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Background and Aims: Liver cirrhosis commonly induces brain structural
impairments that are associated with neurological complications (e.g., minimal hepatic
encephalopathy (MHE)), but the topological characteristics of the brain structural
network are still less well understood in cirrhotic patients with MHE. This study aimed to
conduct the first investigation on the topological alterations of brain structural covariance
networks in MHE.

Methods: This study included 22 healthy controls (HCs) and 22 cirrhotic patients with
MHE. We calculated the gray matter volume of 90 brain regions using an automated
anatomical labeling (AAL) template, followed by construction of gray matter structural
covariance networks by thresholding interregional structural correlation matrices as well
as graph theoretical analysis.

Results: MHE patients showed abnormal small-world properties of the brain structural
covariance network, i.e., decreased clustering coefficient and characteristic path length
and lower small-worldness parameters, which indicated a tendency toward more
random architecture. In addition, MHE patients lost hubs in the prefrontal and parietal
regions, although they had new hubs in the temporal and occipital regions. Compared
to HC, MHE patients had decreased regional degree/betweenness involving several
regions, primarily the prefrontal and parietal lobes, motor region, insula and thalamus. In
addition, the MHE group also showed increased degree/betweenness in the occipital
lobe and hippocampus.

Conclusion: These results suggest that MHE leads to altered coordination patterns of
gray matter morphology and provide structural evidence supporting the idea that MHE
is a neurological complication related to disrupted neural networks.

Keywords: minimal hepatic encephalopathy, small-world network, graph theory, brain structural network, gray
matter volume

Abbreviations: y, normalized clustering coefficient; %, normalized path length; o, small-worldness; AAL, automated
anatomical labeling; Cy, clustering coefficient; FDA, functional data analysis; Lp, characteristic path length; MHE, Minimal
hepatic encephalopathy; PHES, Psychometric Hepatic Encephalopathy Score; RGMYV, regional gray matter volume.
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INTRODUCTION

Previous studies have shown that brain structural abnormalities
commonly occur in cirrhotic patients. Neuropathological
studies have documented the loss of brain parenchyma due
to cirrhosis (Kril and Butterworth, 1997). Among patients
with hepatic dysfunction, neuronal cell loss (probably due
to chronic portosystemic shunting and ammonia exposure)
has been associated with liver failure (Butterworth, 2007).
In vivo studies using computed tomography and magnetic
resonance imaging (MRI) also reveal diffuse brain atrophy in
cirrhosis (Tarter et al., 1986; Zeneroli et al., 1987, 1991; Iwasa
et al, 2012), which progresses with advanced liver disease
(Guevara et al., 2011).

Minimal hepatic encephalopathy (MHE) is a common
complication of liver cirrhosis and is characterized by a wide
range of mild neurocognitive impairments, such as slowing of
psychomotor activity, attention deficits, impairment of memory,
and decreased executive abilities (Bajaj et al., 2009), which in
turn negatively influence daily activities and are often associated
with poor prognosis (Stewart and Smith, 2007). Although MHE
is traditionally considered to be a disease related to brain
dysfunction, its neuropathological mechanisms remain unclear.
New findings suggest that brain structural impairments may
play another important role in MHE. Patients with MHE
showed more serious brain atrophy as compared with those
without MHE (Guevara et al., 2011). A previous study has
suggested that structural alterations are associated with lower
psychometric performance of cirrhotic patients (Amodio et al.,
2003).

Despite the above findings in cirrhotic patients with MHE,
previous studies have only focused on regional structural
changes in cirrhosis and did not consider brain network-level
architecture (i.e., topological organization). Recent progress
in structural MRI analysis has facilitated the development
of a human brain structural network model that is based on
statistical correlations of morphological descriptors, including
the thickness of the cortex or regional gray matter volume
(RGMV; He et al, 2007; Wu et al, 2012). This type of
brain network possesses small-world properties (He et al,
2007; Lv et al, 2010; that feature extensive local clustering
and short path lengths that link each network node; Watts
and Strogatz, 1998), thereby making it an attractive model
for evaluating complex brain networks because it allows
specialized, as well as integrated, information processing
and maximizes information propagation efficiency using
minimal wiring costs (Sporns et al, 2005; Achard and
Bullmore, 2007). Gray matter structural associations have
been shown to reflect neurological dysfunctions (Dazzan
et al., 2004) and are correlated with functional connectivity
(Bhojraj et al,, 2010). Importantly, topological analysis of
the brain structural network can provide new insights into
various neurological diseases such as schizophrenia (Shi et al.,
2012) and Alzheimer’s disease (Yao et al, 2010) and the
normal aging process (Zhu et al., 2012), which all induce a
disrupted integrity of brain functional networks. Moreover,
the impaired small-world efficiency in the structural cortical

network has been found to be associated with neurological
disease progression (He et al, 2009). The abovementioned
studies have also shown the study populations with either
neurological diseases or aging exhibited considerable brain
structural changes (Wen et al.,, 2011). Thus, it is hypothesized
that the brain structural networks of MHE patients could
exhibit large-scale topological alterations, as these patients
have been found to have diffuse gray and white matter atrophy
(Guevara et al., 2011; Iwasa et al, 2012; Montoliu et al.,
2012).

Actually, MHE has been demonstrated as a neurological
disease that is related to abnormal brain networks. MHE patients
could exhibit altered functional connectivity involving various
intrinsic brain networks, including those of dorsal attention,
visual, auditory and default-mode (Qi et al., 2012). In addition,
changes involving whole-brain functional connectivity have been
reported in MHE patients (Zhang et al., 2012). Notably, based
on the resting-state fMRI, it has been suggested that MHE is
associated with decreased brain small-world network efficiency
(Hsu et al., 2012). In these contexts, we aimed to make the
first investigation on the topological alterations involving brain
structural covariance networks in MHE patients, which can
provide morphological insights into MHE mechanisms that may
coincide with functional findings.

MATERIALS AND METHODS

Subjects

The Research Ethics Committee of the Fujian Medical University
Union Hospital, China approved this study, and each study
participant provided written informed consent. This study
involved total of 22 MHE cirrhotic patients and 22 healthy
controls (HCs). The two groups were matched in terms of
age, sex and education level. Table 1 shows the demographical
data of the study participants. Liver cirrhosis was diagnosed
based on biopsy (4/22) or individual history, biochemical and
physical examination, as well as imaging such as ultrasound
and computed tomography (18/22). Neuropsychological tests,
namely, Psychometric Hepatic Encephalopathy Score (PHES)
examination, were performed to assess MHE, which included
a digit symbol test, number connection tests A and B,
serial dotting, as well as line tracing. Details on how to
diagnose MHE have been described previously (Chen et al.,
2015). None of the participant developed neuropsychiatric
disorders, received psychotropic medications, or was diagnosed
with other uncontrolled endocrine or metabolic disorders
(e.g., diabetes mellitus and thyroid dysfunction), or took
excessive amounts of alcohol for 6 months before the
study.

MRI Acquisition

MRI scanning was performed using a 3.0 T scanner (Siemens,
Verio, Germany). Three-dimensional T1-weighted sagittal
images of magnetization-prepared rapid gradient echo
(MPRAGE) were obtained using the following settings:
TR = 1.9 ms, TE = 2.48 ms, FOV = 256 mm x 256 mm,

Frontiers in Neuroanatomy | www.frontiersin.org

November 2018 | Volume 12 | Article 101


https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Zou et al.

Structural Covariance Network in MHE

TABLE 1 | Demographic and clinical features of the study participants.

HCs subjects (n = 22) MHE patients (n = 22) P value
Age (years) 51.8+6.5 51.3+8.9 0.848
Sex (male/female) 15/7 17/5 0.498 (x? test)
Education level (years) 8.7+22 88+27 0.812
Etiology of cirrhosis (HBV/alcoholism/HBV+alcoholism/other) - 13/4/2/3 -
Child-Pugh stage (A/B/C) 3/13/6 -
Final PHES score 0.7+22 —-8.2+3.0 <0.001
Number connection test A (s) 37.0+12.3 57.3+17.3 <0.001
Number connection test B (s) 63.8 + 29.2 134.2 + 62.3 <0.001
Serial dotting test (s) 43.0+7.6 65.3 +18.5 <0.001
Digit symbol test (raw score) 452 £ 9.3 26.9 +8.5 <0.001
Line tracing test (raw score) 115.8 + 16.1 192.3 +47.3 <0.001

matrix = 256 x 256, flip angle = 9°, slice thickness = 1.0 mm,
176 slices.

Measurements of Regional Gray Matter
Volume (RGMV)

The structural images were preprocessed using a voxel-based
morphometry (VBM) toolbox as implemented in Statistical
Parametric Mapping software (SPM8)!. Structural images were
segmented to the GM, white matter, as well as cerebrospinal
fluid. High-dimensional normalization was performed using the
diffeomorphic anatomical registration using exponentiated lie
algebra (DARTEL) approach (Ashburner, 2007) and then the
segmented images were submitted to the Montreal Neurological
Institute (MNI). We applied tissue deformation for modulation
of the segmented GM images. Then, the entire gray matter
was parcellated into 45 regions per hemisphere (a total of
90 regions, Table 2) as described by the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al, 2002), for

Uhttps://www.fil.ion.ucl.ac.uk/spm/

RGMYV estimation of each subject. Linear regression analysis
was performed to exclude the effects of age, gender, as
well as education level. The regression residuals were then
substituted for the raw RGMV and designated as the corrected
RGMV.

Construction of Brain Structural

Covariance Network

In the present study, the structural connections involving the
whole-brain network were described using statistical correlations
between pairs of the corrected RGMV. For every group,
Pearson correlation coefficients between corrected RGMV
were calculated across each study participant to generate the
interregional correlation matrix (N x N, where N represents
the number of gray matter areas, here N = 90). Then, the
correlation matrix of every group was thresholded into a binary
matrix and converted into an undirected graphical diagram
(network; Figure 1). The constructed interregional correlation
matrices were thresholded across various network densities

TABLE 2 | Abbreviations of various automated anatomical labeling (AAL) regions.

Abbreviation AAL region Abbreviation AAL region

AMYG Amygdala MOG Middle occipital gyrus

ANG Angular gyrus SOG Superior occipital gyrus

CAL Calcarine fissure and surrounding cortex OLF Olfactory cortex

CAU Caudate nucleus PAL Lenticular nucleus, pallidum

ACG Anterior cingulate and paracingulate gyri PCL Paracentral lobule

DCG Median cingulate and paracingulate gyri PHG Parahippocampal gyrus

PCG Posterior cingulate gyrus IPL Inferior parietal, but supramarginal and angular gyri
CUN Cuneus SPG Superior parietal gyrus

IFGoperc Inferior frontal gyrus, opercular part PoCG Postcentral gyrus

ORBInf Inferior frontal gyrus, orbital part PreCG Precental gyrus

IFGtriang Inferior frontal gyrus, triangular part PCUN Precuneus

ORBsupmed Superior frontal gyrus, medial orbital PUT Lenticular nucleus, putamen

MFG Middle frontal gyrus REC Gyrus rectus

ORBmid Middle frontal gyrus, orbital part ROL Rolandic operculum

SFGdor Superior frontal gyrus, dorsolateral SMA Supplementary motor area

SFGmed Superior frontal gyrus, medial SMG Supramarginal gyrus

ORBsup Superior frontal gyrus, orbital part ITG Inferior temporal gyrus

FFG Fusiform gyrus MTG Middle temporal gyrus

HES Heschl gyrus TPOmId Temporal pole: middle temporal gyrus
HIP Hippocampus TPOsup Temporal pole: superior temporal gyrus
INS Insula STG Superior temporal gyrus

LING Lingual gyrus THA Thalamus

10G Inferior occipital gyrus
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HCcorrelation matrix

brain regions are presented in Table 2.

FIGURE 1 | The interregional correlations matrix in healthy control (HC) and minimal hepatic encephalopathy (MHE) groups. The color bar represents correlation
strength. These matrices indicate the maps thresholded at the minimum network density (=12%), wherein the networks depicted full connectivity (without
fragmented nodes). The region number (from 1 to 90) represents automated anatomical labeling (AAL) areas, including AMYG.L(R), ANG.L(R), CAL.L(R), CAU.L(R),
ACG.L(R), DCG.L(R), PCG.L(R), CUN.L(R), IFGoperc.L(R), ORBIinf.L(R), IFGtriang.L(R), ORBsupmed.L(R), MFG.L(R), ORBmid.L(R), SFGdor.L(R), SFGmed.L(R),
ORBsup.L(R), FFG.L(R), HES.L(R), HIPL(R), INS.L(R), LING.L(R), IOG.L(R), MOG.L(R), SOG.L(R), OLF.L(R), PAL.L(R), PCL.L(R), PHG.L(R), IPL.L(R), SPG.L(R),
PoCG.L(R), PreCG.L(R), PCUN.L(R), PUT.L(R), REC.L(R), ROL.L(R), SMA.L(R), SMG.L(R), ITG.L(R), MTG.L(R), TPOmid.L(R), TPOsup.L(R), STG.L(R), and THA.L(R). L
and R indicate the left and right side, respectively. The right panel shows the graphical representation of the corresponding brain connectivity. The abbreviations for

(range: 0.12-0.50, with interval = 0.02; Singh et al., 2013).
The minimum density was determined to guarantee that the
brain structural network of the two groups was fully connected.
For density >0.5, the network exhibited a higher degree of
randomness (small-world index ~1.0; Singh et al., 2013). Finally,
the graph theoretical methods were performed to analyze the
resulting networks.

Graph Theoretical Analysis

The Graph Analysis Toolbox (Hosseini et al., 2012), which
integrates the Brain Connectivity Toolbox by Sporns and
Rubinov for the quantification of network measures, was used
in graph theoretical analysis.

To characterize the topological properties of brain structural
networks, several key metrics were calculated, including the
clustering coefficient (Cp), characteristic path length (L), and
small-world parameters (i.e., normalized clustering coefficient

(), normalized path length (\), and small-worldness (o); Watts
and Strogatz, 1998; Rubinov and Sporns, 2010). Cp is the
average clustering coefficients across all nodes of a network,
wherein the clustering coefficient C; of a node i pertains to
the number of existing connections linking the neighbors of
the node divided by all their possible connections. The L,
of a network pertains to the average distance of the shortest
path involving all node pairs within the network, in which
the shortest path represents the number of edges that connects
two nodes. Previous studies have shown that brain functional
and structural networks exhibit efficient small-world properties
that allow the efficient transfer of parallel information using
a relatively low cost (Watts and Strogatz, 1998; Achard and
Bullmore, 2007; He et al., 2007). Thus, a brain network
that features small-world properties possesses a higher C, yet
similar L, compared to the null random networks (Watts
and Strogatz, 1998), and a small-world network fulfills the
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following criteria: y = Clrfal/ C;and > 1, X L;eal/Lgmd ~1,
and 0 = y/A> 1, in which C;a“d and Llr;‘“d represent the
average clustering coefficient and characteristic path length of the
matching random networks, respectively. In the present study,
null random networks (number = 20) were generated from
covariance matrices that match the distributional features of the
observed covariance matrix based on the Hirschberger-Qi-Steuer
algorithm, as described in previous studies (Zalesky et al., 2012;
Singh et al., 2013).

For regional characteristics, the present study considered
nodal degree as well as betweenness. The degree of a given node
pertains to the sum of all connections situated between this
node and the rest of the other nodes within the network. The
betweenness of a specific node is described as the number of
the shortest paths between a pair of nodes that run through this
particular node. In the present study, the quantified nodal degree
and/or betweenness were normalized using the average degree
and/or betweenness of the network, respectively, followed by a
comparison of two groups (Hosseini et al., 2012; Singh et al,,
2013). The network hubs are the nodes that commonly interact
with various other regions and allow functional integration as
well as play a key role in instilling network resilience to insults.
The nodes are thus regarded as the structural network hubs when
these depict a higher degree (one standard deviation higher than
the average network degree). The analysis of the regional network
and hub was performed on the network that was thresholded at
the minimum density for full connectivity.

Statistical Analyses

The Graph Analysis Toolbox was used to conduct a comparison
of network measurements between two groups. To test
differences in topological parameters between groups, a
permutation-based algorithm was employed (Bullmore et al,
1999; He et al., 2008). Here, a set of corrected RGMV data of one
individual was randomly rearranged to that of another subject of
any group, and then the correlation matrix was computed for the
randomized group. Subsequently, a new binarized matrix was
generated using a density threshold similar to that of real brain
networks, followed by recalculation of the network parameters.
We repeated this randomization procedure for 1,000 times
using each threshold (density). Then, we computed for the
network measures of all the networks at every density. We
also calculated the differences in network measures among the
newly randomized groups (using various network densities),
thereby resulting in a difference permutation distribution
under the null hypothesis. The entire set of 95 percentile points
of every distribution was employed as the critical values in
a one-tailed test of the null hypothesis using a type I error
probability of 0.05.

In addition, the functional data analysis (FDA) was conducted
to examine MHE-related differences in topological metrics.
Here, we computed the sum of between-group differences in
every network metric within a range of densities (0.12-0.50)
that can be used as a summary scale for the topological
assessment of brain structural networks, which does not
require single-threshold selection. Subsequently, we performed
a nonparametric permutation test using the FDA results to

examine the significance of differences among groups (i.e., the
observed summation).

RESULTS

Figure 2 shows that the HC group demonstrated small-
world network properties, i.e., considerable larger clustering
coefficients and similar path lengths than those of the matched
random networks. MHE patients showed lower Cp, L, y, A
and o. Statistically, FDA analysis indicated that MHE patients
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FIGURE 2 | Small-world properties of the gray matter structural covariance
network of MHE patients compared to HCs, using various network densities
(0.12-0.50).
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FIGURE 3 | Network hubs in HCs and patients with MHE. The labeled nodes represent network hubs. The hubs that were common in two groups include the left
ORBsupmed and right SFGmed. The hubs specific to HC include the bilateral SFGdor and ORBInf, left SFGmed, middle frontal gyrus (MFG), precental gyrus
(PreCG), TPOsup, INS, ROL and REC and right ORBsup, ACG, IPL and ANG. The hubs specific to MHE patients include the bilateral IFGtriang and DCG, left MOG,
ORBsup and CAL, and right ORBsupmed, MFG, HIP, LING, inferior temporal gyrus (ITG) and HES. The abbreviations for brain regions are presented in Table 2.

had significantly lower y (P = 0.021), A (P = 0.010) and o
(P = 0.048). For the non-normalized network measures, FDA
analysis also indicated that the MHE group had decreased C,
(P =0.030) and L,, (P = 0.043), as compared with HC group.

Figure 3 shows the hubs identified in each group. The
number of hubs in the MHE group was less than that in
the HC group. In the HC group, 17 regions were designated
as network hubs, including eight association regions, eight

TABLE 3 | List of network hubs.

Abbreviation

AAL region

Functional classification

Anatomical classification

Hubs in HC group
ACG.R

ANG.R

INS.L

IPL.R

MFG.L
ORBInf.L
ORBINnf.R
ORBsup.R
ORBsupmed.L
PreCG.L
REC.L

ROL.L
SFGdor.L
SFGdor.R
SFGmed.L
SFGmed.R
TPOsup.L
Hubs in MHE group
CAL.L

DCG.L

DCG.R

HES.R

HIPR
IFGtriang.L
IFGtriang.R
ITG.R

LING.R
MFG.R
MOG.L
ORBsup.L
ORBsupmed.L
ORBsupmed.R
SFGmed.R

Right anterior cingulate and paracingulate gyri
Right angular gyrus
Left insula

Right inferior parietal, but supramarginal and angular gyri

Left middle frontal gyrus

Left inferior frontal gyrus, orbital part
Right inferior frontal gyrus, orbital part
Right superior frontal gyrus, orbital part
Left superior frontal gyrus, medial orbital
Left precental gyrus

Left gyrus rectus

Left rolandic operculum

Left superior frontal gyrus, dorsolateral
Right superior frontal gyrus, dorsolateral
Left superior frontal gyrus, medial

Right superior frontal gyrus, medial

Left temporal pole: superior temporal gyrus

Left calcarine fissure and surrounding cortex
Left median cingulate and paracingulate gyri
Right median cingulate and paracingulate gyri
Right heschl gyrus

Right hippocampus

Left inferior frontal gyrus, triangular part
Right inferior frontal gyrus, triangular part
Right inferior temporal gyrus

Right lingual gyrus

Right middle frontal gyrus

Left middle occipital gyrus

Left superior frontal gyrus, orbital part

Left superior frontal gyrus, medial orbital
Right superior frontal gyrus, medial orbital
Right superior frontal gyrus, medial

Paralimbic
Association
Paralimbic
Association
Association
Paralimbic
Paralimbic
Paralimbic
Paralimbic
Primary
Paralimbic
Association
Association
Association
Association
Association
Paralimbic

Primary
Paralimbic
Paralimbic
Primary
Limbic
Association
Association
Association
Association
Association
Association
Paralimbic
Paralimbic
Paralimbic
Association

Prefontal
Parietal
Subcortical
Parietal
Prefontal
Prefontal
Prefontal
Prefontal
Prefontal
Frontal
Prefontal
Frontal
Prefontal
Prefontal
Prefontal
Prefontal
Temporal

Occipital
Frontal

Frontal

Temporal
Temporal
Prefontal
Prefontal
Temporal
Occipital
Prefontal
Occipital
Prefontal
Prefontal
Prefontal
Prefontal
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limbic/paralimbic regions, and one primary region. These were
primarily located in the prefrontal, parietal, insular and motor
areas, which are involved in the executive control, default-
mode, salience and motor networks (Barkhof et al., 2014).
These hubs identified in our study agree with those of previous
reports (Singh et al, 2013). The 15 hubs were identified
in the MHE group, including seven association regions, six
limbic/paralimbic regions, and two primary regions. These hubs
were primarily in frontal/prefrontal, temporal, and occipital
areas. All hubs in two groups are listed in Table 3. The hubs
that were common in two groups include the left ORBsupmed
and right SFGmed. The hubs specific to HC include the
bilateral SFGdor and ORBinf, left SFGmed, middle frontal
gyrus (MFG), precental gyrus (PreCG), TPOsup, INS, ROL
and REC and right ORBsup, ACG, IPL and angular gyrus
(ANG). The hubs specific to MHE patients include the bilateral
IFGtriang and DCG, left MOG, ORBsup and CAL, and right
ORBsupmed, MFG, HIP, LING, inferior temporal gyrus (ITG)
and HES.

Figure 4 shows the differences in regional network properties
between two groups. Several brain regions with significant
alterations in nodal degree and betweenness were detected
in the structural covariance network of the gray matter that
was thresholded to a minimum density of full connectivity.
Compared to HC, the MHE group showed significantly lower
nodal degree in the left SFGdor, ORBsupmed, PreCG, INS
and REC and right ANG and ORBinf, whereas MHE patients
had higher nodal degree in bilateral CAL and HIP, left LING
and inferior occipital gyrus (I0G), and right superior occipital
gyrus (SOG) and AMYG. In addition, the MHE patients showed
significantly decreased nodal betweenness in bilateral CUN, left
ORBsupmed, Fusiform gyrus (FFG) and TPOsup, and right
ANG, IPL, LING, superior temporal gyrus (STG) and THA, and
the MHE patients had significantly increased nodal betweenness
in bilateral CAL and right HIP.

DISCUSSION

This study serves as the first investigation of the complex
topological organization of brain structural networks in cirrhotic
patients with MHE. Our results suggest that MHE patients
exhibit an unoptimizable architecture involving the gray
matter structural covariance network, as indicated by reduced
clustering coefficients and characteristic path lengths and
lower small-worldness parameters. These changes indicated
a tendency to undergo additional random alterations in
the brain structural network of patients with MHE, which
shows less efficient communication of information across the
whole brain. Similar to our results, a previous study has
also revealed an anomalous gray matter structural network
(with a decreased clustering coefficient and small-worldness)
in the patients with cirrhosis (but only a few could be
diagnosed as MHE; Lv et al., 2015). Thus, our findings provide
morphological evidence that supports the concept that MHE is a
neuropathological process associated with disruptive alterations
to brain networks.

log(1/p value)

-6.91 6.91

log(1/p value)

-4.42 6.91

FIGURE 4 | Brain regions depicting significant alterations in nodal degree and
betweenness in the structural covariance network of the gray matter that was
thresholded to a minimum density of full connectivity. The color bar indicates
the log(1/p value). The cool color signifies regions with higher nodal
betweenness or degree among HCs relative to MHE patients, whereas the
warm color represents areas with greater nodal betweenness or degree in
patients with MHE compared to the HCs. The abbreviations for brain regions
are presented in Table 2.

Previous analyses of functional connectivity networks have
revealed that the neurocognitive deficiencies in MHE patients are
associated with a deficiency in small-world properties, including
more random and poor clustered architecture (Zhang et al., 2014;
Jao et al,, 2015). Studies have shown that the functionally linked
networks reflect the underlying organization relating to the
brain’s structural connectivity (van den Heuvel et al., 2009), and
brain structural connectivity supports the functional network
organization and various functional network graph features
(Honey et al, 2009; Zimmermann et al., 2016). Therefore,
it is expected that MHE patients have impaired topological
organization in the brain structural covariance network, which
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may be considered as the neural substrate for the dysfunction
of functional brain networks that subsequently contribute to
neurocognitive impairment. The findings of this study indicate
that the brain structural covariance network exhibits a more
randomized configuration with lower Cp, higher L,, as well as
lower o (Watts and Strogatz, 1998; Bullmore and Sporns, 2009)
in patients with MHE, which agrees well with the results of earlier
functional investigations (Zhang et al., 2014; Jao et al., 2015).
The random networks involve fewer modularized information
processing or tolerance of faults relative to small-world networks
(Latora and Marchiori, 2001). Therefore, this explains why MHE
leads to impaired small-world network efficiency functionality
(Hsu et al., 2012), which indicates less efficient informational
interactions between interconnected brain regions. Meanwhile,
less fault-tolerance may imply an increase in vulnerability to
cerebral metabolic disturbances (such as hyperammonemia-
related edema and neurotoxic manganese deposition; Rovira
et al., 2008) due to liver dysfunction. That may be the reason
why once the disease gets to the stage of MHE, it is likely
to progress to overt hepatic encephalopathy (HE), which has
poor prognosis (Romero-Gomez et al,, 2001; Stewart et al,
2007).

MHE patients had fewer hubs than those in the HC group
(15 vs. 17) and showed a different distribution of network
hubs from the HC group. They lost hub nodes mainly from
the bilateral frontal lobe, right parietal lobe, as well as the
left insular cortex, which are areas that are most frequently
affected in MHE (Hsu et al., 2012; Zhang et al, 2012; Chen
et al, 2013; Yang et al, 2018). Thus, our finding further
indicated the selective vulnerability of these areas in the case
of MHE. Although the mechanism about the loss of these
hubs was not well understood, several pathological processes
in MHE may contribute to the functional and structural
alterations in these areas. For example, it could be implied
that the alteration in cortical hub may be associated with
the consequence of subcortical pathology (basal ganglia and
cerebellum) due to hepatic dysfunction. The previous study
has revealed abnormal cerebral blood flow/glucose metabolism
in MHE, which is attributable to a redistribution of cerebral
blood flow/glucose metabolism from the cortex to the caudate,
thalamus, and cerebellum. Of note, the above hub-regions are
considered as critical nodes that are responsible for high-level
cognitive networks, such as executive activities, default-mode,
as well as salience (Barkhof et al., 2014; Chen et al., 2016).
Consistently, the reduction in nodal degree/betweenness in MHE
was also found in the above networks. Therefore, the loss of
these hubs may contribute to the common cognitive decline
in MHE, such as executive dysfunction and attention deficit
(Bajaj et al., 2009). However, the MHE group had new hubs,
primarily located in the bilateral occipital lobe and right temporal
lobe; consistently, they showed an increased degree/betweenness
primarily in bilateral calcarine fissure and the surrounding
cortex and bilateral hippocampus. As mentioned in previous
studies (Hsu et al.,, 2012; Lv et al, 2015), these alterations
implied the possibility that several hubs/nodes in the brain
structural network undergo reorganization and compensate for
the MHE-related declines in neurological function, such as visuo-

spatial coordination and memory abilities (Ortiz et al., 2006; Bajaj
et al., 2013; Cie cko-Michalska et al., 2013). This compensation
mechanism would be helpful to delay the progression of HE
disease.

This study has a number of limitations. First, we conducted a
cross-sectional study. Future studies with longitudinal evaluation
are recommended to directly test the progressive effects of HE on
the topological properties of brain structural networks. Second,
the topological measurements of the brain structural network
can be identified by calculating the interregional correlations of
RGMYV among the participants in each group. The drawback
of this approach in constructing a brain network is that it
prevents the assessment of individual differences within network
metrics, thereby making it difficult to explore the impact of
unoptimizable network organization on MHE-related cognitive-
behavioral outcomes. Third, the present study only assessed
the topological features of the structural covariance network
of the gray matter. The integrated analysis of functional as
well as structural connectivity networks may generate novel
insights into investigating the complex network properties of
both healthy and diseased brains (Damoiseaux and Greicius,
2009; Zhang et al., 2011). Therefore, the further investigations
involving multi-modal data, including T1-weighted, diffusion-
based, as well as resting-state functional magnetic resonance
images, should be performed to improve our knowledge of
the topological features of complex brain networks in early
stage HE.

In summary, our results revealed that MHE leads to
the altered coordination patterns involving gray matter
morphology. The loss of small-world topological features
indicated a less efficient network organization even during
the early stages of HE. The randomization alteration is
an important characteristic occurring in the whole-brain
network of MHE patients, which may contribute to the
various neurological deficits, such as executive and attention
dysfunction, and the motor and visual impairments. Our
findings provide structural evidence that supports that MHE
is a neurological complication related to disrupted neural
networks.
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