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The mouse somatosensory cortex is an excellent model to study the structural basis of
cortical information processing, since it possesses anatomically recognizable domains
that receive different thalamic inputs, which indicates spatial segregation of different
processing tasks. In this work we examined three genetically labeled, non-overlapping
subpopulations of GABAergic neurons: parvalbumin- (PV+), somatostatin- (SST+), and
vasoactive intestinal polypeptide-expressing (VIP+) cells. Each of these subpopulations
displayed a unique cellular distribution pattern across layers. In terms of columnar
localization, the distribution of these three populations was not quantitatively different
between barrel-related versus septal compartments in most layers. However, in layer IV
(LIV), SST+, and VIP+, but not PV+ neurons preferred the septal compartment over
barrels. The examined cell types showed a tendency toward differential distribution in
supragranular and infragranular barrel-related versus septal compartments, too. Our
data suggests that the location of GABAergic neuron cell bodies correlates with the
spatial pattern of cortical domains receiving different kinds of thalamic input. Thus,
at least in LIV, lemniscal inputs present a close spatial relation preferentially to PV+
cells whereas paralemniscal inputs target compartments in which more SST+ and
VIP+ cells are localized. Our findings suggest pathway-specific roles for neocortical
GABAergic neurons.

Keywords: barrel cortex, GABAergic neuron, parvalbumin, somatostatin, vasoactive intestinal peptide (VIP),
cortical laminae, septa

INTRODUCTION

The neocortex contains two main groups of neurons: the excitatory glutamatergic cells and the
inhibitory GABAergic cells, which both are crucial for sensory information processing (Harris
and Mrsic-Flogel, 2013). These two groups are molecularly, morphologically and physiologically
distinct. Excitatory pyramidal cells make up approximately 80–90% of all neocortical cells and
can be grouped according to laminar location and projection targets (Huang, 2014; Harris
and Shepherd, 2015). Inhibitory GABAergic neurons comprise only about 10–20% of the total
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population of neocortical neurons, but their diversity is
surprisingly large (Markram et al., 2004; Rudy et al., 2011;
De Felipe et al., 2013; Tremblay et al., 2016; Feldmeyer et al.,
2018). The parvalbumin (PV+), somatostatin (SST+), and
vasoactive intestinal polypeptide (VIP+) expressing cells account
for the majority of GABAergic neurons (roughly 40% PV, 30%
SST, and 10–15% VIP). These three distinct classes show minimal
overlap in all examined cortical areas (Pfeffer et al., 2013;
Tremblay et al., 2016), and have diverse molecular, structural and
electrophysiological features. However, their detailed distribution
and specific functions are largely unknown. A non-uniform
distribution would imply distinct functions in local circuits
of the barrel cortex (Feldmeyer et al., 2013). In this frame,
we described the spatial distribution of these neuron types, in
order to investigate their relationship to cortical compartments
receiving different thalamic afferentation.

Sensory information from the whisker pad is transmitted
via modularly organized parallel pathways to the barrel cortex
(Diamond et al., 2008; Feldmeyer et al., 2013; Zembrzycki et al.,
2013). The trigeminal nerve projects to several nuclei in the
brainstem, namely the mesencephalic, principal (or pontine)
and spinal nucleus. The lemniscal pathway originates in the
principal trigeminal nucleus and relays tactile information via
the barreloids of the ventral posteromedial nucleus (VPM) of
the thalamus. The paralemniscal pathway routes its information
through the spinal trigeminal nucleus (intermediate part) and
medial part of the posterior thalamic nucleus (POm). From
thalamus, ascending information reaches different cortical areas
and layers. The primary site of termination is the barrel cortex,
where the lemniscal thalamocortical fibers strongly project
to layer IV (LIV) and thus also define supragranular and
infragranular compartments, which are radially aligned with a
barrel (Woolsey and van der Loos, 1970). This leads to the
formation of barrel-related columns that are driven by their
corresponding whiskers (Staiger et al., 2002; Wagener et al.,
2016). Barrel columns are separated by septal compartments
(Kim and Ebner, 1999; Alloway et al., 2004). The lemniscal
pathway projects via VPM to the barrel columns, most strongly
into LIV, layer Vb (LVb), layer VI (LVI), and less strongly to layer
II/III (LII/III) (Lu and Lin, 1993; Bureau et al., 2006; Oberlaender
et al., 2012), whereas the paralemniscal pathway projects via POm
preferentially to layer I (LI) and layer Va (LVa) in a column-
overarching manner and sends a few fibers to the LIV septum
(Alloway, 2008; Wimmer et al., 2010b).

Single-cell recordings in vivo and in vitro, combined with
biocytin filling and morphological reconstruction, revealed
functional and morphological features of the different
GABAergic neurons, found in the three subpopulations
(Markram et al., 2004; Jiang et al., 2015; Tremblay et al., 2016;
Feldmeyer et al., 2018). PV+ cells are located in all cortical
layers (but LI). They prefer layers IV and Vb, however (Celio,
1986). Their dendritic and axonal arbors can show diverse
patterns, depending on the precise laminar location of the
soma; in this home layer the densest axonal as well as dendritic
arborization can be found (Wang et al., 2002; Munoz et al., 2014;
Koelbl et al., 2015). Their inhibitory influence strongly affects
their own population (Tamas et al., 2000; Staiger et al., 2009;

Pfeffer et al., 2013), but they can effectively inhibit other
GABAergic interneuron types (David et al., 2007; Jiang et al.,
2015; Karnani et al., 2016b; Walker et al., 2016). Furthermore,
they are classically considered to be (together with the rare
axo-axonic cell) the most effective inhibitors of pyramidal cells
(Kubota et al., 2015; Neske et al., 2015).

SST+ cells show a bias toward infragranular layers. However,
the different subpopulations, namely Martinotti and non-
Martinotti cells, can show very distinct patterns of soma
localization and axonal targeting (Oliva et al., 2000; Ma et al.,
2006; Urban-Ciecko and Barth, 2016; Nigro et al., 2018).
Compared to PV+ cells, they rather seem to avoid inhibiting
other SST+ cells, but impose strong inhibition on other
interneurons and pyramidal cells, in a cell type-specific manner
(Caputi et al., 2009; Pfeffer et al., 2013; Xu et al., 2013). To exert
their likely distal dendritic inhibition, they send dense axonal
projections strongly but not exclusively into LI whereas their
dendritic arborization is far less wide-ranging but usually not
restricted to the home layer (Ma et al., 2006; McGarry et al., 2010;
Nigro et al., 2018).

By contrast, VIP+ cells show a preferential location in the
supragranular layers of mouse and rat barrel cortex (Bayraktar
et al., 2000; Prönneke et al., 2015) and have recently been
implicated in parallel disinhibitory and inhibitory circuits,
impinging on pyramidal cells (Lee et al., 2013; Pi et al., 2013;
Garcia-Junco-Clemente et al., 2017; Kuchibhotla et al., 2017;
Zhou et al., 2017). In terms of input-output patterns, we have
recently suggested that L II/III VIP+ cells have a dendritic tree
that is largely restricted to L I-III but an axonal arbor that
reaches all layers of a barrel-related column. On the other hand,
VIP+ neurons in L IV-VI display a variable dendritic tree that
could span all layers, whereas the axon is basically confined to
infragranular layers (Prönneke et al., 2015). A major connectivity
motif is VIP+ cells inhibiting SST+ Martinotti cells, in barrel
as well as visual cortex (Caputi et al., 2009; Pfeffer et al., 2013;
Karnani et al., 2016a; Walker et al., 2016).

As already noted above, thalamocortical projections and
interneuron somata show layer preferences. However, there
are also columns as another organizational principle of the
cortex (Mountcastle, 1997). Although a barrel-related column
preference of lemniscal and a septal compartment (often also
called column) preference of paralemniscal thalamocortical fibers
are well described, there is very little information available
about the barrel- or septum-related columnar preferences of
GABAergic neurons. There are only few cases, where not
only the laminar, but the horizontal distribution was examined
(Hajós et al., 1998; Nogueira-Campos et al., 2012). It is known
that different types of interneurons can be the target of
thalamocortical fibers of different origin (Staiger et al., 1996a,b;
Porter et al., 2001; Cruikshank et al., 2010; Ji et al., 2016; Audette
et al., 2017; Maffei, 2017). However, a more refined knowledge on
the distribution pattern could help design experiments to further
analyze thalamic inputs to GABAergic neurons in more detail.

Thus, in the present study, we aimed to answer the question
whether PV+, SST+, and VIP+ neurons show a preference
for the laminar and columnar compartments of the barrel
cortex, as defined by the two main thalamocortical pathways.
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Since LIV has a unique and central role as an access point of
tactile information to the cortex and the barrel versus septum
distinction is most obvious there, we put a special focus on this
layer. The main question thus was, whether a compartment-
associated distribution of GABAergic neurons can be found? Our
results show that although laminar and columnar preferences
obviously do exist for the soma locations of PV+, SST+, and
VIP+ cells, only in LIV and only for SST+ and VIP+ cells, these
differences reach statistical significance.

MATERIALS AND METHODS

Animals
Three different genetically engineered mouse strains were
used for the present experiments: (1) a cross breed of
PVcre/tdTomato mice (crossed B6;129P2-Pvalbtm1(cre)Arbr/J
with B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice)
and GIN (Oliva et al., 2000) mice (PV-GIN; n = 6, male),
which expressed the red fluorescent protein tdTomato in PV
cells and green fluorescent protein (GFP) in a subset of SST
cells, (2) SSTcre/tdTomato mice (crossed Ssttm2.1(cre)Zjh/J with
B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice) (n = 7,
male) were used for visualizing all somatostatin cells, and (3)
VIPcre/tdTomato mice (crossed VIPtm1(cre)Zjh with B6.Cg-
Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J mice) (n = 9, male),
were used to label all vasoactive intestinal polypeptide (VIP)
cells. The age of animals was between 6 and 8 weeks. All used
animals were obtained from the breeding facility of the University
Medical Center Göttingen (Germany). Animal numbers and
their suffering were restricted to the minimum. This study
was carried out in accordance with the principles of the Basel
Declaration and German laws on animal research (TierSchG
and TierSchVersV, 2013). The protocol was approved by the
LAVES (Niedersächsisches Landesamt für Verbraucherschutz
und Lebensmittelsicherheit).

Tissue Preparation and
Immunocytochemistry
The animals were anesthetized with an overdose of ketamin
(Essex Tierarznei) and transcardially perfused with 0.9% NaCl
solution to remove blood from vessels, followed by 4%
paraformaldehyde dissolved in 0.1 M phosphate buffer (PB,
pH 7.4). The brains were removed and the two hemispheres
separated. The left hemispheres were flattened (Welker and
Woolsey, 1974) whereas the right ones were kept unmodified,
and all tissue was postfixed for 2 h in the same fixative. The right
hemispheres were cut in the coronal plane, the left hemispheres
tangentially on a vibratome (VT 1200S, Leica), both with a
nominal section thickness of 50 µm.

The sections of PV-GIN animals were incubated with rabbit
anti-GFP (Invitrogen) 1:2500 in TRIS-buffered saline with 0.3%
Triton X-100 (TBST) for 2 days (in a cold room), followed
by an anti-rabbit IgG coupled with Alexa-488 (Invitrogen)
1:500 in TBST for 2 h. The PV+ cells contained a sufficient
amount of tdTomato, therefore they did not need further
signal amplification. The sections of SSTcre/tdTomato and

VIPcre/tdTomato animals were stained with guinea pig anti-
vesicular glutamate transporter 2 (vGlut2; Millipore) 1:10,000 in
TBST for 2 days, followed by an anti-guinea pig IgG coupled with
Alexa 488 (Invitrogen) 1:500 in TBST for 2 h, in order to identify
barrels. In a last step, sections of all strains were stained with
DAPI (1:1000, Molecular Probes) to label cell nuclei. The sections
were then embedded in AquaPolymount (Polysciences).

Image Acquisition
Microphotographs were taken with an epifluorescence
microscope (AxioImager.M2, Zeiss, Jena, Germany; 5x A-Plan
objective, NA 0.12 or 10x C-Plan Neofluar objective, NA 0.3)
as “virtual tissue photomontages” controlled by Neurolucida
software (MBF Bioscience, Colchester, VT, United States). Filter
sets used were: for DAPI #49 (BP 365; BS 395, BP 445/50), for
Alexa488/GFP #44 (BP 475/40; BS 500, BP 530/50), and for
tdTomato #45 (Bp 560/40; BS 585, BP 630/75. To maintain
illumination intensity comparable across sections, the dynamic
range was set according to the saturation of a few (3–5) brightest
pixels that belonged to somata.

Data Extraction
Please consult Supplementary Figure 1 for a more intuitive
illustration of the work flow. Consecutive tangential sections were
aligned according to the pattern of vertically oriented cortical
blood vessels. Neurolucida was used for registering cells and
cortical domains. First, the barrels were identified and labeled
individually, based on DAPI staining that was correlated with
either intense PV neuropil or vGluT2 immunostaining, which
is caused by thalamocortical projections into layer (L) IV. In
coronal sections, the borders between LI, LII/LIII and LVa, LVb,
and LVI were identified on the basis of DAPI staining. The pia
mater and the LVI/white matter border were also delineated
throughout the entire barrel field. Then, the location of all PV,
SST, and VIP cells was registered independent of the laminar
boundaries, thus the borders of the cortical domains did not
bias the data collection. The resulting data files were analyzed
in Neurolucida Explorer (MBF Biosciences). The following
parameters were extracted: (i) cell numbers, (ii) areas of all
delineated cortical domains (barrels, septa, and the related layers
of the respective cortical columns), and (iii) the coordinates of
all the GABAergic neurons with their distance from pia mater
and white matter.

Data Processing
After identifying each barrel in coronal sections, the depth
of the borders between cortical layers was measured for
each, and the medio-lateral and rostro-caudal coordinates were
also registered. These parameters were used to correct the
measured volumina of the flattened tangential sections. After
that procedure, the tangential sections were re-binned into 20
sections. In coronal sections we found the cortical thickness to be
1019,164 ± 38,550 µm. In case of 50 µm-thick sections it would
contain a total number of ca. 20 tangential sections. By cutting
the brain tangentially, we had diverse section numbers (15–
19), depending on applied pressure during flattening. Therefore,
we standardized the cortical thickness through re-binning the
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sections with the following methods. First we divided each section
in 20 virtual subsections and divided the cell count of a given
section equally between its virtual subsections. For example, in
an animal with n = 17 sections (n = original section number),
we got n’ = 340 subsections (n’ = number of a new subsection,
n’ = n∗ 20). Then, we created normalized tangential sections: one
20th of n’ of all subsections were binned together (in the example
above, 17 subsections were binned in one new normalized section
(Supplementary Figure 2).

The densities of cells of interest (PV+, SST+, VIP+) were
plotted and the borders of cortical layers were defined, using the
inflection points of these curves (Pohlkamp et al., 2014). Since
the cortical and laminar thickness varies according to rostro-
caudal and medio-lateral position, the extracted raw data had
to be transformed to obtain statistically comparable quantities.
The normalization of cortical thickness utilized landmarks, e.g.,
points of inflection on laminar borders as described previously
for each of the markers examined (Pohlkamp et al., 2014). This
normalization process transformed all the data into the same
thickness range, therefore it made the comparison (or pooling)
of coronally- versus tangentially-cut as well as more rostrally or
medially versus more caudally or laterally located tissue possible.

To determine whether our data showed Gaussian distribution,
we used the Shapiro–Wilk normality test. Since the Shapiro–Wilk
test failed in all cases of studied cell types, the non-parametric
Kruskal–Wallis test was used to determine statistically significant
differences. Alpha levels were adjusted with the Bonferroni
method. For comparison of numbers from tangential versus
coronal sections, data were plotted and the correlation coefficient
was calculated (Mystat, Systat Software, Inc., United States). We
collected data from coronal sections to compare our results to
previous literature. Tangential section were used to collect data
about absolute numbers in the whole posteromedial barrelfield
and because the identification of barrels and interbarrel septa
was much more obvious. Coronal and tangential data series
correlated highly with each other, therefore the density values of
coronal and tangential section were pooled for the analysis.

RESULTS

PVcre/tdTomato-Expressing (PV+)
GABAergic Neurons
These cells show a dominant location within the termination
zones of the lemniscal thalamic projections (Chmielowska et al.,
1989; Wimmer et al., 2010b), namely LIV and the LVb/VI border
but also within the termination zone of paralemniscal thalamic
projections (Wimmer et al., 2010b), namely layer Va (Figure 1A).
Indeed, 26.17 ± 2.73% of all PV+ cells were located in LIV,
14.84± 1.94% in LVa and 27.15± 1.49% in LVb, whereas in layers
II/III and VI together only 31.83± 1.99% were found. In LIV, the
neuropil labeling led to the clear delineation of barrels, in coronal
as well as tangential sections (Figures 1A,B).

Laminar Distribution
We studied the PV+ cell distribution in coronal sections of 3
hemispheres and in tangential sections of another 3 hemispheres.

The coronal and tangential sections correlated with each other
in terms of cell number and distribution (n = 6; r2 = 0.925)
(Figure 3D), therefore they were pooled for further analysis
(Table 1 and Figure 3A).

When extrapolated in number to 1 mm3, PV+ cells preferred
LIV and LV (a and b) in approximately equal numbers, were
much sparser in LII/III and LVI and avoided LI (Table 1 and
Figures 1A,B, 3; significance levels are listed in Supplementary
Table 1, Kruskal–Wallis test was used to determine statistically
significant differences). Thus, PV+ cell numbers showed a
differential distribution between layers, which was very similar in
the two analyzed columnar compartments (see also below).

Columnar (Barrel Versus Septum)
Distribution
In layers II throughout VI, the distribution of PV+ cells
was found to be similar for barrel- and septum-related
compartments. However, this more or less even distribution
of cell bodies was masked by the differential distribution of
PV+ neuropil, which strongly preferred barrels (Figure 1B and
Table 1). There were slightly more cells in barrels versus septa
(Figures 2A,D,G,J, 3A, LIVc versus LIVs), but this difference
was not statistically significant (p = 0.885; significance levels are
listed in Supplementary Table 2, Kruskal–Wallis test was used to
determine statistically significant differences). Considering soma
and neuropil labeling in PV+ neurons, in LIV this resulted in a
complementary distribution profile, contrasting with VIP+ and
SST+ GABAergic neurons (see below).

SST-Expressing (SST+) GABAergic
Neurons
The overall distribution of SST+ cells was unique in several
aspects (Figures 1C,D). Whereas PV+ cells showed an increased
density in layers IV and Vb (as noted above), SST+ cells strongly
preferred infragranular layers V-VI. In fact, 73.69 ± 5.37% of
the cells were located in the infragranular layers, whereas only
26.31 ± 5.37% were found in layers I-IV. This suggests that
projections like the one from M1 with heavy terminal labeling in
infragranular layers might be a preferential input to these neurons
(Kinnischtzke et al., 2014) but also that paralemniscal inputs have
ample opportunity in targeting this class of cells in LI and LVa,
whereas lemniscal inputs should preferentially innervate cells in
LVb/LVI (Wimmer et al., 2010b; Audette et al., 2017).

Laminar Distribution
We studied the SST+ cell distribution in coronal sections
of 3 hemispheres and in tangential sections of another three
hemispheres, too. The coronal and tangential sections (total
n = 6) correlated highly with each other (r2 = 0.94) (Figure 3D),
therefore the neurons were pooled for further analysis (Table 2
and Figure 3B).

The SST+ neurons were similar in number in layers Va, Vb,
and VI. Each of these layers possessed significantly more cells
than LIV, LII/III, and LI, respectively. LII/III SST+ cells did not
differ in number from LIV cells. The lowest number of SST+
cells was found in LI, which was significantly different from
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FIGURE 1 | Localization of PV+, SST+, and VIP+ interneurons in the barrel cortex. (A,B) Double labeling of PV+ (red, from PVcre/tdTomato animals) and SST+
(green, GIN line) shows a clear delineation of barrel-related columns in the coronal section (A) and a whisker-related somatotopic pattern in layer IV of tangential
sections (B). Indication of barrels (asterisks) and septa (arrowheads) holds for all images. PV+ cells seem to prefer barrels, but quantitative analysis showed that the
cell bodies are distributed homogenously. GIN cells, however, displayed an obvious preference for the septal compartment. (C,D) SST+ cells (red, from
SSTcre/tdTomato animals) were located preferentially in the infragranular layers (D), somewhat aligned to interbarrel septa (C,D). VGluT2 (green) strongly labels the
lemniscal thalamic termination zone in layer IV barrels. (E,F) VIP+ cells (red; from VIPcre/tdTomato animals) preferred supragranular layers (E) and interbarrel septa
(F). Scale bars: 500 µm.

all other layers (significance levels are listed in Supplementary
Table 3; Kruskal–Wallis test was used to determine statistically
significant differences).

Columnar (Barrel Versus Septum)
Distributions
When comparing the barrel with the septal compartment,
we found that SST+ cells were distributed more or less
homogenously between these compartments in all layers, except
LIV (Table 2). As shown in Figures 2B,E,H,K, 3B, in LIV, the

septal compartment contained significantly more cells than the
barrel compartment (p < 0.0001) (significance levels are listed
in Supplementary Table 4; Kruskal–Wallis test was used to
determine statistically significant differences).

VIP-Expressing (VIP+) GABAergic
Neurons
Interestingly, VIP+ cells show an inverse relationship to SST+
cells, as they display a strong preference for the supragranular
layers (Figure 1E). Indeed, 70.24% of all cells were located
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TABLE 1 | Cell density of PV-expressing neurons, differentiated by barrel
column and septum.

Cell density in
column (1/mm3)

± SD
(1/mm3)

Cell density in
septum (1/mm3)

± SD
(1/mm3)

Layer I 0 0 0 0

Layer II/III 4995.65 1278.58 5050.46 2012.55

Layer IV 8426.59 1405.35 8252.19 1751.12

Layer Va 8510.96 1766.67 7904.56 2217.68

Layer Vb 8964.038 2143.11 8244.73 3170.58

Layer VI 3017.66 1003.13 2766.40 877.38

in layers I-III, whereas only 29.76% were found in layers IV-
VI. Since the subpopulation located in LI and LII/III shows
extensive dendritic arborization in layer I (Prönneke et al., 2015),
projections like those from motor cortex or basal forebrain can
strongly target these cells (Mechawar et al., 2000; Lee et al., 2013),
as does the lemniscal thalamus in deep LII/III (Staiger et al.,
1996b; Wall et al., 2016).

Laminar Distribution
We studied the VIP+ cell distribution in coronal sections
of three hemispheres and in tangential sections of another
three hemispheres. The cell numbers in these sections (total

n = 6) were again correlated highly with each other (r2 = 0.973)
(Figure 3D), thus, the values were pooled for further analysis
(Table 3 and Figure 3C).

VIP+ cells in LII/III outnumbered those in all other layers
significantly whereas LI had significantly lower numbers than all
other layers (except LVI). Also the gradient from LIV to LVI
reached statistical significance, with each deeper layer housing
less neurons than the one located pialward (significance levels are
listed in Supplementary Table 5; Kruskal–Wallis test was used to
determine statistically significant differences).

Columnar (Barrel Versus Septum)
Distribution
When comparing the columnar and septal compartments, there
was no obvious difference in the supragranular and infragranular
layers. However, in LIV we found significantly more cells in
septa than in barrels (p < 0.0001; Kruskal–Wallis test was used
to determine statistically significant differences), which can be
seen in Figures 1F, 2C,F,I,L, 3C. This columnar segregation
was therefore restricted to the granular layer where the cell
density in septa was approximately two times higher than
in barrels (significance levels are listed in Supplementary
Table 6; Kruskal–Wallis test was used to determine statistically
significant differences).

FIGURE 2 | Distribution of interneurons across layer IV barrels and septa. Fine-grained distribution of (A,D,G,J) PV+, (B,E,H,K) SST+, and (C,F,I,L) VIP+ interneuron
somata, using tangential sections to allow a better delineation of septal and barrel compartments. DAPI staining (A–C) or vGluT2 immunostaining (D–F) was used to
reveal the border of the barrels in a complementary manner. Images of nominally 50 µm thick sections of PV+ (G), SST+ (H), and VIP+ (I) somata and neuropil, in
conjunction with the respective Neurolucida reconstructions (J–L) reveal a homogenous distribution of PV+ as well as a septal preference of SST+ and VIP+ cells.
Since SST and VIP neurons appear in a quite low density, especially in the granular layer, we had to project numerous barrels onto each other, in order to be able to
display the uneven distribution of these cells. For that purpose, we collected barrels, which could be fit into an idealized (averaged) barrel, and then the images were
projected to a single image plane using ImageJ Sum Slices function. This was not necessary for PV cells since the cell density was much higher, but for the sake of
comparability we performed the same protocol on PV images. Scale bars: 50 µm.
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FIGURE 3 | Quantification of layer- and column-related distribution of GABAergic interneurons. Box and whisker plot of laminar density of (A) PV+, (B) SST+, and
(C) VIP interneurons. Note the statistically significant difference between barrel column (C)- and septum (S)-associated compartments for VIP+ and SST+ cells in
layer IV. Significant laminar distribution differences were not denoted because of figure transparency, details were explained above. The graphs also show that all of
the studied interneurons completely (PV+) or largely (SST+, VIP+) avoid LI. (D) Diagram shows the cell densities of coronal versus tangential sections. Correlation
coefficients (R) are close to 1, so the numbers are highly correlated to each other (RPV. = 0.925; R SST = 0.940; R VIP = 0.973).

In summary, we could reproduce the general pattern of
a dominance of PV+ cells in lemniscal thalamorecipient
layers (LIV and Vb) but show a frequent occurrence on the
paralemniscal thalamorecipient LVa, too. SST+ showed a strong
abundance in LVa/b and LVI whereas VIP+ were preferentially
distributed in LII/III and LIV (Supplementary Figure 3). In
addition, when comparing barrel-related columns with septum-
associated compartments, only in LIV we could detect a
statistically significant preference of SST+ and VIP+ cells for the
latter (Supplementary Figure 3).

DISCUSSION

In the present study, we confirmed and extended the laminar
distribution profiles of major subpopulations of GABAergic

neurons in the mouse barrel cortex (for recent reviews see
Staiger et al., 2015; Tremblay et al., 2016; Feldmeyer et al.,
2018). In agreement with these previous studies, we show in
tdTomato-expressing mouse lines that PV+ cells prefer layers
IV and Vb, whereas SST+ cells prefer all infragranular and
VIP+ cells supragranular (LII/III) layers. We extend these
findings by showing that PV+ cells do not have a preferential
localization within columnar compartments, since cell counts
show a very similar distribution between barrel column- and
septum-associated compartments. Thus, it is an anisotropic
distribution of PV+ neuropil labeling that accentuates barrels in
coronal as well as tangential sections. On the other hand, SST+
and VIP+ cells were significantly more frequent in the septum
than the barrel (in LIV), whereas this unique distribution was
just a trend, if anything, outside of LIV. These findings led us to
propose that different subpopulations of neocortical GABAergic
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TABLE 2 | Cell density of SST-expressing neurons, differentiated by barrel
column and septum.

Cell density in
column (1/mm3)

± SD
(1/mm3)

Cell density in
septum (1/mm3)

± SD
(1/mm3)

Layer I 512.67 356.23 566.29 558.33

Layer II/III 3353.63 903.46 3318.67 1159.57

Layer IV 2661.42 697.03 4772.67 1535.58

Layer Va 7594.97 2459.81 6752.20 2268.18

Layer Vb 8064.99 1587.00 8675.49 2425.20

Layer VI 6344.08 1985.93 6856.99 2454.67

TABLE 3 | Cell density of VIP-expressing neurons, differentiated by barrel
column and septum.

Cell density in
column (1/mm3)

± SD
(1/mm3)

Cell density in
septum (1/mm3)

±SD
(1/mm3)

Layer I 788.87 335.88 571.67 536.68

Layer II/III 5596.69 968.70 5150.93 1090.85

Layer IV 1574.74 481.32 3204.72 908.99

Layer Va 1448.33 492.38 1594.11 709.10

Layer Vb 1007.70 454.04 852.38 596.40

Layer VI 630.11 285.53 672.18 313.03

neurons could be differentially associated with different input
pathways, as initially suggested for the archicortex (Somogyi
et al., 1998). This notion was also referred to in the sensorimotor
cortex (Kubota et al., 2007; Cruikshank et al., 2010; Audette
et al., 2017), although these, as well as more recent studies
in auditory and visual cortex, did not reveal a very refined
picture (Ji et al., 2016). Since it is obvious that soma location
is only a poor predictor for the entire input space of a
neuron, we and others are currently trying to substantiate the
hypothesis of thalamic (and other) input specificity on different
classes of GABAergic neurons with optogenetics and whole
cell recordings.

Technical Considerations
We compared and finally pooled results obtained from coronal
and tangential sections of the barrel cortex (Woolsey and van
der Loos, 1970). The advantage of frontal sectioning is that
laminar borders can be identified with high certainty, whereas
in tangential sections the barrel versus septal regions can be
delineated unequivocally. Since tangential sectioning requires a
certain compression of the cortex, and the cortex is not evenly
thick along its medio-lateral axis, the distance of the cells from
the pia mater had to be adjusted, in order to match laminar
location in tangential with coronal sections. After adjustment,
the cell density read-out from coronal and tangential sections
was virtually identical, allowing us to pool the data. Our laminar
density results of VIP+ cells are in very good agreement with that
previously described for the barrel cortex (Prönneke et al., 2015)
and with PV+ and SST+ cell counts from other ongoing projects
(own unpublished results).

Here, we used staining for vGlut2 and DAPI as pre-
and postsynaptic markers, respectively, to determine barrel
and septum borders, building on our previous experience

(Wagener et al., 2010). Because of putative plasticity of
thalamocortical fibers (Wimmer et al., 2010a), the vGlut2-
defined barrel borders could vary, thus the additional use of
DAPI staining is important to define the actual barrel size and
further helps to distinguish barrel and septal compartments
(Erzurumlu and Kind, 2001).

It should also be noted that we have counted tdTomato-
expressing cell bodies distributed across the various layers
and columns, which does not necessarily mean that they are
specifically and comprehensively reflecting the entire population
of interest, as represented by the different cre-driver lines.
However, previous studies already showed a reasonable overlap
of tdTomato-fluorescence with the respective markers (GAD1,
PV, SST, and VIP (Taniguchi et al., 2011; Pfeffer et al., 2013);
and our own published and still ongoing efforts to characterize
these mouse lines revealed a very high specificity and an excellent
sensitivity (Prönneke et al., 2015).

Comparison to Previous Studies
To the best of our knowledge, the numbers of GABAergic
neurons in mouse barrel cortex had not been established
before and the partitioning of GABAergic neurons between
barrel- and septal column was completely lacking. It has to be
acknowledged that there is a comprehensive quantification with
an immunohistochemical approach available, the area-densities
reported there being in general agreement with our results (Xu
et al., 2010). Here, we started to overcome this lack of detailed
knowledge by counting soma numbers of neurons expressing
tdTomato-fluorescence under the control of three marker genes
that are currently viewed as the best candidates to separate the
population of GABAergic neurons into three different classes
(Taniguchi et al., 2011; Tremblay et al., 2016).

In PVcre/tdTomato mice, we could detect a distribution across
layers that was both, qualitatively and quantitatively similar to
the rat somatosensory cortex (van Brederode et al., 1991; Ren
et al., 1992). We showed numbers peaking in layers IV, Va, and
Vb, which would mean that major layers receiving lemniscal or
paralemniscal input (Wimmer et al., 2010b) house a feedforward
inhibition motif in their circuitry (Cruikshank et al., 2010; Naka
and Adesnik, 2016), which does strongly influence their in vivo
physiology (Bruno and Sakmann, 2006; de Kock et al., 2007;
Yu et al., 2016).

Surprisingly, in tangential sections we did not find a significant
difference between barrel and septal compartments, although PV
has been used as a marker for barrels (Sukhov et al., 2016). This
means that barrels are highlighted in PV staining by virtue of
the neuropil labeling (mainly being axonal boutons) and not by
somatodendritic profiles. This could be explained by anisotropic
axonal arbors of basket cells displaying a bias toward barrel
centers (Munoz et al., 2014; Koelbl et al., 2015). Further evidence
that there is a profound difference between the organization
of PV+ cells’ dendrites versus axons in barrels versus septa
comes from a recent study that showed their gap junction
coupling to occur in a cell type- and location-specific manner
(Shigematsu et al., 2018).

In SSTcre/tdTomato mice, we were able to show that all
infragranular layers express high numbers of these cells, where
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they recently have been shown also to be most diverse in structure
and function (Nigro et al., 2018). In contrast, the fewer cells
located in LII/III all seem to be Martinotti cells (Munoz et al.,
2017; Nigro et al., 2018), which was also consistently reported in
the GIN mouse line (Oliva et al., 2000; Ma et al., 2006; Walker
et al., 2016). The minority population in LI remains to be better
characterized (Ma et al., 2014).

The analysis in tangential sections, revealing a preferential
location in septa when compared to barrels, is without precedent.
One has to know that septa in mice are very small compartments,
as compared to rats, thus it is very difficult to specifically
record from them, in order to assess their function (Welker and
Woolsey, 1974). We can only speculate that the increased number
of SST+ neurons (but also VIP+ cells, see below) might serve to
flexibly adjust the receptive field size of septal neurons, which is
usually larger than that of barrel-related column neurons (Brecht
and Sakmann, 2002).

In VIPcre/tdTomato mice, we obtained cell numbers across
the different layers that were in good agreement with previous
reports (Xu et al., 2010; Prönneke et al., 2015), pinpointing a
preferential role of these neurons to relay information originating
from diverse sources via axonal projections into layers I-III. This
information is then relayed to all layers of the respective barrel
column- or septum-associated compartment by virtue of their
“column-filling” axonal arbors, probably impinging on excitatory
and inhibitory neurons in parallel (Garcia-Junco-Clemente et al.,
2017; Kuchibhotla et al., 2017; Zhou et al., 2017).

As noted already above, a novel finding was the differential
distribution of VIP+ somata in barrels versus septa, with
approximately twice as many cells in the septa than in the
barrels. Interestingly, a previous study has reported a differential
distribution of VIP+ boutons, which were more numerous in
the side region than within the hollow (Zilles et al., 1993). Since
a “side” is the barrel wall and the septum pooled (Welker and
Woolsey, 1974) and since VIP neurons in layer II/III and IV have
a radially restricted axonal arbor (Prönneke et al., 2015), these
findings are complementary to ours.

Functional Implications
As noted above, the soma location alone is a very limited
predictor of the input space of a neuron. However, since the
dendritic arbors of GABAergic neurons are usually more compact
than those of pyramidal cells, this could serve as a reasonable
first approximation to consider the layer- and column-associated
location of the soma as the main input space of the respective
neuron (De Felipe et al., 2013).

Thus, we suggest that PV+ neurons are more or less uniformly
distributed to fulfill the need of all cortical circuits to operate
in a tight excitation-inhibition-balance (Isaacson and Scanziani,
2011), no matter whether feedforward pathways from the

thalamus or local pathways activate them. SST+ cells, with their
strong bias to infragranular layers and to LIV septa, are rather
heterogeneous in their input and output domains, making a more
specific functional interpretation than that they are providing
widespread dendritic inhibition difficult (Urban-Ciecko and
Barth, 2016; Yavorska and Wehr, 2016). VIP+ neurons, with
their strong bias to supragranular layers and also LIV septa, can
directly participate in sensory processing, potentially by strong
disinhibitory mechanisms (Karnani et al., 2016a,b; Walker et al.,
2016; Feldmeyer et al., 2018) but they also relay more global
salience- or reward-related signals, originating in (pre-)motor
cortex or in subcortical neuromodulatory centers to the column
(Lee et al., 2013; Kepecs and Fishell, 2014).

The enrichment of SST+ and VIP+ neurons in LIV LIV
septa might help to task-dependently switch cortical activity flow
(and thus sensory processing) between the nested, partly distinct,
partly overlapping, circuits that originate in or are wired through
barrel- versus septum-associated compartments of the barrel
cortex (Alloway, 2008; Diamond et al., 2008; Feldmeyer et al.,
2013). The next task will be to perform optogenetic stimulation
of these putative input pathways and record from single identified
GABAergic neurons, in order to test our predictions.
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