018). Restoring an outer section will certainly not
restore hearing but an inner section associated with proper
amplification might be beneficial to maintain most afferent
innervation through neurotrophic support (Fritzsch et al., 2016)
and might be useful for hearing with proper amplification to
offset the loss of the outer section. Overall, our proposal takes
much of the existing nomenclature (FCOA, 1998; FIPAT, 2017)
into account but provides a more uniform description of cellular
elements around the now understood functional sections of the
spiral auditory organ (of Corti), the mammalian hearing organ.
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