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Amphetamine (AMPH) and methamphetamine (METH) are widely abused
psychostimulants, which produce a variety of psychomotor, autonomic and neurotoxic
effects. The behavioral and neurotoxic effects of both compounds (from now on
defined as AMPHs) stem from a fair molecular and anatomical specificity for
catecholamine-containing neurons, which are placed in the brainstem reticular
formation (RF). In fact, the structural cross-affinity joined with the presence of shared
molecular targets between AMPHs and catecholamine provides the basis for a
quite selective recruitment of brainstem catecholamine neurons following AMPHs
administration. A great amount of investigations, commentary manuscripts and
books reported a pivotal role of mesencephalic dopamine (DA)-containing neurons
in producing behavioral and neurotoxic effects of AMPHs. Instead, the present
review article focuses on catecholamine reticular neurons of the low brainstem.
In fact, these nuclei add on DA mesencephalic cells to mediate the effects of
AMPHs. Among these, we also include two pontine cholinergic nuclei. Finally,
we discuss the conundrum of a mixed neuronal population, which extends from
the pons to the periaqueductal gray (PAG). In this way, a number of reticular
nuclei beyond classic DA mesencephalic cells are considered to extend the
scenario underlying the neurobiology of AMPHs abuse. The mechanistic approach

Abbreviations: 5-HT, serotonin; 6-OHDA, 6-hydroxydopamine; A6sc, nucleus subcoeruleus; Ach, acetylcholine; AMPH(s),
amphetamine(s); AP, area postrema; α1-AR(s), alpha1-adrenergic receptor(s); α1B-AR, type B alpha1-adrenergic receptor(s);
β-ARs, beta-adrenergic receptor(s); Cart, cocaine- and amphetamine-regulated transcript; ChAT, choline acetyltransferase;
CTZ, chemoreceptor trigger zone; DA, dopamine; DAT, DA transporter; DBH, DA beta-hydroxylase; DMV, dorsal
nucleus of the vagus; DNB, dorsal NE bundle; DRD, dorsal dorsal raphe; DRL, lateral dorsal raphe; DRV, ventral
dorsal raphe; DSP-4, NE neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine; E, epinephrine; ICSS, intracranial
self-stimulation; LC, A6, locus coeruleus; LDTg, Ch6, laterodorsal tegmental nucleus; MAO, monoamine oxidase; METH,
methamphetamine; MFB, medial forebrain bundle; NAc, nucleus accumbens; nACh-R(s), nicotinic ACh receptor(s);
NE, norepinephrine; NET, NE transporter; NTS, nucleus of the solitary tract; OX1R, orexin type 1 receptors; PAG,
periaqueductal gray; PB, parabrachial nucleus; PKC, protein kinase C; PPN, PPTg, Ch5, peduncolopontine nucleus or
tegmentum; RF, reticular formation; RVLM, rostral ventrolateral medulla; SERT, 5-HT transporter; SNpc, Substantia Nigra
pars compacta; SPNs, sympathetic pre-ganglionic neurons; VLPAG, ventrolateral PAG; VMAT-2, vesicular monoamine
transporter type-2; VNB, ventral NE bundle; VTA, A10, Ventral Tegmental Area.
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followed here to describe the action of AMPHs within the RF is rooted on the fine
anatomy of this region of the brainstem. This is exemplified by a few medullary
catecholamine neurons, which play a pivotal role compared with the bulk of peripheral
sympathetic neurons in sustaining most of the cardiovascular effects induced by AMPHs.

Keywords: methamphetamine, norepinephrine, brainstem reticular formation, addiction, arousal, neurotoxicity,
hypertension

INTRODUCTION

Amphetamine (AMPH) and mostly methamphetamine
(METH) are widely abused psychostimulants, which possess
a phenylethylamine structure. In the present review article,
we focus on both compounds, which, from now on are
referred to as AMPHs meant ‘‘sensu stricto’’ to rule out other
amphetamine-related compounds. Both acute and chronic
AMPHs intake/administration determines behavioral, purely
motor, and vegetative alterations; each effect relies on a quite
specific constellation of reticular nuclei, which often overlap.
This calls for a constant reference to the functional anatomy
of the brainstem reticular formation (RF), which stands as the
seminal brain area to comprehend the neurobiology of AMPHs.
Short-term effects of AMPHs include intense euphoria, increased
heart rate, hypertension, hyperthermia, excitation, alertness and
wakefulness (Meredith et al., 2005; Homer et al., 2008; Moratalla
et al., 2017), which can be related to specific groups of brainstem
nuclei. On the other hand, reiterated intake/administration of
AMPHs produces long-lasting alterations, which may be the
consequence of neurotoxicity or being produced by persistent
epigenetic changes driving marked plastic phenomena in
some brain areas (Battaglia et al., 2002; Robison and Nestler,
2011; Godino et al., 2015; Limanaqi et al., 2018). Behavioral
alterations include motor and psychiatric effects such as hyper-
locomotion, stereotypies, addiction, craving, aggressiveness,
anorexia, psychosis, depression, cognitive impairments, and
altered cortical excitability ranging from sleep alterations up
to seizures (Meredith et al., 2005; Brown et al., 2011; Marshall
and O’Dell, 2012; Moratalla et al., 2017). All these effects
vary over time following reiterated exposure and some of
them occur as the consequence of neurotoxicity or the onset
of ‘‘neuronal sensitization’’ (Robinson and Berridge, 2000).
In fact, when administered chronically and/or at high doses,
AMPHs and mostly METH produce toxicity in specific brain
regions or even in peripheral organs, especially those receiving
dense innervation by the sympathetic nervous system (Liu
and Varner, 1996; Albertson et al., 1999; Darke et al., 2008;
Volkow et al., 2010; Thanos et al., 2016). Most of the effects
induced by AMPHs are grounded on the powerful release
of a variety of neurotransmitters, which occurs through a
mechanism owning a fair anatomical specificity. The lateral
column of the brainstem RF contains neuronal populations,
which possess common molecular targets characterizing specific
neuronal phenotypes. These very same targets are recruited quite
selectively by AMPHs administration (Figure 1). In fact, the
chemical structure of AMPHs is characterized by an aromatic
ring and a nitrogen on the aryl side-chain (Biel and Bopp,

1978), which recapitulates most monoamine neurotransmitters
including catecholamines (dopamine, DA, norepinephrine,
NE, epinephrine, E) and indoleamines (serotonin, 5-HT,
tryptamine and other trace amines; Heal et al., 2013). In
the light of a cross affinity, AMPHs behave as a competitive
substrate for monoamine transporters including NE transporter
(NET), DA transporter (DAT) and 5-HT transporter (SERT;
Rothman and Baumann, 2003; Fleckenstein et al., 2007; Sitte
and Freissmuth, 2015). This is the reason why AMPHs target
quite selectively those neurons, which produce monoamine
as neurotransmitters. Such a simple concept explains why the
RF is, at large, the target brain region for the mechanism of
action of AMPHs. Likewise, we focus this review on this very
same area to analyze in depth those effects not fully explained
by DA neurons which are hosted in the high mesencephalic
reticular nuclei. In detail, most monoamine-containing nuclei
of the ponto-medullary RF are placed in a quite restricted brain
region corresponding to the median and lateral column of the
RF of the brainstem. The basis for both short- and long-term
behavioral, motor and vegetative effects of AMPHs stems from
such a selective uptake and common intracellular targets of
AMPHs within these monoamine-containing neurons (Bucci
et al., 2017). These neurons produce widespread innervation
of a variety of limbic, motor and iso-cortical areas where
ultimately the effects of AMPHs are produced. In fact, at
sub-cellular levels, the targets of AMPHs are both the cell body
and mostly, the axon terminal. The latter represents the primary
AMPHs’ target. In fact, the powerful release of monoamines
relies on the effects of AMPHs on axon varicosities, where
monoamines are concentrated in baseline conditions. AMPHs
massively release neurotransmitters in high amount, which
can be quantitatively assessed by placing microdialysis probes
within all brain regions innervated by monoamine neurons.
At the same time, this can be correlated with a number of
systemic effects, which are mediated by each brain region
under a powerful reticular monoamine innervation. In fact,
following AMPHs there are dramatic changes in breathing,
blood pressure, locomotor activity, muscle tone, sleep-wake
cycle, mood, orienting to novelty, arousal, anxiety, reward
along with innumerous vegetative and somatic phenomena
occurring in the human body. A great amount of investigations,
commentary manuscripts and books focused on the effects
of AMPHs abuse on DA-containing neurons within the
mesencephalon (Seiden et al., 1976; Wagner et al., 1979; Nielsen
et al., 1983; Di Chiara and Imperato, 1988; Sonsalla et al.,
1989; Cadet et al., 1994; Delle Donne and Sonsalla, 1994;
Fornai et al., 1997, 2001; Battaglia et al., 2002; Ferrucci et al.,
2008; Moratalla et al., 2017). Instead, the contribution of low
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FIGURE 1 | The molecular mechanisms of amphetamine(s) (AMPHs) in monoamine-containing neurons. (i) The primary molecular target, which provides neuronal
selectivity for AMPHs, consists in the plasma membrane transporter. In fact, AMPHs behave as competitive substrates for the re-uptake through the NE transporter
(NET), dopamine (DA) transporter (DAT) and 5-HT transporter (SERT; Rothman and Baumann, 2003; Fleckenstein et al., 2007). These transporters normally work by
taking up extracellular monoamines to the axoplasm, which is the main mechanism to terminate their activity (Iversen et al., 1965; Axelrod and Kopin, 1969; Coyle
and Axelrod, 1971; Aggarwal and Mortensen, 2017). Cross-affinity between AMPHs and neurotransmitters contributes to generate the quite selective storage of
AMPHs within specific neurons. Once bound to the plasma membrane transporter, AMPHs enter the axoplasm while reverting the transport direction (Sulzer et al.,
1993). This occurs mostly for catecholamine neurons since AMPHs strongly discriminate between SERT, to which they bind with much lower affinity (500-fold less)
compared with DAT and NET (Rothman and Baumann, 2003). In particular, AMPHs bind to the NET with five-to-nine-fold higher affinity compared with the DAT
(Rothman and Baumann, 2003). This is the main reason why AMPHs release NE more potently than DA and much more than 5-HT (Rothman et al., 2001). (ii) Within
monoamine axons, AMPHs encounter a second specific target called vesicular monoamine transporter type-2 (VMAT-2), which is also shared with monoamines. In
this way, AMPHs enter the synaptic vesicles. At this level, AMPHs impair the acidification of the vesicle, which generates an acidic pH (Sulzer and Rayport, 1990;
Sulzer et al., 1993, 1995). This acidic environment is erased by AMPHs, which rise the vesicular pH value from 4 up to 7, which corresponds to a 1,000-fold increase
in the concentration of H+ ions. Thus, monoamines, which are weak bases, are charged at low pH, while at a neutral pH lose their charge, and diffuse through the
vesicle membrane, thus massively invading the axoplasm (Brown et al., 2000, 2002; Pothos et al., 2000). In this way, axonal monoamines either passively or via a
reverted plasma membrane transporter fill extracellular space where they reach a massive concentration (Sulzer et al., 1995, 2005). (iii) The third molecular target,
which is impaired by AMPHs, is the mitochondrial-bound enzyme monoamine oxidase (MAO). Both MAO-A/-B iso-enzymes oxidatively deaminate DA, NE and 5-HT.
Nonetheless, MAO-A/-B isoforms differ in substrate preference, inhibitor affinity and regional distribution within either single neurons or different animal species
(Robinson et al., 1977; Youdim, 1980; Sourkes, 1983; Gesi et al., 2001; Youdim et al., 2006; Bortolato et al., 2008). These differences are seminal to explain the
specific effects of AMPHs within various monoamine neurons. In fact, MAO-A, are competitively inhibited by methamphetamine (METH) with a 10-fold higher affinity
compared with MAO-B. MAO-A is placed within synaptic terminals of DA and NE neurons, while MAO-B are the only isoform operating within 5-HT terminals and
non-catecholamine neurons. Thus, apart from rats and a few animal species, the effect of AMPHs on the amount of extracellular monoamines is remarkable
concerning NE and DA, being less pronounced for 5-HT.

brainstem nuclei is much less investigated and, apart from the
Locus Coeruleus (LC), only a few manuscripts investigated
the recruitment of the variety of catecholamine neurons
within the low brainstem during AMPHs administration.
Despite not being widely investigated, this point deserves
very much attention since the specific functional anatomy of
these nuclei may lead to comprehension of the brainstem-
related nature of a variety of AMPHs-induced alterations.
Therefore, in the present review article, we avoid the analysis
of DA neurons of the Substantia Nigra pars compacta (SNpc)
and Ventral Tegmental Area (VTA), and focus instead on
catecholamine nuclei of the low brainstem. In particular, we
focus on NE nuclei located within the lateral column of the

bulbo-pontine RF and a mixed neuronal population within
the dorsal raphe/periaqueductal gray (PAG), which contains a
subset of NE and DA neurons (Battenberg and Bloom, 1975;
Saavedra et al., 1976; Steinbusch et al., 1981; Nieuwenhuys et al.,
1988; Baker et al., 1990, 1991; Lu et al., 2006; Li et al., 2016; Bucci
et al., 2017; Cho et al., 2017). We also overview cholinergic cells
placed in the lateral column of the pontine RF, which extend
up to the lateral wings of the dorsal raphe (Satoh et al., 1983;
Nieuwenhuys et al., 2007; Vasudeva and Waterhouse, 2014;
de Oliveira et al., 2016). In detail, the dorsal raphe contains
5-HT neurons in all nuclear regions, while catecholamine and
acetylcholine cells are placed in the most rostral extent of the
dorsal raphe both in rodents and humans (Saavedra et al., 1976;
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Steinbusch et al., 1981; Baker et al., 1990, 1991; Nieuwenhuys
et al., 2007; Mai and Paxinos, 2012; Li et al., 2016; Cho et al.,
2017). As shown by pioneer studies, the amount of NE neurons
in the dorsal raphe is remarkable, being about one-third of
5-HT neurons. Instead, the amount of DA cells is roughly a
half compared with NE neurons, at least in the rat (Saavedra
et al., 1976). While the median ventral PAG contains a few
5-HT neurons, both NE and DA neurons are placed in the
ventral/ventrolateral corner of the PAG (Hökfelt et al., 1984;
Dougalis et al., 2012; Mai and Paxinos, 2012). DA cells occurring
within this brain region are known as A10dc (dorsal central) in
order to distinguish them from the adjacent VTA DA neurons
(Hökfelt et al., 1984). Again, NE neurons placed at this level
represent the dorsal and rostral extent of the LC complex. This
rostral extent was described in humans as nucleus epicoeruleus
by Mai and Paxinos (2012). In addition to the presence of
NE-containing neurons, the dorsal raphe receives a powerful
NE innervation. This is supported by findings in humans, where
the amount of NET in the ventral nuclei of the dorsal raphe
matches the amount of NET which can be measured within
the LC (Ordway et al., 1997). There is a remarkable affinity
of AMPHs for NET compared with DAT and SERT. In fact,
AMPHs administration produces a more powerful release of
NE compared with DA (Rothman et al., 2001; Weinshenker
and Schroeder, 2007; Schmidt and Weinshenker, 2014). This
means that behavioral effects induced by AMPHs in various
animal species including humans can be partly explained by
massive NE release (Rothman et al., 2001; Weinshenker et al.,
2002; Weinshenker and Schroeder, 2007). Thus, despite a
DA solely-based perspective about AMPHs and behavior, NE
creeps back in participating to AMPHs-induced behavioral
changes. This calls for dissecting further anatomical areas within
NE-containing brainstem nuclei to comprehend the effects
induced by AMPHs, along with considering the anatomical
connections linking the bulbo-pontine with the mesencephalic
RF as a biological substrate, which may sustain a key circuitry
mediating the effects of AMPHs.

THE FUNCTIONAL ANATOMY OF THE
CATECHOLAMINE RETICULAR NUCLEI OF
THE BRAINSTEM IN THE EFFECTS OF
AMPHs

Since the present review is an attempt to relate the effects of
AMPHs with specific NE nuclei of the brainstem, a preliminary
synthetic overview of the neuroanatomy of these nuclei appears
to be mandatory. This will make it easier to orient within the
brainstem when referring to the site-specificity of the effects
induced by AMPHs.

NE-Containing Reticular Nuclei
Catecholamine-containing nuclei are mainly housed within
the lateral extent of the RF (Figure 2). A very recent
original manuscript provided stereological morphometry data
encompassing all brainstem reticular catecholamine nuclei at
one glance (Bucci et al., 2017). These include NE neurons of
the pons and medulla, which were identified by using TH

immunostaining (Bucci et al., 2017). For this reason, we will
refer to NE-containing nuclei and we will include the E-related
sub-nuclei as a putative attribute, since most of them are believed
to represent a continuum with NE areas. This is the case of
nuclear complexes known as A/C nuclear groups, where the
letter ‘‘A’’ indicates NE neurons and the letter ‘‘C’’ indicates E
neurons (Hökfelt et al., 1974). The A1/C1 cell group is placed in
the sub-pial aspect of the rostral ventrolateral medulla (RVLM).
The A2/C2, also known as dorsomedial cell group appears
medially on the floor of the IV ventricle. Reticular neurons
of A2/C2 intermingle with neurons of the dorsal nucleus of
the vagus (DMV) and nucleus of the solitary tract (NTS) to
constitute an overlapped, neuromelanin pigmentated area, which
is named ala cinerea. The posterior region of ala cinerea extends
towards the obex to constitute the area postrema (AP), which
corresponds approximately to the chemoreceptor trigger zone
(CTZ; Potes et al., 2010). A3/C3 area is still poorly investigated
due to species variability (Howe et al., 1980; Vincent, 1988;
Paxinos et al., 1995; Menuet et al., 2014). Similarly, fragmentary
information deals with the A4 nucleus once believed to occur
only in primates though it was recently identified in rodents
(Bucci et al., 2017). The A5 nucleus is placed ventrally in the
pons, close to the roots of the facial nerve. Moving towards
the dorsal and medial aspect of the pons, these neurons form
a continuum with other NE neurons belonging to the A6sc
(nucleus subcoeruleus) and A6 (locus coeruleus, LC) nuclei.
A5 and A6 (LC) represent the primary sources of NE afferents to
the VTA and A1/C1 (Bucci et al., 2017). The A7 nucleus (lateral
lemniscus nucleus) is placed in the pons, immediately lateral
to the rostral end of the parabrachial (PB) nucleus. A6 (LC) is
the biggest NE-containing nucleus within the central nervous
system (CNS) and it is located in the upper part of the floor of
the IV ventricle, within the pons. NE-containing neurons of LC,
together with A6sc and the scattered TH-positive cells within
the medial PB form a tube-shaped continuum, which is named
LC complex. The A4 area, when present, can be considered
within this complex as well (Bucci et al., 2017). In humans,
the LC complex also includes the nucleus epicoeruleus, which
occurs in the rostral dorsal raphe, within the ventrolateral PAG
(Mai and Paxinos, 2012).

Neurons belonging to the LC region profusely send their
axons to the entire CNS, providing the main source of
NE to the brain, and mostly, to the whole cerebral cortex
(Loughlin et al., 1982). In addition, the fine neuroanatomy of
NE (and catecholamine) fibers possesses typical features. In
fact, apart from the marked spreading of axonal projections
due to profuse collateralization, which is typical for neurons
forming the isodendritic core of the RF, axon collaterals are
characterized by the presence of varicosities, named ‘‘boutons
en passage’’ (Figure 3). Since once released following AMPHs,
NE persists in the extracellular space for a considerable amount
of time until being taken back up by the NE terminal, the
time persistency and the volume filled by AMPHs-induced
extracellular NE are noticeable. In fact, AMPHs promote
NE release and impair NE uptake. This allows NE to be
released in the extracellular medium from each varicosity
along the course of axon fibers to produce extra-synaptic,
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FIGURE 2 | An anatomical overview of the brainstem reticular formation (RF). This cartoon provides a synthetic overview of the neuroanatomy of brainstem RF
nuclei in order to foster orientation within the brainstem when referring to the site-specificity of the effects induced by AMPHs. Monoamine-containing nuclei are
placed in a quite restricted brain region corresponding to the median and lateral column of the brainstem RF. In detail, the median column hosts 5-HT-containing
nuclei (yellow), which extend along the medulla and pons to reach the mesencephalon at the level of the periaqueductal gray (PAG). 5-HT containing nuclei at this
level represent the rostral extent of the dorsal raphe nucleus (B8-B9). Since an analysis of 5-HT neurons in the effects of AMPHs is beyond the scope of the present
review article, we focus on the dorsal raphe nucleus just concerning the PAG region, which contains catecholamine neurons. In fact, the PAG hosts a mixed
population of catecholamine and acetylcholine (ACh)-containing nuclei which are placed in the lateral column of the RF. This is the case of DA (violet), NE (green) and
ACh (red) nuclei which represent the rostral extent of A10 Ventral Tegmental Area (VTA), A6 (LC) and CH6, respectively. Moving downstream to the mesencephalic
DA nuclei (A8, A9, A10), a constellation of nuclei appears within the lateral column of RF. These include the two pontine ACh nuclei (Ch5 and Ch6) and a number of
NE nuclei placed along the ponto-medullary RF, namely A6 (LC), A6sc (subcoeruleus), A7 which intermingles with NE neurons of the rostral PB nucleus (here
represented as a continuum), A5, A4, and two mixed NE/E-containing groups in the medulla, namely A1/C1 [rostral ventrolateral medulla (RVLM)] and A2/C2
(dorsomedial cell group), which extends towards the obex within the AP (area postrema). The A7 neurons together with PB-NE neurons and the A5 nucleus
contribute to define the Kolliker-Fuse nucleus (blue circle, Milner et al., 1986; Byrum and Guyenet, 1987). The A6 nucleus together with the A6sc, the medial PB in
the rostral pons and the epicoeruleus nucleus within the PAG, constitute the LC complex.

paracrine effects, even distant from the release site via a volume
transmission. Altogether, these features synergize to produce
extremely widespread effects following AMPHs activation
of NE nuclei.

The Role of NE Nuclei in AMPHs-Induced
Behavioral Effects
NE is key in mediating behavioral correlates effects of
AMPHs. Specifically, NE sourcing from the RF strongly
modulates AMPHs-induced behaviors and reward, which is
the pre-requisite for sustaining reinforcing behavior leading
to AMPHs addiction. In fact, reiteration of drug intake
induces plastic changes within specific neuronal systems, which
are necessary to develop craving and addiction (Pierce and
Kumaresan, 2006). In this paragraph, specific reticular NE
nuclei will be related to rewarding effects induced by AMPHs.
From a general viewpoint, NE mediates a large amount of the

rewarding effects induced by AMPHs as shown early in the ‘60s
(Poschel and Ninteman, 1963; Stein, 1964; Sofuoglu and Sewell,
2009). This occurred in the context of the ‘‘Catecholamine
theory of reward’’ (Hanson, 1966; Crow et al., 1972; Crow,
1972, 1973; Wise, 1978), where NE was thought to be the main
neurotransmitter to produce reward following a variety of
psychostimulants. In line with this, drugs reducing NE activity
(by depleting NE stores, or inhibiting NE synthesis, or damaging
NE axons) were shown to dampen intracranial self-stimulation
(ICSS), which was used as an experimental model for reward
(Fibiger and Phillips, 1974). A more detailed knowledge about
the anatomy of the low brainstem RF provided the substrate to
confirm the contribution of NE nuclei to the neurobiology
of reward induced by psychostimulants (Wise, 1978;
Ordway et al., 1997; Weinshenker and Schroeder, 2007).
For instance, positive self-stimulation sites exist in the LC
(A6) as well as along ascending NE pathways. These include:
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FIGURE 3 | NE-containing neurons of the RF: from gross anatomy to the fine iso-dendritic nature. NE-containing neurons of the RF profusely branch their axons to
release NE throughout the whole central nervous system (CNS) and the autonomic nervous system. This is grounded on the typical fine neuroanatomy of NE fibers.
In fact, apart from the marked spreading of axonal projections due to a profuse collateralization (which is typical for neurons forming the iso-dendritic core of the RF),
axon collaterals are gifted with varicosities, also named “boutons en passage.” This is key in the case of AMPHs, which promote massive NE release while impairing
NE uptake. This allows NE to be released in the extracellular medium from each varicosity along the course of axon fibers to produce extra-synaptic, paracrine
effects, even remotely from the release site via volume transmission. Altogether, these features synergize to produce widespread extra-synaptic effects following
AMPHs-induced NE release in each brain area. This explains why AMPHs activate wide brain areas leading at the same time to different behavioral, motor and
vegetative effects. These include the limbic system, the hypothalamus, the prefrontal cortex, as well as the whole brainstem, spinal cord and peripheral organs
receiving NE sympathetic innervation.

(i) the ventral NE bundle (VNB, which originates from the
LC) as well as; (ii) the dorsal NE bundle (DNB); and (iii)
the medial forebrain bundle (MFB), which originate from a
number of NE nuclei within the pons and medulla, including
LC, PB, A1 and A2 (Dresse, 1966; Stein and Wise, 1969;
Crow et al., 1972; Wise et al., 1973; Ritter and Stein, 1974;
Carlezon and Chartoff, 2007). In fact, apart from LC, caudal
NE nuclei such as the A1/C1 and A2/C2 cell groups project
profusely to the forebrain and hypothalamus (Nieuwenhuys
et al., 1982; Mai et al., 2008; Berridge et al., 2012). As shown
by retrograde tracing studies, the LC provides nearly 50% of
NE input to the forebrain and hypothalamus, while A1/C1 and
A2/C2 groups contribute from 25% to 40% (España and
Berridge, 2006). This partly explains why AMPHs promote
arousal (Berridge et al., 1999; Berridge and Stalnaker, 2002;
Berridge, 2006). AMPHs-induced cortical arousal via NE release
from these nuclei is associated with drug-seeking behavior
and relapse (España et al., 2016). This may occur also via NE
acting on hypothalamic perifornical orexin neurons. Orexins
are hypothalamic neuropeptides implicated in a variety of
behaviors including sleep/wakefulness, feeding and reward
(Sakurai et al., 1998; Sakurai, 2007; Sakurai and Mieda, 2011).
Recent studies suggest that orexins play a role in drug-induced
sensitization and drug-seeking motivation, which occurs
through a fair neuro-anatomical specificity (Sharf et al., 2010;
Mahler et al., 2012). The effects of orexin-containing nuclei are

grounded on their strong connection with reticular NE nuclei
(Figure 4). In fact, NE nuclei of the brainstem represent the
most densely orexin-innervated neuronal population (Date
et al., 1999; Nambu et al., 1999; Peyron et al., 2000; Marcus
et al., 2001). This occurs mostly within NE LC neurons, where
orexin type 1 receptors (OX1R) are densely expressed to
promote arousal and locomotor activity (Hagan et al., 1999;
Marcus et al., 2001). A reciprocal modulation occurs between
LC-NE and hypothalamic perifornical orexin-containing
neurons (van den Pol et al., 2002; Bayer et al., 2005; Gompf
and Aston-Jones, 2008). This is key in the case of METH,
which increases orexin levels in METH abusers (Chen et al.,
2016). Likewise, METH administration strongly activates
orexin-producing neurons, as shown by the increase in c-Fos
expression (Estabrooke et al., 2001; Cornish et al., 2012). A
considerable amount of orexin receptors is present also in
lower reticular NE groups including A1/C1 and A2/C2 (Marcus
et al., 2001), which explains functional studies addressing
the role of such a connection in food intake and AMPHs-
induced anorexia (McCabe and Leibowitz, 1984; Li et al.,
2015; Ritter, 2017). Apart from providing molecular and
anatomical specificity, NE neurons are also involved in genetic
susceptibility to AMPHs-induced behavioral effects. In fact, a
genetic polymorphism affecting the limiting enzyme for NE
synthesis, DA beta-hydroxylase (DBH), is involved in substance
abuse disorders (Kalayasiri et al., 2014). Such a hypothesis
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FIGURE 4 | Connections between reticular nuclei and orexin-containing perifornical neurons of the hypothalamus. Orexin-containing neurons are placed within the
dorsolateral hypothalamus corresponding to the perifornical area. Orexin perifornical neurons are profusely connected with a number of brainstem RF nuclei including
the PAG/dorsal raphe, VTA, Ch6, Ch5, A6, A5, A7, A1/C1, A2/C2 (Marcus et al., 2001; Sharf et al., 2010; Mahler et al., 2012). However, among these neuronal
groups, orexins display the highest neuro-anatomical and pharmacological specificity with NE-containing neurons, as witnessed by the strong reciprocal connections
with LC and A1/C1 nuclei (thick dashed connectors) and the abundance of orexin receptors in these nuclei (McCabe and Leibowitz, 1984; van den Pol et al., 2002;
Bayer et al., 2005; Gompf and Aston-Jones, 2008; Li et al., 2015; Ritter, 2017). In the light of such connections with NE neurons, orexin-containing neurons are
dragged in a variety of functions including, arousal, locomotion, feeding, reward, sensitization, motivation (Sakurai et al., 1998; Sakurai, 2007; Sakurai and Mieda,
2011). Since AMPHs are powerful NE releasers and they strongly activate orexin-producing neurons as well, it is likely that the strong connections between orexin
and NE-neurons of the LC and A1/C1 are implicated in the effects induced by AMPHs.

was tested specifically in DBH KO mice, where AMPH was
much more effective in producing DA-release and behavioral
sensitization (Weinshenker et al., 2008). It is remarkable that
such a potentiation of DA-release and behavioral sensitization
is reminiscent of what occurs in LC-damaged mice following
METH administration.

Molecular Mechanisms Bridging Reticular
NE Nuclei to AMPHs-Induced Behavioral
Effects
This paragraph adds on the well established evidence that
AMPHs-induced DA release is key to produce locomotor
stimulation, sensitization and neurotoxicity to encompass the
synergistic role of NE reticular nuclei in sustaining these effects.
In fact, the powerful NE release contributes to AMPHs-induced
hyper-locomotion and stereotypies. Stereotypies, which occur
upon reiterated AMPHs administration increase progressively
following the same dose of AMPHs as a typical expression
of AMPHs-induced behavioral sensitization. This is achieved
by multiple mechanisms, which include the stimulation of
alpha1-adrenergic receptors (α1-ARs), as demonstrated since

the early ‘80s (Dickinson et al., 1988; Drouin et al., 2002a,b;
Vanderschuren et al., 2003). Consistently, reduced hyper-
locomotion and a loss of sensitization occur after α1B-AR
inhibition or in mice genetically lacking this receptor subtype
(Auclair et al., 2002, 2004). Consistently we found that α1B-
AR-KO mice are also protected from METH-induced toxicity
(Battaglia et al., 2003). This confirms data from Zuscik et al.
(2000) who showed that overexpression of α1B-ARs in mice
leads to an extended degeneration, which appears reminiscent
of METH-induced neuronal damage (Fornai et al., 2004) and
multiple system atrophy (Zuscik et al., 2000). These mice also
develop spontaneous seizures, which are a typical effect observed
upon METH-induced sensitization. Remarkably, when we used
α1B-AR-KO mice, seizures were prevented (Pizzanelli et al.,
2009). Again, activation of α1B ARs accounts for the increase in
burst firing of midbrain DA neurons induced by AMPHs (Pan
et al., 1996; Paladini et al., 2001), while α1B ARs antagonists
suppress DA-related behaviors stimulated by AMPHs (Poncelet
et al., 1983; Snoddy and Tessel, 1985; Tessel and Barrett, 1986;
Dickinson et al., 1988; Mavridis et al., 1991; Blanc et al., 1994).
Thus, α1B-ARs play a strong role in the deleterious effects
induced byMETH in the brain. In contrast, the peripheral effects
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induced by METH on NE neurons appear to rely on α1A-ARs
since no effects are determined by α1B-ARs (Kikuchi-Utsumi
et al., 2013).

Consistently, the selective inhibition of α1-AR within the
nucleus accumbens (NAc) or prefrontal cortex abolishes hyper-
locomotion induced by AMPHs (Blanc et al., 1994; Darracq
et al., 1998). Again, amplification of AMPHs-induced locomotor
activity occurs by increasing extracellular levels of NE via
NET inhibition or by enhancing NE release via blockade of
inhibitory pre-synaptic α2-ARs (Dickinson et al., 1988; Xu
et al., 2000; Juhila et al., 2005). Data concerning the effects of
the pharmacological modulation of NE receptors on AMPHs-
induced behavior are mostly related to NE released from
LC neurons. Thus, LC-NE activity appears to be crucial for
sensitizing AMPHs-induced behavior and toxicity, although
other nuclei need to be investigated more extensively. For
instance, catecholamine neurons of the AP are relevant, since a
damage to this area increases locomotor activity while facilitating
stereotypies (Costall et al., 1981). In addition, A1/C1 and,
to a lesser extent, A2/C2 neurons, which are connected with
orexin-containing perifornical neurons of the hypothalamus
(Figure 4), modulate food intake and contribute to anorexia
induced by AMPHs (McCabe and Leibowitz, 1984; Li et al.,
2015; Ritter, 2017). The A5 nucleus sends descending axons
to the spinal cord down to the lumbosacral tract (Westlund
et al., 1981). A5- together with A7-neurons are involved in
anti-nociceptive effects, and they are likely to mediate AMPHs-
dependent analgesia (Proudfit, 1988; Miller and Proudfit, 1990).
AMPHs also target the PB, a critical integrative site within the
brainstem being involved in pain, satiety, taste, arousal, breathing
and blood pressure (Hajnal et al., 2009; Martelli et al., 2013;
Davern, 2014). The involvement of PB nucleus was investigated
independently of NE release only in the context of conditioned
taste aversion induced by AMPHs (Krivanek, 1997). In fact,
within PB, AMPHs increase protein kinase C (PKC) activity,
placed downstream to METH-induced signaling and toxicity
(Lin et al., 2012).

The Brainstem NE Nuclei and
AMPHs-Induced Autonomic Effects
A1/C1 neurons are anatomically organized in a roughly
viscerotopic manner, in order to allow specific subsets of
cells to control different visceral functions, encompassing
circulation, breathing, glycemia, inflammation (Guyenet et al.,
2013). A1/C1 neurons are mostly involved in regulating blood
pressure (Reis et al., 1984). In fact, apart from activating
pre-ganglionic vasomotor neurons, A1/C1 neurons control
vasopressin release and sodium/water balance (Blessing and
Willoughby, 1985; Guyenet, 2006). Thus, due to a powerful
NE-release by AMPHs, it is expected that all regions being
innervated by the A1/C1 complex will be activated during
AMPHs administration. This may explain why AMPHs induce a
severe increase in blood pressure (Liu and Varner, 1996), which
was once believed to be solely due to peripheral NE. Thus, quite
selective effects of AMPHs on a discrete neuron number of
the medulla are supposed to provide a generalized increase in
blood pressure (Figure 5). This key catecholamine nucleus adds

on and surpasses the whole peripheral NE system in mediating
AMPHs-induced hypertension. Thus, hypertension produced
by AMPHs largely depends on a few central neurons, which
regulate the vascular tone. Similarly to behavioral effects, the
visceral responses to AMPHs are characterized by sensitization.
Remarkably, even a single dose of METH may induce a
sensitized response in blood pressure, which is accompanied by
increased c-Fos immunoreactivity within TH-positive neurons
of A1/C1 area and LC (Marchese et al., 2017). These findings
confirm an overlap between behavioral and vegetative effects
induced by AMPHs. In sharp contrast with a severe increase
in blood pressure, chronic METH may lead to sudden and
severe hypotension with bradycardia, which may lead to a lethal
cardiovascular collapse (Chan et al., 1994; Ago et al., 2006;
Miyashita et al., 2007). This is also related to a direct effect
of METH within A1/C1 area, which mediates METH-induced
increase in heart rate and arterial pressure (Liu and Varner,
1996), while at high and/or reiterated doses, METHmay produce
a selective neuronal death of A1/C1 (Li et al., 2012). This
neuronal loss abolishes the descending activation of sympathetic
pre-ganglionic neurons (SPNs), which are no longer able to
stimulate the heart and produce contraction of smooth muscle
within the blood vessels. This causes a sudden fall in blood
pressure leading to METH-induced cardiovascular collapse (Li
et al., 2012). These data are relevant to understand the key
role of the reticular nuclei in regulating blood pressure while
disclosing a previously overlooked neurotoxicity of METH on
central NE neurons. In fact, these data demonstrate that NE
neurons, apart from modulating METH toxicity to DA cells
(Fornai et al., 1995, 1996a,b, 1997, 1998, 1999; Weinshenker
et al., 2008), may also represent a primary target of METH
toxicity. In fact, the A1/C1 nuclei innervate the SNPs being
the pivot to provide direct excitatory input to the thoraco-
lumbar sympathetic column of the cord (Ross et al., 1984). These
neurons represent a critical link between the central respiratory
rhythm generator and the vasomotor outflow (Guyenet et al.,
1990). A multi-faceted signaling mechanism between A1/C1 cell
groups and SPNs in the spinal cord is witnessed by several
neuropeptides (such as prolactin, substance P, and cocaine-
and amphetamine-regulated transcript, Cart, peptide), which are
co-released within target areas (Chen et al., 1999; Dun et al.,
2002). It is remarkable that METH persistently increases the
expression of Cart peptide via epigenetic mechanisms (Jayanthi
et al., 2017), which suggest that in addition to NE itself,
neuropeptides produced by reticular NE neurons play a role in
AMPHs-induced autonomic alterations. This is not surprising
since NE nuclei are widely involved in neural circuitries, which
regulate both behavioral and autonomic effects induced by
AMPHs. For instance, A1/C1 sends visceral information to
LC (Aston-Jones et al., 1986, 1991; Guyenet, 1991), which in
turn, projects to midbrain DA neurons (Kirouac and Ciriello,
1997; Mejías-Aponte et al., 2009). In this way, DA neurons
are recruited by these neurons, which mediate visceral effects
produced by AMPHs. Such an integrated scenario indicates
that behavioral and vegetative effects produced by AMPHs,
despite being primarily processed within different nuclei, then
converge in a common circuitry, which encompasses most
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FIGURE 5 | A1/C1 neurons as a key center to control blood pressure. Hypertension produced by AMPHs largely depends on A1/C1 medullary neurons, which
regulate the vascular tone, heart rate and blood pressure. NE released from A1/C1 neurons regulates blood pressure by directly activating sympathetic
pre-ganglionic neurons (SPNs), which in turn stimulate the heart and produce contraction of smooth muscle within blood vessels. Due to a powerful NE-release by
AMPHs, these peripheral targets innervated by the A1/C1 complex are strongly activated during AMPHs administration (Liu and Varner, 1996). This response occurs
in a sensitized manner following repeated dosing of AMPHs (Marchese et al., 2017).

catecholamine containing nuclei of the brainstem RF. In this
way, depending on which nucleus we focus on, different
effects produced by AMPHs can be mechanistically explained
by the specific neuro-anatomical connections of this very
same nucleus. This is not surprising at all when considering
the simultaneous activation of the peripheral NE sympathetic
nervous system when a demanding environmental task is
activating the NE ascending reticular nuclei to produce arousal
or during rewarding stimuli.

THE INTERPLAY BETWEEN NE AND DA IN
AMPHs-INDUCED BEHAVIOR

Within a context of NE-dependent reward, a balanced dual
perspective indicates that AMPHs need to converge on both DA
and NE cells in order to be fully effective in producing reward.
This was already hypothesized in a pioneer manuscript by Fibiger
and Phillips (1974). In fact, caudal nuclei of the RF strongly
connects with midbrain reticular DA nuclei. This circuitry
originated during phylogeny, as biochemical, anatomical and

physiological features strongly witness for an evolutionary
continuumbetweenmesencephalic DAneurons andmore caudal
NE cell groups (Bucci et al., 2017). In fact, profuse and reciprocal
connections establish between NE/E nuclei within the pons and
medulla and midbrain DA nuclei (Simon et al., 1979; Deutch
et al., 1986; Grenhoff and Svensson, 1993; Grenhoff et al., 1993;
Liprando et al., 2004; Mejías-Aponte et al., 2009). For instance,
DA neurons of the Retrorubral Field (RRF, A8) and VTA (A10)
receive abundant NE innervation, which is providedmainly from
the nuclei A1, A2, A5 and A6 (Mejías-Aponte et al., 2009). Thus,
DA and NE systems do not represent separate compartments
within the CNS but rather an interconnected system, which
share key neurobiological features making it as the endogenous
circuitry where AMPHs electively impinge to produce a number
of systemic effects. The strong anatomical connections between
NE and DA systems are conserved at molecular level. This is
best represented by the phylogeny of NET and DAT, which
indeed represent the evolutionary divergence of an archaic single
catecholamine transporter (meNET), which was isolated and
characterized already in the brain of the teleost fish medaka
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FIGURE 6 | Structural similarities between NET and DAT confound neuron-specific NE and DA compartmentalization. Both NET and DAT represent the evolutionary
divergence of a single catecholamine transporter (meNET), which was isolated and characterized already in the brain of the teleost fish medaka (Roubert et al.,
2001). In the light of a strong structural similarity, both NET and DAT take up extracellular DA with a similar potency (A). In fact, in the presence of an excess of
extracellular DA (due to either a selective blockade of DAT or a reverted direction of DA transport), this may compete effectively with NE, thus being inappropriately
stored within NE terminals. This explains why NE axons may internalize DA in the absence of DAT (Rocha et al., 1998). This same phenomenon also explains why in
some instances selective NET inhibitors may paradoxically increase extracellular DA (B). In fact, when a powerful NE release occurs in a densely DA-innervated area,
it is very likely that extracellular NE is taken up mostly by fraudulent DA axons instead of authentic NE terminals.

(Roubert et al., 2001). This ancestral carrier is very similar to
both the human NET and DAT, showing 70% and 64% amino
acid homology, respectively. In fact, NET responds to AMPHs
similarly to DAT and it represents the main gateway for AMPHs
to invade NE terminals and to reach specific sub-cellular and
molecular targets (Seidel et al., 2005). For instance, following
AMPHs administration there is a down-regulation of NET and
DAT, which are both stored in endosomes (Annamalai et al.,
2010; Hong and Amara, 2013). Following AMPHs both DAT
and NET, which remain on the plasma membrane, revert their
transport of catecholamine (Sulzer et al., 1993; Robertson et al.,
2009). Moreover, both transporters tend to be internalized within
the terminals once bound to AMPHs. As mentioned above there
is a strong similarity between NET and DAT. In fact, they are
able to take up extracellular DA with a similar potency (Rothman
et al., 2001). This affinity may confound the neuron-specific
compartmentalization (Figure 6). In the presence of an excess

of extracellular DA, this may compete effectively with NE, thus
being inappropriately stored within NE terminals (Amara and
Kuhar, 1993; Ramamoorthy et al., 2011; Borgkvist et al., 2012).
This explains why in some instances selective NET inhibitors
may paradoxically increase extracellular DA (Reith et al., 1997),
while NE axons may internalize DA in the absence of DAT
(Rocha et al., 1998). Again, when a powerful NE release occurs in
a densely DA-innervated area, it is very likely that extracellular
NE is taken up mostly by fraudulent DA axons instead of
authentic NE terminals (Figure 6). This needs to be taken into
account when considering the effects of AMPHs, since the fine
structure of a given brain region may switch considerably the
ratio of a combined mechanism of action upon both DA and
NE systems. This fully applies to the different brain areas which
sustain the reinforcing and rewarding effects of AMPHs (the
richly DA-innervated NAc compared with densely NE-enriched
allo-cortical regions).

Frontiers in Neuroanatomy | www.frontiersin.org 10 May 2019 | Volume 13 | Article 48

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Ferrucci et al. Amphetamines and Brainstem Reticular Nuclei

THE MOLECULAR MECHANISMS OF
BRAINSTEM DA-NE INTERPLAY IN THE
BEHAVIORAL EFFECTS INDUCED
BY AMPHs

NE sourced by the reticular nuclei of the low brainstem is key for
AMPHs-induced behavior (Rothman et al., 2001; Weinshenker
and Schroeder, 2007; Weinshenker et al., 2008). This occurs
also via amplification of DA-related rewarding and reinforcing
properties. This is not surprising given the profuse reciprocal
connections between NE and DA nuclei. In particular, LC
innervates almost all brain areas, which receive DA innervation
throughout the mesolimbic and mesocortical systems, including
the ventral striatum and the prefrontal cortex (Nicola and
Malenka, 1998). In fact, NE axons from LC neurons regulate
DA release in the prefrontal cortex (Gresch et al., 1995; Devoto
et al., 2005), while a damage to LC projections with DSP-4 alters
baseline or stimulated DA release in the NAc (Lategan et al.,
1992). This is consistent with studies showing that depletion
of NE in the prefrontal cortex potentiates AMPHs-induced
behavioral sensitization through striatal DA release (Ventura
et al., 2003). In addition to α1B ARs involvement in DA-related
behaviors and toxicity induced by AMPHs (Poncelet et al., 1983;
Snoddy and Tessel, 1985; Tessel and Barrett, 1986; Dickinson
et al., 1988; Mavridis et al., 1991; Blanc et al., 1994), the role
of β-ARs has been investigated as well. In fact, Albers and
Sonsalla (1955) showed that a β-AR blocker prevents AMPHs-
induced DA toxicity, and a subsequent study confirmed these
data showing that β-AR blockers prevent AMPHs-induced DA
sensitization (Colussi-Mas et al., 2005). These data confirm that
DA neurotoxicity, just like autonomic, motor and behavioral
effects undergoes sensitization. This is expected since AMPHs-
induced sensitization up-regulates those molecular cascades,
which are the common pathway to produce all AMPHs-
induced alterations.

Similarly, marked alterations in AMPHs-induced DA release
within the dorsal striatum occur following a damage to LC via
DSP-4 and following either genetic or pharmacological blockade
of NE synthesis (Weinshenker et al., 2008). Such a neurochemical
effect mediated by NE loss enhances the behavioral response
induced by METH while potentiating nigrostriatal METH
toxicity (Weinshenker et al., 2000, 2008). In addition, a reduction
of TH within LC neurons (via RNA interference) potentiates
D1 receptor-dependent AMPHs-induced sensitization in the
ventral striatum, to an extent, which is not replicated by DAT
inhibition (Smith andGreene, 2012). In line with this, Harro et al.
(2000) found that a loss of NE axons increases AMPHs-induced
locomotor activity while up-regulating striatal D2 receptors.
Again, a damage to LC neurons enhances nigrostriatal METH
toxicity in both mice and rats (Fornai et al., 1995, 1996a,b), an
effect, which is related to increased DA sensitivity to METH
rather than to METH pharmacokinetics (Fornai et al., 1997,
1998, 1999). Such a potentiation is suddenly evident by observing
METH-induced behavioral changes when dramatic stereotypies
occur in LC-damaged mice. It is likely that NE operates at some
level within DA neurons to alter synaptic plasticity. In fact, the

abnormal synaptic plasticity, which happens following pulsatile
DA stimulation in a parkinsonian striatum, is worsened in
LC-damaged mice, which develop severe abnormal involuntary
movements following low doses of L-DOPA (Fulceri et al., 2007).
These effects appear to rely more on LC compared with other NE
nuclei. In fact, they can be reproduced by a bilateral stereotactic
injection of the neurotoxin 6-OHDA within both LC nuclei
(Fulceri et al., 2007).

RETICULAR NUCLEI WITHIN THE DORSAL
RAPHE/PAG AS A PARADIGM TO
DECIPHER AMPH-INDUCED BEHAVIOR

Pioneer studies carried out in both animal models and humans
uncovered a highly heterogeneous nature of the dorsal raphe
neurons, thus providing a seminal contribution in implementing
the original description by Dahlstrom and Fuxe (1964).
Such a heterogeneity holds true for either cyto-architectural,
neurochemical or topographic differences characterizing subsets
of neuronal populations within the dorsal raphe. In detail, the
dorsal raphe nucleus (B8-B9), which extends from the rostral
pons up to the midbrain within and around the ventromedial
and ventrolateral PAG, can be subdivided into five sub-regions,
namely caudal, dorsal, ventral, ventrolateral and interfascicular
(Steinbusch et al., 1981; Baker et al., 1990, 1991). In the present
paragraph, we focus on the ventromedial and ventrolateral PAG,
where a number of catecholamine nuclei, targeted by AMPHs,
are placed. This is the case of the NE nucleus epicoeruleus,
DA neurons of the A10dc nucleus, as well as cholinergic
neurons of the laterodorsal tegmental nucleus (LDTg, Ch6),
which intermingle in the ventral and ventrolateral PAG with
their rostral extent (Hökfelt et al., 1984; Mai and Paxinos, 2012;
Vasudeva and Waterhouse, 2014; Figure 7).

AMPHs and Catecholamine Neurons of
the PAG
Despite being poorly investigated in the specific case of AMPHs
compared with low brainstem reticular nuclei, catecholamine
neurons of the PAG represent an important neuro-anatomical
substrate for the behavioral changes induced by AMPHs
(Tasman and Simon, 1983; Sobieraj et al., 2016). This is not
surprising given the plethora of functions, which are regulated
by the PAG, such as pain, anxiety, arousal and escape, as well
as heart rate, thermogenesis, mean arterial blood pressure and
breathing (Bandler et al., 1985; Bandler and Carrive, 1988;
Brandao et al., 1990; Carrive, 1991; Lovick, 1993; Coimbra and
Brandão, 1997; Hayward et al., 2003). In addition, catecholamine
PAG neurons are profusely connected with a variety of cortical
and subcortical brain regions. These include, for instance, the
thalamus, the medial prefrontal cortex, the basal forebrain
cholinergic neurons, the hypothalamic orexin cells, the pontine
LDTg, most of the NE bulbo-pontine nuclei, and the VTA (Li
et al., 1990; Reichling and Basbaum, 1991; Bajic et al., 2001,
2012; Lu et al., 2006; Rathner and Morrison, 2006). Such a region
becomes the prototype for confounding outcomes when trying
to decipher the specific effects produced by each monoamine-
containing nucleus in AMPHs-induced behavior, which appear
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FIGURE 7 | Catecholamine and cholinergic nuclei of the dorsal raphe/PAG. The dorsal raphe nucleus extends from the rostral pons up to the midbrain within and
around the ventromedial and ventrolateral PAG. In fact, at this level, three sub-regions of the dorsal raphe intermingling with PAG are identified, namely, dorsal (DRD),
ventral (DRV) and lateral (DRL; Steinbusch et al., 1981; Baker et al., 1990, 1991). While 5-HT neurons are scattered throughout all the dorsal raphe, the ventromedial
and mostly the ventrolateral PAG (VLPAG) hosts a mixed neuronal population, among which catecholamine and cholinergic neurons prevail at large. This is the case
of the NE nucleus epicoeruleus corresponding to the rostral and dorsal extent of the LC complex. Similarly, DA neurons of the A10dc nucleus, as well as cholinergic
neurons of the Ch6 (LDTg) intermingle in the DRL/VLPAG with their rostral extent.

largely related to the profuse isodendritic connections occurring
within the PAG. For instance, the stimulation of dorsal raphe
nucleus, besides enhancing extracellular 5-HT levels in both the
forebrain and the LC, also increases extracellular NE (Hajós-
Korcsok and Sharp, 2002). Such a response is not altered by a
damage to 5-HT neurons of the dorsal raphe. The plethora of
connections linking PAG-dorsal raphe neurons with lower NE
brainstem nuclei appears critical in AMPHs-induced behavior.
In fact, profuse and reciprocal connections occur between PAG
and reticular NE nuclei targeted by AMPHs, including LC, A5,
A7, PB, and A1/C1 group. For instance, the LC provides a
major stimulatory drive to the dorsal raphe nucleus while the
A1/C1 provides an inhibitory tone (Peyron et al., 1996; Kim
et al., 2004; Cao et al., 2010). In the light of these projections,
the PAG becomes an interface in behavioral control concerning
the regulation of sleep-wake cycle and arousal, pain modulation
and cardiovascular responses (Benarroch, 2012). NE connections
with DA-containing nuclei of the PAG are important as well.
In fact, following stimulation of LC, α1-AR-dependent NE
transmission in the PAG promotes arousal via modulation of
PAG DA neurons activity (Porter-Stransky et al., 2019). It is
remarkable that besides the SNpc, METH targets DA neurons
of the PAG, as shown in autopsy brains from METH abusers
(Quan et al., 2005). Beyond neurotoxicity, reiterated METH
administration induces plastic effects in PAGDA neurons, which
associate with drug-induced reward and addiction (Sobieraj
et al., 2016). An excitatory effect of TH-positive PAG neurons
on the adjacent VTA DA cells (Lu et al., 2006) is likely to
participate to AMPHs-induced activation of opioid receptors

in the PAG, which associates with analgesia, hyperthermia,
and hedonic reward reinforcement (Berridge et al., 2009;
Cristina-Silva et al., 2017).

Acetylcholine-Containing Reticular Nuclei
in AMPHs-Induced Behavior
A few studies demonstrated that beyond monoamines,
acetylcholine (ACh) is involved in the behavioral effects
of AMPHs. In line with this, METH releases ACh in
adult mice (Dobbs and Mark, 2008) and alters striatal
choline acetyltransferase (ChAT), the enzyme responsible
for synthesizing ACh, in humans (Kish et al., 1999; Siegal et al.,
2004). Given the critical role of ACh systems in cognition (van
Hest et al., 1990; Muir et al., 1994; Lin et al., 1998; Mirza and
Stolerman, 2000), alterations in ACh levels and receptors are
suggested to contribute to the cognitive impairments observed
following METH exposure. Only a few studies investigated
the role of ACh produced specifically by reticular brainstem
nuclei in AMPH’s-induced effects. The main source of ACh in
the brainstem RF is represented by two ACh pontine nuclei,
which correspond to the peduncolopontine nucleus (PPN) or
peduncolopontine tegmentum (PPTg) and the laterodorsal
tegmental nucleus (LDTg). These nuclei are also referred to
as Ch5 and Ch6, respectively. Rostrally, the Ch5 is included
between two DA nuclei of the RF: ventrally, it contacts the
dorsomedial aspect of the A9, while dorsally it is bordered
by the A8. Caudally, the Ch5 adjoins the LC. Ch5 neuronal
population is heterogeneous regarding its spatial distribution
and neurochemistry. In fact, the dorsolateral portion of
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Ch5, which is called pars compacta, contains densely packed
cholinergic neurons forming a continuum with Ch6 cholinergic
neurons. Ch6 neurons contour the Ch5 nucleus and rostrally
they extend into the PAG and medial longitudinal fasciculus.
Caudally to the Ch5 nucleus, Ch6 neurons are intermingled with
NE neurons belonging to the epicoeruleus nucleus (Mesulam
et al., 1989). Ch6 neurons are slightly smaller than those of
Ch5 pars compacta. As components of the RF, Ch5 Ch6 neurons
share the typical isodendritic conformation. It is well-established
that Ch5 and Ch6 neurons are targeted by the basal ganglia
efferent fibers. Projections from these neurons are directed to
the thalamus and other nuclei of the brainstem RF (Mesulam
et al., 1989). Remarkably, excitatory cholinergic fibers have
been described, which project mainly from these two nuclei
to the VTA, promoting burst firing in DA neurons and thus
enhancing DA release, which is pivotal for AMPHs-induced
behavior (Woolf, 1991; Yeomans and Baptista, 1997; Yeomans
et al., 2001; Omelchenko and Sesack, 2005, 2006). In particular,
Ch6 targets VTA DA neurons, while Ch5 preferentially targets
SNpc DA neurons (Oakman et al., 1995). Recent studies
suggest that ACh in addition to DA is primarily involved in
the initiation and maintenance of hyper-locomotion induced
by METH. In detail, Dobbs and Mark (2008) demonstrated
that, systemic but not intra-VTA perfusions of METH in mice
induce a prolonged ACh release within VTA. In particular,
extracellular ACh levels persist above baseline levels for 2–3 h
post-injection and it takes 180 and 300 min post-injection to
return to baseline values, after a low and high dose of METH
respectively. Remarkably, ACh but not DA release, within VTA,
correlates dose-dependently with METH-induced locomotor
activity. These data suggest that METH acts in the VTA to induce
a robust, though short-lived, increase in extracellular DA release
while producing a prolonged increase in ACh release, which
correlates with hyper-locomotion. In the light of these findings,
the same authors investigated the contribution of Ch6 and
Ch5 nuclei in METH-induced locomotor activity. Inhibition of
ACh release by intra-Ch6 infusion with a muscarinic receptor
agonist, which binds to M2 inhibitory auto-receptors, attenuates
METH-induced locomotor activity (Dobbs and Mark, 2012).
As assessed by brain dialysis, the inhibition of Ch6 neuronal
activity blunts METH-induced increase in ACh release within
the VTA dose-dependently, while it has no effect on DA release
within the NAc.

Ch6 ACh neurons are not involved in METH-induced
drug-seeking behavior (Dobbs and Cunningham, 2014), but are
important for METH-induced locomotor activity (Dobbs and
Mark, 2012). On the other hand, inhibition of ACh release from
Ch5 does not produce any effects either on ACh or DA release
within VTA and NAc, respectively. Therefore, it is likely that
Ch6, rather than Ch5, is involved in locomotor behavior induced
by systemic METH, which is mediated by ACh release in the
VTA. Previous studies suggest that a damage to both Ch5 and
Ch6 blunts hyper-locomotion but enhances stereotypies induced
by systemic or intra-ventrolateral striatal injections of AMPHs
(Inglis et al., 1994; Allen and Winn, 1995; Forster et al., 2002;
Miller et al., 2002). This is due to an increase in DA outflow
specifically in the dorsal but not ventral striatum, which suggests

that AMPHs-induced hyper-locomotion and stereotypies largely
depend on the specific effects of Ch5 and/or Ch6 upon the
mesostriatal or mesoaccumbens DA systems. These findings
warrant further studies elucidating the site-specificity for ACh in
mediating METH-induced behavioral alterations.

Although molecular targets responsible for AMPHs-induced
monoamine release are well known, the molecular mechanisms
through which AMPHs release ACh are not fully established
yet. A stream of interpretation indicates a close functional
relationship between DA system and ACh release. This
stems from evidence showing that administration of D1 and
D2 receptor antagonists blunts AMPHs-induced ACh release
within the striatum, hippocampus and frontal cortex (Ajima
et al., 1990; Damsma et al., 1990, 1991; Imperato et al.,
1993; DeBoer and Abercrombie, 1996; Keys and Mark, 1998).
Nonetheless, contradictory results are obtained when a damage
to the nigrostriatal DA system is induced by 6-OHDA. In
fact, 6-OHDA injections produce only a slight decrease in
extracellular ACh levels induced by systemic AMPHs (Mandel
et al., 1994; Taguchi et al., 1998). These results led to hypothesize
that AMPHs-induced ACh release may be due to connections
between cholinergic and catecholamine, rather than solely DA
systems. This is supported by evidence indicating that combined
administration of the TH inhibitor α-methyl-p-tyrosine with the
VMAT inhibitor reserpine, completely blocks AMPHs-induced
ACh release both in vivo and in striatal slices (Cantrill et al.,
1983; Taguchi et al., 1998). In any case, once released by
AMPHs, ACh provides an important excitatory input to those
neurons expressing nicotinic ACh receptors (nACh-Rs). This
was mainly investigated on DA neurons, where activation of
nACh-Rs leads to intracellular Ca2+ accumulation, which in turn
facilitates DA exocytosis (MacDermott et al., 1999; Engelman
and MacDermott, 2004; Lester et al., 2010). In this way, AMPHs
produce DA-related effects also via ACh release (Drew et al.,
2000; Camarasa et al., 2008; Chipana et al., 2008; Hondebrink
et al., 2012). Recently, nACh-Rs-mediated Ca2+ increase and
subsequent nitric oxide-synthase activation have been linked
to AMPHs-induced neurotoxicity (Pubill et al., 2011). In
line with this, the pharmacological blockade of α7 nACh-Rs
attenuates METH-induced oxidative damage and nigrostriatal
neurotoxicity both in vivo and striatal synaptosomes. Studies
focusing on the effects of AMPHs-induced ACh release on NE
system are missing so far, which warrants additional studies to
test ACh-NE interplay following AMPHs.
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