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Serotonin (5-hydroxytryptamine, 5-HT) is an important biogenic amine that acts as a
neural circuit modulator. It is widespread in the central nervous system of insects.
However, little is known about the distribution of serotonin in the nervous system
of the cotton bollworm Helicoverpa armigera. In the present study, we performed
immunohistochemical experiments with anti-serotonin serum to examine the distribution
of serotonin in the central nervous system of H. armigera larvae. We found about
40 serotonin-immunoreactive neurons in the brain and about 20 in the gnathal
ganglion. Most of these neurons are wide-field neurons giving rise to processes
throughout the neuropils of the brain and the gnathal ganglion. In the central brain,
serotonin-immunoreactive processes are present bilaterally in the tritocerebrum, the
deutocerebrum, and major regions of the protocerebrum, including the central body
(CB), lateral accessory lobes (LALs), clamps, crepine, superior protocerebrum, and
lateral protocerebrum. The CB, anterior ventrolateral protocerebrum (AVLP), and
posterior optic tubercle (POTU) contain extensive serotonin-immunoreactive process
terminals. However, the regions of mushroom bodies, the lateral horn, and protocerebral
bridges (PBs) are devoid of serotonin-immunoreactivity. In the gnathal ganglion, the
serotonin-immunoreactive processes are also widespread throughout the neuropil, and
some process projections extend to the tritocerebrum. Our results provide the first
comprehensive description of the serotonergic neuronal network in H. armigera larvae,
and they reveal the neural architecture and the distribution of neural substances, allowing
us to explore the neural mechanisms of behaviors by using electrophysiological and
pharmacological approaches on the target regions.

Keywords: Helicoverpa armigera, serotonin, immunoreactivity, wide-field neurons, commissure, neuropils, brain,
gnathal ganglion

INTRODUCTION

Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic amine that is widely present in both
invertebrate and vertebrate animal species (Vleugels et al., 2015). In insects, as in vertebrates and
other invertebrates, serotonin is an important monoamine neurotransmitter that functions as a
neural circuit modulator (Nässel, 1988; Qi et al., 2014; Vleugels et al., 2015). Antiserum against
serotonin has been available for three decades, and the immunohistochemical experiments to
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investigate the distribution of serotonin in the nervous system
have been performed in a large number of insect species,
including locusts, mantes, cockroaches, bugs, beetles, ants, wasps,
bees, flies, mosquitoes, and moths (Bishop and O’Shea, 1983;
Tyrer et al., 1984; Lange et al., 1988; Nässel, 1988; Homberg
and Hildebrand, 1989a,b; Breidbach, 1990; Boleli and Paulino-
Simões, 1999; Leitinger et al., 1999; Settembrini and Villar, 2004;
Dacks et al., 2006; Liu et al., 2011; Huser et al., 2012; van der
Woude and Smid, 2017). Serotonin is distributed throughout the
nervous system, including both peripheral and central regions.
Physiological and behavioral experiments have demonstrated
that serotonin is involved in vision (Paulk et al., 2009), olfaction
(Linn and Roelofs, 1986; Gatellier et al., 2004; Dacks et al.,
2008; Kloppenburg and Mercer, 2008; Ellen and Mercer, 2012;
Muscedere et al., 2012), hearing (Andrés et al., 2016), feeding
(Ali, 1997; Kaufmann et al., 2004; Orchard, 2006; Haselton et al.,
2009; French et al., 2014; Schoofs et al., 2018), circadian behavior
(Hinks, 1967; Page, 1987; Cymborowski, 1998; Chen et al., 1999;
Tomioka, 1999; Saifullah and Tomioka, 2002; Yuan et al., 2005;
Giese et al., 2018), aggregation (Anstey et al., 2009; Rogers and
Ott, 2015), and learning and memory (Sitaraman et al., 2008,
2012; Fernández et al., 2012).

The cotton bollworm Helicoverpa armigera (Hübner;
Lepidoptera: Noctuidae), is an important agricultural pest in
the world, feeding on more than 160 plant species (Fitt, 1989;
Ma et al., 2016). The damage of H. armigera to plants occurs
during its larval stage. Feeding behavior of H. armigera larvae
is mediated to a large extent by the gustatory sensillum, which
detects palatable and unpalatable compounds in plants to acquire
nutrients and avoid the toxins (Zhou et al., 2010). Behavioral
and gustatory electrophysiological studies revealed that feeding
experiences could induce changes in feeding preference of
H. armigera for host plants (Zhou et al., 2010; Ma et al., 2016;
Wang et al., 2017). Such feeding preference and plasticity is
mediated by the signal transduction of the gustatory pathway
and the modulation of the neural substance in the central
nervous system (Glendinning et al., 1999, 2001). However, to
date little is known about the neural substances in the nervous
system of H. armigera.

In the present study, we performed immunohistochemistry
with anti-serotonin serum to examine the distribution of
serotonin in the central nervous system ofH. armigera larvae.We
provide the first comprehensive description of the serotonergic
neuronal network in H. armigera larvae, which is the basic
knowledge about the neural architecture and the distribution of
neural substance and improves our understanding of the neural
mechanism of behaviors, such as, host selection, navigation,
and feeding preference and plasticity. In addition, the findings
are essential to develop novel methods to control the pest
by modulating the insect behaviors with the neural substance
of serotonin.

MATERIALS AND METHODS

Insects
Larvae of H. armigera were reared on an artificial diet in
the laboratory under 16/8 h light/dark, at 27◦C and 70%

relative humidity. Two-day-old 5th instar larvae were used for
the experiments. No permission from the ethics committee is
required for experiments on H. armigera according to the laws
on animal welfare in China.

Immunocytochemistry for Serotonin and
Synapsin
Brains and gnathal ganglia of H. armigera larvae were
dissected out in fresh Ringer’s solution [150 mM NaCl, 3 mM
CaCl2, 3 mM KCl, 25 mM Sucrose, and 10 mM N-tris
(hydroxymethyl)-methyl-2-amino-ethanesulfonic acid, pH 6.9]
on ice. Immunostaining with anti-serotonin was performed to
examine the distribution of serotonin-immunoreactive neurons
in the brain and the gnathal ganglion. To visualize the outline of
the neuropil structure, immunostaining with anti-synapsin was
also performed. The immunostaining of serotonin and synapsin
was conducted following previously described procedures (Zhao
et al., 2016). The dissected brains and gnathal ganglia were
fixed in 4% paraformaldehyde for 1–2 h at room temperature,
and they were rinsed four times with phosphate-buffered
saline (PBS; 684 mM NaCl, 13 mM KCl, 50.7 mM Na2HPO4,
5 mM KH2PO4, pH 7.4) for 15 min. To minimize the
non-specific staining, the rinsed brains and gnathal ganglia
were pre-incubated in 5% normal goat serum (NGS, Sigma,
St. Louis, MO, USA) in PBS (0.1 M, pH 7.4) containing 0.5%
Triton X-100 (PBSX) for 3 h at room temperature. Next, the
samples were incubated with anti-serotonin serum (1:5,000;
Immunostar Inc., Hudson, WI, USA) and anti-SYNORF1 serum
(1:200; Developmental Studies Hybridoma Bank, University of
Iowa, Iowa City, IA, USA) in PBSX containing 5% NGS for
5 days at 4◦C. The specificity of anti-SYNORF1 had been
confirmed by both western blot and immunohistochemistry
(Godenschwege et al., 2004). The labeling of the synaptic
neuropil with this antibody had been reported previously in
a large number of insect species, including heliothine moths
(Zhao et al., 2016). The specificity of the anti-serotonin had
been tested in heliothine moth by preadsorption of lyophilized
serotonin creatine sulfate coupled to bovine serum albumin
(Immunostar) at a concentration of 20 µg/ml (Zhao and
Berg, 2009). The preadsorption abolished all immunostaining
with anti-serotonin serum in the brain of heliothine moths.
Following six rinse in PBS for 20 min, the brains and gnathal
ganglia were incubated in secondary Cy2-conjugated goat
anti-mouse antibodies (1:500; Invitrogen, Eugene, OR, USA) and
Cy5-conjugated goat anti-rabbit antibodies (1:500; Invitrogen)
in PBSX for 3 days at 4◦C in the dark. After being rinsed
in PBS 6 × 20 min, the brains and gnathal ganglia were
dehydrated in an ethanol series (50%, 70%, 90%, 96%, and
2 × 100%, each 10 min), cleared in methyl salicylate, and
mounted in Permount.

Image Acquisition, Three-Dimensional
Reconstruction, and Image Processing
The images of serial confocal stacks were acquired by using
a confocal laser scanning microscope (LSM710, META
Zeiss, Jena, Germany) with an objective of 10× (Plan-
Neofluar 10×/0.3) and 20× (Plan-Neofluar 20×/0.5l).
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FIGURE 1 | Confocal images and three-dimensional reconstruction of the brain and the gnathal ganglion of Helicoverpa armigera larvae. (A) Confocal image
showing the neuropils of the brain and the gnathal ganglion. (B) Confocal image showing the serotonin-immunoreactive neurons in the brain and the gnathal
ganglion. (C) Merged confocal image showing the neuropil (magenta) and the serotonin-immunoreactive neurons (green). (D) Three-dimensional reconstruction of
the brain and the gnathal ganglion. Con, connective; GNG, gnathal ganglion. Scale bars, 100 µm.

To excite Cy2 and Cy5, a 488-nm l Argon laser and a
633 nm HeNe laser were used, respectively. The resolutions
of images are 1,024 × 1,024 pixels and the intervals are
2–3 µm.

To create the three-dimensional models of brains, gnathal
ganglia, cell bodies, and thick fiber of serotonin-immunoreactive
neurons, the confocal stacks were imported into the visualization
software AMIRA (AMIRA 5.3, Visage Imaging, Fürth,
Germany). The Segmentation editor tool was used to label
the neuropils and the Skeleton tree was used to trace the thick
neuron fibers (Zhao et al., 2017).

Necessary adjustments for brightness and contrast of the
images were made in Adobe Photoshop, and the final figure
panels were edited in Adobe Illustrator CS2 (Adobe System, San
Jose, CA, USA). Terminology and abbreviations for neuropil
structures suggested by Ito et al. (2014) were used for the brain
and the gnathal ganglion of H. armigera larvae. The axis of
neuropil is taken as the axis of the insect body. The orientation of
the larval brain is about 90◦ different from that of adult insects,
however, the neuropil structures in the larval brain are given
the same names as the corresponding structures in adult insects,
regardless of the orientation.

RESULTS

In total, immunocytochemical experiments for synapsin and
serotonin were performed on 24 preparations. Of these, 16 were
successfully stained, and seven were used to obtain the confocal
images and to count the number of serotonin-immunoreactive
neurons in the brain and the gnathal ganglion. The brains and
gnathal ganglia of H. armigera larvae were connected by a

pair of circumesophageal connectives (Figure 1). The serotonin-
immunoreactive neurons were reliably distinguished by their cell
body positions in the cell body rind of the brain and the gnathal
ganglion. The nomenclature of neurons used in this report is
based on the cell body position.

General Anatomy of the H. armigera Larval
Brain
The brain of H. armigera larvae contains three distinct
neuromeres, i.e., tritocerebrum (TR), deutocerebrum (DE),
and protocerebrum (PR; Tang et al., 2014). The tritocerebrum is
located most ventrally in the brain, and the deutocerebrum
is located above the tritocerebrum (Figures 2, 3). The
deutocerebrum consists of the antennal lobe (AL) and
the antennal mechanosensory and motor center (AMMC;
Figures 2, 3). The protocerebrum is the largest part of the
brain and is located dorsally. Within the protocerebrum, the
neuropils of the optic lobe (OL), mushroom body (MB), central
body (CB), protocerebral bridge (PB), and lateral accessory
lobe (LAL) were most prominent and easiest to identify
(Figures 2, 3). In larvae the OL is located most lateral of the
protocerebrum, the CB is in the center, and the calyx (CA) of
MB is located most dorsally (Figures 2A–C). By referring to
the detailed three-dimensional reconstructed brain maps of
the fruit fly Drosophila melanogaster (Ito et al., 2014), a large
number of homologous neuropils in the remaining part of
the central brain were also identified. The superior neuropils
contained the superior medial protocerebrum (SMP), the
superior intermediate protocerebrum (SIP), the superior lateral
protocerebrum (SLP), and the LH (Figures 2, 3B,C). The
lateral neuropils comprise the inferior lateral protocerebrum
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FIGURE 2 | Brain composition of H. armigera larvae. (A) Three-dimensional reconstuctions of one brain hemisphere in frontal view; (B) in posterior view; (C) in
lateral view; (D) in sagittal view. α, alpha lobe; AL, antennal lobe; AMMC, antennal mechanosensory and motor center; AVLP, anterior ventrolateral protocerebrum; β,
belta lobe; CA, calyx; CB, central body CL, clamp; CRE, crepine; GOR, gorget; IB, inferior bridge; ILP, inferior lateral protocerebrum; LAL, lateral accessory lobe; LH,
lateral horn; LOB, mushroom body lobes; OL, optic lobe; PB, protocerebral bridge; PLP, posterior lateral protocerebrum; POTU, posterior optic tubercle; PS,
posterior slope; PVLP, posterior ventrolateral protocereburm; SIP, superior intermediate protocerebrum; SLP, superior lateral protocerebrum; SMP, superior medial
protocerebrum; TR, tritocerebrum. Directions: a, anterior; d, dorsal; l, lateral; m, medial; p, posterior, v, ventral. Scale bar, 100 µm.

(ILP), the anterior ventrolateral protocerebrum (AVLP), the
posterior ventrolateral protocerebrum (PVLP), the posterolateral
protocerebrum (PLP), and the posterior optic tubercle (POTU;
Figures 2, 3C,E). The inferior neuropils include the crepine
(CRE), clamp (CL), and inferior bridge (IB; x). The ventromedial
neuropils include the posterior slope (PS) and the gorget (GOR;
Figures 2, 3F,H).

Number of Serotonin-Immunoreactive Cell
Bodies in the H. armigera Larval Brain
Serotonin-immunoreactivity was detected in a large area of the
brain inH. armigera larvae (Figures 3, 4). All detected cell bodies
were labeled and counted, and thick fibers were traced (Figure 4;

Table 1). There were about 30–38 serotonin-immunoreactive
cell bodies distributed singly or in clusters in both hemispheres
of the brain (Figures 4A–C; Table 1). The cluster of PR-M
contained the largest number of serotonin-immunoreactive
cell bodies, about 10 in each hemisphere, distributed in the
medial region of the posterior protocerebrum, ventrolateral
to the calyx (Figures 4B,C; Table 1). The cluster of PR-LD,
contained about three cell bodies in each hemisphere, located
dorsally to the lateral protocerebral neuropil (Figures 4B,C;
Table 1). The serotonin staining in these cell bodies was
weak. The cluster of PR-L contained one cell body in each
hemisphere, located laterally to the lateral protocerebral neuropil
(Figure 4B; Table 1). Among seven preparations counted,
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FIGURE 3 | Serial confocal images from anterior to posterior showing the serotonin- immunoreactive neurons (green) and the brain neuropils (magenta) of
Helicoverpa armigera larvae. (A) Confocal image of the brain section at a depth of 21 µm of total 138 µm; (B) at 42 µm; (C) at 57 µm; (D) at 72 µm. Double arrows
indicate the processes from the cells in the cluster of PR-M extending to the AVLP; (E) at 78 µm. Arrowheads indicate the processes of the cell in the cluster of
DE-L; (F) at 84 µm; (G) at 96 µm. Arrowhead indicates the processes of cells in the cluster of PR-L; (H) at 111 µm. α, alpha lobe; AL, antennal lobe; AMMC,
antennal mechanosensory and motor center; AVLP, anterior ventrolateral protocerebrum; β, belta lobe; CA, calyx; CB, central body; CL, clamp; CRE, crepine; GOR,
gorget; IB, inferior bridge; ILP, inferior lateral protocerebrum; LAL, lateral accessory lobe; LOB, mushroom body lobes; OL, optic lobe; PB, protocerebral bridge; PLP,
posterior lateral protocerebrum; POTU, posterior optic tubercle; PS, posterior slope; PVLP, posterior ventrolateral protocereburm; SIP, superior intermediate
protocerebrum; SLP, superior lateral protocerebrum; SMP, superior medial protocerebrum; TR, tritocerebrum. DE-L, PR-A, PR-L, PR-LD, PR-M, and TR-A are cell
clusters. 1, the posterior protocerebral commissure linking the POTU; 2, the median protocerebral commissure linking the CB and bilateral SIP; 3, the posterior great
commissure linking the bilateral AVLP and the CL; 4, the LAL commissure; 5, the dorsal protocerebral commissure linking the bilateral AL and the SLP; 6, the
anterior protocerebral commissure linking the bilateral tritocerebrum. Scale bar, 100 µm.

however, there was one individual preparation containing two
cell bodies in one cluster of PR-L. The cluster of PR-A is
located anteriorly to the protocerebrum and dorsally to the AL
(Figure 4B). We observed a single brightly stained serotonin-
immunoreactive cell body in each hemisphere in the cluster of
PR-A (Figures 4B,C; Table 1). In some preparations, however,
we observed an additional weakly stained cell in the cluster of
PR-A (Table 1).

The cluster of DE-L, located laterally to the AL, contained a
single serotonin-immunoreactive cell body in each hemisphere
(Figure 4B; Table 1). In the tritocerebrum, we observed three
weakly stained serotonin-immunoreactive cell bodies in each
hemisphere in the cluster of TR-A, located anteriorly to the
tritocerebrum (Figure 4B; Table 1). In some preparations,

we did not detect serotonin-immunoreactive the cells in the
cluster of TR-A.

Innervation Patterns of
Serotonin-Immunoreactive Neurons in the
Brain
The low number of serotonin-immunoreactive neurons gives
rise to many neuronal processes, spreading widely in the brain.
Except the neurons in the cluster of PR-L, the identified neurons
projected across the two brain hemispheres via commissures and
innervated the contralateral brain hemisphere (Figures 4A,D).
The bilateral serotonin-immunoreactive neurons form at least
six commissures: (1) the posterior protocerebral commissure
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FIGURE 4 | Confocal image and three-dimensional reconstructions showing the distribution of the serotonin-immunoreactive neuronal processes and cell bodies in
the brain. (A) Projection view of the confocal stack images. (B) Three-dimensional reconstructions of the brain including the labeled cell body clusters in frontal view.
(C) Three-dimensional reconstructions of the brain including labeled cell body clusters in sagittal view. (D) Reconstructed skeleton trees of the thick neuronal
processes showing their projection patterns in frontal view. (E) Reconstructed skeleton trees of 1–6 commissures in frontal view. (F) Reconstructed skeleton trees of
1–6 commissures in dorsal view. AL, antennal lobe; AVLP, anterior ventrolateral protocerebrum; CA, calyx; LAL, lateral accessory lobe; TR, tritocerebrum. DE-L,
PR-A, PR-L, PR-LD, PR-M, and TR-A are cell clusters. 1, the posterior protocerebral commissure linking the POTU; 2, the median protocerebral commissure linking
the CB and bilateral SIP; 3, the posterior great commissure linking the bilateral AVLP and the CL; 4, the LAL commissure; 5, the dorsal protocerebral commissure
linking the bilateral AL and the SLP; 6, the anterior protocerebral commissure linking the bilateral tritocerebrum. Directions: a, anterior; d, dorsal; l, lateral; p,
posterior; v, ventral. Scale bars, 100 µm.

TABLE 1 | Number, location, and innervation area of serotonin-immunoreactive neurons in the brain and the gnathal ganglion of Helicoverpa armigera larvae.

Cell body cluster Number of neurons (n) Location of cell body Innervation areas

Brain PR-M 17–20 (7) Medial region of posterior protocerebrum,
ventrolateral to the calyx

CB, bilateral AVLP, CL, CRE, SIP, POTU, and LAL

PR-LD 5–6 (7) Dorsolateral protocerebrum Not resolved
PR-L 2–3 (7) Lateral protocerebrum, dorsolateral to OL Ipsilateral OL, PLP, PVLP, SLP, and LAL
PR-A 2–4 (7) Anterior to protocerebrum, dorsal to AL Bilateral LAL
DE-L 2 (7) Lateral to AL Contralateral AL and bilateral SLP
TR-A 6 (2) Anteromedial tritocerebrum Not resolved

GNG GNG-AD 3–4 (7) Anterior dorsal gnathal ganglion Anterior mandibular neuromere and tritocerebrum
GNG-AV 2 (7) Anterior ventral gnathal ganglion Not resolved
GNG-M 3–4 (6) Medial dorsal gnathal ganglion Not resolved
GNG-L1 4 (7) Anterior lateral gnathal ganglion Mandibular neuromere and tritocerebrum
GNG-L2 4 (7) Medial lateral gnathal ganglion Maxillary neuromere and tritocerebrum
GNG-L3 4 (7) Posterior lateral gnathal ganglion Labial neuromere and tritocerebrum

n, the number of preparations used to count the number of cell bodies. AL, antennal lobe; AVLP, anterior ventrolateral protocerebrum; CB, central body; CL, clamp; CRE, crepine;
ILP, inferior lateral protocerebrum; LAL, lateral accessory lobe; OL, optic lobe; PLP, posterior lateral protocerebrum; POTU, posterior optic tubercle; PVLP, posterior ventrolateral
protocerebrum; SIP, superior intermediate protocerebrum; SLP, superior lateral protocerebrum.

has processes to the POTU; (2) the median protocerebral
commissure has processes to the SIP and the CB; (3) the
posterior great commissure has processes to the AVLP and
the clamp; (4) the LAL commissure has processes to the
LAL; (5) the dorsal protocerebral commissure has processes

to the SLP and the AL; and (6) the anterior protocerebral
commissure connects the tritocerebra of two brain hemispheres
(Figures 3, 4E,F).

In accordance with the innervation terminal regions, the
cells in the cluster of PR-M were classified as PR-M1, PR-M2,
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FIGURE 5 | Confocal images and three-dimensional reconstructions showing the distribution of the serotonin-immunoreactive neuronal processes and cell bodies
in the protocerebrum. (A) Reconstructed skeleton trees of PR-M neurons in frontal view. (B) Reconstructed skeleton trees of PR-M neurons in dorsal view.
(C) Confocal image showing the serotonin-immunoreactive processes (green) in the POTU. (D) Three-dimensional reconstructions of serotonin-immunoreactive
neurons in the cluster of PR-M1 and related neuropils in frontal view. (E) Three-dimensional reconstructions of the serotonin-immunoreactive neurons of PR-M1 and
related neuropils in lateral view. (F–H) Confocal images showing the serotonin-immunoreactive processes of neurons PR-M2 (green). (I) Three-dimensional
reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-M2 and related neuropils in frontal view. (J) Three-dimensional reconstructions of the
serotonin-immunoreactive neurons in the cluster of PR-M2 and related neuropils in lateral view. (K–M) Confocal images showing the serotonin-immunoreactive
processes of neurons PR-M3 (green). (N) Three-dimensional reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-M3 and related neuropils
in frontal view. (O) Three-dimensional reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-M3 and related neuropils in lateral view. α, alpha
lobe; AVLP, anterior ventrolateral protocerebrum; β, belta lobe; CA, calyx; CB, central body; CL, clamp; CRE, crepine; LAL, lateral accessory lobe; PB, protocerebral
bridge; PED, pedunculus; POTU, posterior optic tubercle; PVLP, posterior ventrolateral protocereburm; SIP, superior intermediate protocerebrum; SMP, superior
medial protocerebrum. PR-M1-3 are cell clusters. 2, the median protocerebral commissure linking the CB and bilateral SIP; 6, the anterior protocerebral commissure
linking the bilateral tritocerebrum. Directions: a, anterior; d, dorsal; l, lateral; m, medial; p, posterior; v, ventral. Scale bars, 50 µm.

and PR-M3. The cells of PR-M1, about four, located in
the anterior part of the cluster of PR-M, have bilaterally
symmetrical processes throughout the POTU (Figures 5A–E).
A side branch projects further anteriorly from the POTU to the
LAL (Figure 5E). The cells of PR-M2, about four, located in the
medial part of the cluster of PR-M, have symmetrical processes
in the SIP, the crepine, and the CB (Figures 5F–J). Two thick
neurites originating in these cells run parallelly and form the
medial protocerebral commissure nearby the CB (Figure 5F).
One neurite gives rise to fine processes in CB, and is uniform
throughout (Figure 5G). One neurite runs bypass the α lobe and
gives rise to arborizations in the crepine (Figure 5H). The cells
of PR-M3, about 12, located in the posterior part of the cluster
of PR-M, have bilaterally symmetrical processes throughout
the AVLP and the clamp (Figures 5K–O). The thick neurites
originating from these cells run parallelly and form the posterior
great commissure (Figure 5A). It was difficult to identify a

single neuron to trace the processes and examine the innervation
pattern in the ipsilateral and contralateral brain regions.

The neurites of cells in the cluster of PR-L run medially
and give rise to several branches projecting to different regions
in the ipsilateral brain hemisphere, including the OL, the LAL,
the SLP, the PVLP, and the posterior lateral protocerebrum
(Figures 6A–E). Neurites from the cells in the cluster of PR-A
form the LAL commissure and project to the anterior and ventral
portions of the LAL (Figures 6F–H).

The two cells in the cluster of DE-L are deutocerebral neurons,
they project dorsoposteriorly into the ipsilateral protocerebrum
via the medial AL tract, crossed the midline dorsal to the CB, and
extend to the contralateral AL, where innervated the entire AL
(Figures 7A–F). The cells also extended some fine branches in
the bilateral SLP, ventral to the calyx of the MB (Figure 7D).

The cells in the cluster of PR-LD, and TR-A were weakly
stained, and we were not able to detect neuronal processes from
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FIGURE 6 | Confocal images and three-dimensional reconstructions showing the distribution of the serotonin-immunoreactive neuronal processes and cell bodies
in the cluster of PR-L and PR-A in the protocerebrum. (A–C) Confocal images showing the serotonin-immunoreactive processes of neurons PR-L (green).
(D) Three-dimensional reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-L and related neuropils in frontal view. (E) Three-dimensional
reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-L and related neuropils in lateral view. (F) Confocal image showing the
serotonin-immunoreactive processes of neurons PR-A (green). (G) Three-dimensional reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-A
and related neuropils in frontal view. (H) Three-dimensional reconstructions of the serotonin-immunoreactive neurons in the cluster of PR-A and related neuropils in
lateral view. α, alpha lobe; AL, antennal lobe; AVLP, anterior ventrolateral protocerebrum; β, belta lobe; CA, calyx; CB, central body; LAL, lateral accessory lobe; PED,
pedunculus; PLP, posterior lateral protocerebrum; POTU, posterior optic tubercle; PVLP, posterior ventrolateral protocereburm; SLP, superior lateral protocerebrum.
PR-A and PR-L are cell clusters. 4, the LAL commissure. Directions: a, anterior; d, dorsal; l, lateral; m, medial; p, posterior; v, ventral. Scale bars, 50 µm.

these cells. In the tritocerebrum, we observed some serotonin-
immunoreactive neuronal processes, which may originate in the
frontal ganglion and the gnathal ganglion (Figures 7G–K, 8).
In the frontal ganglion, there is a single big serotonin-
immunoreactive neuron, and some neurites connect to the
tritocerebrum through the frontal connectives (Figure 7I).

The wide-field serotonin-immunoreactive neurons spread
fine processes throughout the brain, however, some regions of
neuropils lacked serotonin, including the calyx, the pedunculus,
α lobe, β lobe, the PB, the lateral horn, and the medial and dorsal
portions of the LAL (Figures 5F,G,K,L, 6B,C,F, 7D).

Serotonin-Immunoreactivity in the Gnathal
Ganglion of H. armigera larvae
There are about 20–22 serotonin-immunoreactive neurons in
the gnathal ganglion, distributed in several clusters; each cluster
contains 2–4 neurons (Table 1; Figure 8). The cluster of
GNG-AD contains 3–4 cell bodies, located in the medial region
of the anteriodorsal gnathal ganglion. The cluster of GNG-AV
contains two neurons and GNG-M contains 3–4 neurons,
located in the anterior and medial regions of ventral gnathal
ganglion. The cells in these clusters were weakly stained, and
no neurites extending from their cell bodies were detected.
In each lateral side of the gnathal ganglion, there are three
clusters, GNG-L1–GNG-L3; each cluster contains two neurons.

The cells in the cluster of GNG-L1 are situated in the dorsal
lateral gnathal ganglion, whereas GNG-L2 and GNG-L3 cells are
located ventrolaterally.

Three cell clusters in the lateral gnathal ganglion, GNG-
L1–GNG-L3, were associated with three neuromeres,
respectively, i.e., mandibular neuromere, maxillary neuromere,
and labial neuromere (Figures 8A–D,G,H). From two cells
of one cluster on each side of the ganglion, major processes
extend into the contralateral hemisphere via a commissure,
which contained four neurites. In the mandibular neuromere,
at least two branches extended from the cell; one laterally and
the other medially. Both branches projected ventroanteriorly
to the tritocerebrum through circumoesophageal connectives
and had many fine arborizations in the medial regions of
each gnathal neuromere hemisphere and tritocerebrum
(Figures 7G,H, 8A–D,G,H). In the maxillary and labial
neuromeres, the serotonin-immunoreactive neuron processes
show a branching pattern similar to that of the mandibular
neuromere. The branches run across the midline via the
commissure and project through the proceeding neuromere, and
terminate in the tritocerebrum. In addition to the prominent
commissures in the ventral part of the maxillary and labial
neuromeres, a dorsal immunoreactive commissure was observed
at the dorsal surface of each neuromere (indicated by arrows
in Figures 8C,G).
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FIGURE 7 | Confocal images and three-dimensional reconstructions showing the distribution of serotonin-immunoreactive neuronal processes in the
protocerebrum, deutocerebrum and tritocerebrum. (A–D) Confocal images showing the serotonin-immunoreactive processes of neurons DE-L (green).
(E) Three-dimensional reconstructions of the serotonin-immunoreactive neurons in the cluster of DE-L and related neuropils in frontal view. (F) Three-dimensional
reconstructions of the serotonin-immunoreactive neurons in the cluster of DE-L and related neuropils in lateral view. (G,H) Confocal images showing the
serotonin-immunoreactive processes in the tritocerebrum (green). (I) Confocal image showing the serotonin-immunoreactive processes in the tritocerebrum and the
frontral ganglion (green). (J) Three-dimensional reconstructions of the serotonin-immunoreactive processes in the tritocerebrum and related neuropils in frontal view.
(K) Three-dimensional reconstructions of serotonin-immunoreactive processes in the triotocerebrum in lateral view. α, alpha lobe; AL, antennal lobe; β, belta lobe;
CA, calyx; FC, frontal connective; FG. Frontal ganglion; PED, pedunculus; SLP, superior lateral protocerebrum; SMP, superior medial protocerebrum; TR,
tritocerebrum. DE-L are cell bodies. 5, the dorsal protocerebral commissure linking the bilateral AL and the SLP. Directions: a, anterior; d, dorsal; l, lateral; m, medial;
p, posterior; v, ventral. Scale bars, 50 µm.

From each cell in the cluster of GNG-AD, at least one
neurite projects to the tritocerebrum, exhibiting many fine
immunoreactive arborizations in the anterior part of mandibular
neuromere (Figures 8A,B,G,H). We were able not to detect
serotonin-immunoreactive processes originating in the weakly
stained cells in the cluster of GNG-AV and GNG-M (Table 1).

DISCUSSION

Number of Serotonin-Immunoreactive
Neurons in the Brain
For the first time, the serotonergic neurons in the brain
and the gnathal ganglion of H. armigera larvae were
comprehensively revealed by performing immunohistochemistry
with anti-serotonin serum. There are about 40 serotonin-
immunoreactive neurons in the brain and about 20 in the
gnathal ganglion of H. armigera larvae. The numbers are similar
to those reported in larvae of the sphinx moth, Manduca sexta,
flies D. melanogaster, Calliphora erythrocephala and Sarcophaga
bullata, and the beetle Tenebrio molitor (Table 2, Nässel and
Cantera, 1985; Vallés and White, 1988; Granger et al., 1989;
Griss, 1989; Breidbach, 1990; Huser et al., 2012). Compared
to the large number of neurons in the brain and the gnathal
ganglion, the number of serotonin-immunoreactive neurons is
low. In adults of M. sexta and D. melanogaster, the number of

serotonin-immunoreactive cell bodies in the gnathal ganglion
is also about 20 (Table 2, Vallés and White, 1988; Homberg
and Hildebrand, 1989a; Sitaraman et al., 2008), suggesting
that the serotonin-immunoreactive neurons in larvae persist
during metamorphosis to adults. Similarly, in the central brain
of adults of these species, e.g., brain neuropils excluding the
OL, the number of serotonin-immunoreactive cell bodies is
about 40 (Vallés and White, 1988; Homberg and Hildebrand,
1989a; Sitaraman et al., 2008). Similar number were found in
the honeybee Apis mellifera, the wasp Trichogramma evanescens,
and the blood-feeding bug Rhodnius prolixus, which are lower
than the number of 200 in the cockroach Periplaneta americana
(Table 2, Klemm et al., 1984; Schürmann and Klemm, 1984;
Lange et al., 1988; van der Woude and Smid, 2017). The OL in
larvae (the larval optic center) is an OL anlage that develops
during metamorphosis to the adult form with the neuropils
of lamina, medulla, and lobula complex (Nässel et al., 1987;
Breidbach, 1990; Seidel and Bicker, 1996; Tang et al., 2014).
The differentiation of serotonin-immunoreactive neurons in the
OL is dependent on the development of OL neuropils (Nässel
et al., 1987). Most serotonin-immunoreactive cell bodies in
the OL are local amacrine neurons that innervate the local
neuropils of the OL (Homberg and Hildebrand, 1989b). There
are about 600 serotonin-immunoreactive cell bodies located in
the OL of M. sexta and 20 in D. melanogaster (Homberg and
Hildebrand, 1989b; Sitaraman et al., 2008). For comparison, it
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FIGURE 8 | Confocal images and three-dimensional reconstructions showing the distribution of the serotonin-immunoreactive neuronal processes and cell bodies
in the gnathal ganglion. (A) Projection view of confocal stack images of the gnathal ganglion. Serotonin-immunoreactive neurons in green and the surrounding
neuropil in magenta. (B–D) Serial confocal images of the gnathal ganglion at different depths. (E) Three-dimensional reconstructions of the gnathal ganglion including
labeled cell body clusters in frontal view. Arrow in (C) indicated the dorsal commissure formed by neurons of GNG-L2. (F) Three-dimensional reconstructions of the
gnathal ganglion including the labeled cell body clusters in lateral view. (G) Reconstructed skeleton trees of the thick neuronal processes showing their projection
patterns in frontal view. Arrow indicates the dorsal commissure formed by neurons of GNG-L2. (H) Reconstructed skeleton trees of the thick neuronal processes
showing their projection patterns in lateral view. Con, connective; GNG-L1–L3, GNG-AD, GNG-AV, and GNG-M are cell clusters. 1, the commissure formed by
neurons of GNG1; 2, the commissure formed by neurons of GNG-L2; 3, the commissure formed by neurons of GNG-L3. Directions: a, anterior; d, dorsal; l, lateral; p,
posterior; v, ventral. Scale bars, 100 µm.

is essential to examine the serotonin-immunoreactive neurons
in adult H. armigera further. The similarity and difference in
serotonin-immunoreactive neurons between the larvae and the
adults could provide insight on the development and function of
serotonin in different stages.

Serotonin-Immunoreactive Neurons
Associated With the Protocerebrum
The location of serotonin-immunoreactive cell bodies and their
branching patterns of H. armigera larvae are also similar to
that of other studied insects (Vallés and White, 1988; Granger
et al., 1989; Griss, 1989; Breidbach, 1990). Most serotonin-
immunoreactive neurons are wide-field neurons and have
processes extending throughout the neuropils in the brain.
Although the morphology of these neurons is very similar,
their terminals in part invade some different areas among
different species, suggesting species-specific modifications of
arborization patterns.

In the protocerebrum, the cells in the cluster of PR-M have
processes projecting to the CB, and bilateral crepine, clamp, SIP,
AVLP, and POTU. The arborizations in the CB, the clamp, the
AVLP, and the POTU are quite dense. The cells in the cluster of

PR-L have processes projecting mainly to the ipsilateral posterior
ventrolateral, posterior lateral, and SLP. A few processes of these
cells reach the inner part of the ipsilateral OL. The cells in the
cluster of PR-A have processes and project bilaterally to the LAL.
The pattern of serotonin-immunoreactive arborizations in the
superior and lateral protocerebrum is roughly similar between
species. Comparisons of these neuropils between different
species are difficult to make due to the scarcity of information.
Therefore, comparisons of the serotonin-immuonstaining
between H. armigera and other species are mainly focused on
the prominent neuropils, the MB, CB, the PB, the LAL, and the
POTU. The strong serotonin-immunoreactivity in the POTU in
larvae, however, was first found in H. armigera. Previously, the
serotonin-immunoreactive processes in the POTU were found
in adults of M. sexta and the locust Schistocerca gregaria, but
the staining intensity was lower (Homberg and Hildebrand,
1989a; Homberg, 1991; Beetz et al., 2015). Serotonin-
immunoreactive neurons linking the LAL are similar in several
insect species, i.e., D. meloanogaster, M. sexta, and T. molitor,
dung beetles Scarabaeus lamarchki, S. satyrus, S. gragaria, and
the aphid Acyrthosiphon pisum (Vallés and White, 1988;
Granger et al., 1989; Homberg and Hildebrand, 1989a;
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TABLE 2 | Number of serotonin-immunoreactive neurons in the brain of different insect species.

Species Central brain Gnathal ganglion Reference

Larva
Beetle Tenebrio molitor 42 – Breidbach (1990)
Moth Manduca sexta 36–40 20 Griss (1989) and Granger et al. (1989)
Flies Drosophila melanogaster 40 16 Vallés and White (1988)

Calliphora erythrocephala 30 22 Nässel and Cantera (1985)
Sarcophaga bullata 32 22 Nässel and Cantera (1985)

Adult
Cockroach Periplaneta americana 200 – Klemm et al. (1984)
Bug Rhodnius prolixus 40 13 Lange et al. (1988)
Beetle Tenebrio molitor 42 – Breidbach (1990)
Wasp Trichogramma evanescens 36 22 van der Woude and Smid (2017)
Bee Apis mellifera 50 – Schürmann and Klemm (1984)
Moth Manduca sexta 40 20 Homberg and Hildebrand (1989a)
Fly Drosophila melanogaster 38–40 16–18 Vallés and White (1988), Sitaraman et al. (2008) and Huser et al. (2012)

“-”, Not counted.

Breidbach, 1990; Homberg, 1991; Kollmann et al., 2011;
Immonen et al., 2017). The presence of serotonin-
immunoreactive processes in the CB also seems to be
common across insect species. However, in S. gregaria
and P. americana, the lower part of the CB is devoid of
serotonin-immunoreactive processes (Klemm et al., 1984;
Tyrer et al., 1984). The PB, which is associated with the
CB, as a part of the central complex, showed no serotonin-
immunoreactivity in H. armigera larvae. The PB of M. sexta
larvae and adults, as well as the wasp T. evanescens, the ant
Harpegnathos saltator, and A. mellifera, also lacks serotonin-
immunoreactive processes (Schürmann and Klemm, 1984;
Granger et al., 1989; Homberg and Hildebrand, 1989a;
Hoyer et al., 2005; van der Woude and Smid, 2017). In
contrast, the PB of S. gregaria and P. americana contains
dense serotonin-immunoreactive processes (Klemm et al.,
1984; Tyrer et al., 1984). The prominent neuropils of the
MB, including the calyx, the pedunculus, and the α and β

lobes, lack serotonin-immunoreactivity in H. armigera larvae.
Similar findings have been reported in larvae of M. sexta and
D. melanogaster (Granger et al., 1989; Huser et al., 2012). In
contrast, the MB of adult M. sexta and D. melanogaster contains
fine serotonin-immunoreactive processes (Homberg and
Hildebrand, 1989a; Sitaraman et al., 2008). These results suggest
that some immunoreactive neurons are remodeled during the
metamorphosis from larva to adult in moths. In general, the
intrinsic neurons of the MB, the Kenyon Cells, are devoid of
serotonin across insect taxa, whereas extrinsic neurons of theMB
show the considerably varied innervation patterns. For instance,
the calyx of A. mellifera, the calyx collar of H. saltator, the calyx
and the pedunculus of S. gregaria and Locusta migratoria, the
inner part of the calyx and the upper part of the pedunculus
of P. americana, and the pedunculus and the α and β lobes of
T. infestans contain no serotonin-immunoreactive processes
(Klemm et al., 1984; Schürmann and Klemm, 1984; Tyrer et al.,
1984; Ignell, 2001; Settembrini and Villar, 2004; Hoyer et al.,
2005). In addition, in the larva ofH. armigera, the lateral horn, an
area associated with the MB, lacks serotonin-immunoreactivity.
To date, such findings have not been reported in
other species.

Serotonin-Immunoreactive Neurons
Associated With Deutocerebrum
A pair of deutocerebral serotonin-immunoreactive DE-L
neurons were first reported in larva of M. sexta (Kent et al.,
1987). These deutocerebral neurons have arborizations in the
contralateral AL and bilateral SLP. The AL in the larval brain is
also called the larval antennal center. In adults, the branching
pattern persists and expands in the AL with the formation of
glomeruli (Kent et al., 1987). Ultrastructural studies on the
synaptic terminals indicated that the deutocerebral neuron
is a feedback neuron to the AL for olfactory processing (Sun
et al., 1993). Electrophysiological recordings demonstrated that
the deutocerebral serotonin-immunoreactive neuron showing
responses to odorants and mechanical stimuli (Hill et al.,
2002; Zhao and Berg, 2009). The serotonin-immunoreactive
deutocerebral neurons were found in all studied species but
varied in the number of cells and innervation patterns. There
is a single cell body in each AL in the species of Lepidoptera,
Trichoptera, Diptera, Coleoptera, and Neuroptera and 2–8 cells
in each AL in Orthoptera and Blattaria (Dacks et al., 2006). In
Hymenoptera, however, the immunoreactive cell body in AL is
absent, and the processes in the AL originate in an ascending
neuron. In Orthoptera and Blattaria, the processes of the
deutocerebral neurons innervate the ipsilateral hemisphere of
the AL and the protocerebrum (Dacks et al., 2006).

Serotonin-Immunoreactive Neurons
Associated With Tritocerebrum
The tritocerebrum is a largely reduced neuropil, which is
hard to discriminate from the surrounding neuropils in the
brain of many holometabolous insect species (Ito et al., 2014).
In the larvae of H. armigera, however, the tritocerebrum is
a distinct and large neuropil, which is similar to that of
hemimetabolous species, such as the locust S. gregaria and
the bug Apolygus lucorum (Kurylas et al., 2008; Tang et al.,
2014; Xie et al., 2016). The cells in the cluster of TR-A in
tritocerebrum were weakly stained with anti-serotonin serum
and their neuronal processes were not detected. Throughout the
tritocerebrum, however, serotonin-immunoreactive neuronal
processes are abundant, and they may have multiple origins,
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including the frontal ganglion and the gnathal ganglion.
A commissure in the front of the medial protocerebrarum
formed by neurons which links the tritocerebrum, giving rise
to some arborizations in the vicinity. Although the number of
studies in other species is low, the serotonin-immunoreactivity
in the tritocerebrum seems to be common across insect
taxa (Nässel, 1988; Granger et al., 1989; Wegerhoff, 1999).
The serotonin-immunoreactive neuronal processes in the
tritocerebrum connect the protocerebrum, deutocerebrum,
gnathal ganglion, and stomatogastric nervous system.

Serotonin-Immunoreactive Neurons
Associated With Gnathal Ganglion
In the gnathal ganglion, the serotonin-immunoreactive neurons
also show high conservation across insect taxa. All three
neuromeres of the gnathal ganglion in H. armigera larvae,
i.e., the mandibular, maxillary, and labial neuromeres contain
widespread processes originating in serotonin-immunoreactive
cell clusters on both sides. The thick processes form a horseshoe
pattern, cross the midline via a commissure and project
anteriorly to the contralateral tritocerebrum. Such neurons and
their branching patterns were also found in larvae of M. sexta,
T. molitor and the flies, D. melanogaster, C. erythrocephala,
S. bullata (Nässel and Cantera, 1985; Griss, 1989; Breidbach,
1990; Huser et al., 2012). In adults of these species, serotonin-
immunoreactive neurons and processes in the gnathal ganglion
well persist during metamorphosis. Similar neurons were also
found in S. gregaria, A. mellifera, and P. americana (Bishop
and O’Shea, 1983; Tyrer et al., 1984; Rehder et al., 1987;
Vallés and White, 1988; Griss, 1989; Homberg and Hildebrand,
1989a; Breidbach, 1990). Each cell cluster contains two cell
bodies. In flies, however, there are 2–5 cell bodies in each
cluster (Nässel and Cantera, 1985; Vallés and White, 1988;
Huser et al., 2012). In addition, there are 3–4 large serotonin-
immunoreactive cells the medial gnathal ganglion. Similar results
were also found in S. gregaria, P. americana, and larval and
adult M. sexta (Bishop and O’Shea, 1983; Tyrer et al., 1984;
Griss, 1989; Homberg and Hildebrand, 1989a). They were
identified as efferent neurons in the mandibular neuromere
(Tyrer et al., 1984; Griss, 1989; Homberg andHildebrand, 1989a).
Intracellular recordings from such neurons of M. sexta larvae
revealed overshooting soma spikes of large amplitude and long
duration, which suggest these neurons are neurosecretory cells
(Griss, 1989). In addition, in the gnathal ganglion of S. gregaria,
four serotonin-immunoreactive neurons innervate the salivary
gland (Tyrer et al., 1984); these neurons have not been found in
H. armigera larvae.

In H. armigera larvae, compared to the brain, the neuropil
volume of the gnathal ganglion is smaller and the sub-regions
are fewer (Tang et al., 2014). Correspondingly, the number of
serotonin-immunoreactive neurons in the gnathal ganglion is
lower and neuronal branch patterns are more concise.

CONCLUSION

Wehave provided, for the first time, a comprehensive description
of the serotonergic neuronal network in H. armigera larvae. In

accordance with its widespread presence in insects, serotonin
plays a variety of roles. In the present study, we found there
are about 40 serotonin-immunoreactive neurons in the brain
and about 20 in the gnathal ganglion. Most of these neurons
are wide-field neurons giving rise to processes throughout
the neuropils of the brain and the gnathal ganglion. In the
central brain, serotonin-immunoreactive processes are present
bilaterally in the tritocerebrum, the deutocerebrum, and major
regions of the procerebrum, including the CB, the LAL, the
clamp, the cripine, the superior protocerebrum, and the lateral
protocerebrum. These results indicate that serotonin may play a
variety of roles in H. armigera. Particularly, the AVLP, CB, and
the POTU contain extensive serotonin-immunoreactive process
terminals. The CB has been demonstrated to be a locomotion
and navigation center, and the POTU is involved in navigation in
locust (Pfeiffer andHomberg, 2014; Beetz et al., 2015). The AVLP
in moths is a region involved in sound information processing
(Pfuhl et al., 2014). The high serotonin-immunoreactivity in the
CB, the POTU and the AVLP might indicate that serotonin
plays important roles in H. armigera larvae for locomotion and
sound reception. However, the MB, the lateral horn, and the
PB are devoid of serotonin-immunoreactivity. The MB and the
lateral horn are higher olfactory centers of insects. The absence of
serotonin in these centers suggests that serotonin is not involved
in the modulation of higher centers. Instead, serotonin has been
demonstrated to modulate the olfactory information in the AL
by giving the feedback to the protocerebrum (Kloppenburg and
Mercer, 2008). In addition, the MB is the learning and memory
center and serotonin has the function of learning and memory
(Sitaraman et al., 2008, 2012). The absence of serotonin in
the MB indicates serotonin may play no role in learning and
memory in H. armigera larvae. In the gnathal ganglion, the
serotonin-immunoreactive processes are also widespread, and
most, if not all, of the neurons project to the tritocerebrum. The
gnathal ganglion is the gustatory center, while the tritocerebrum
is the stomatogastric center. The links between serotonin-
immunoreactive neurons from these two centers suggest the
serotonin plays important roles in feeding, from selection to
intake digestion.

In summary, the results of the present study provide a
comprehensive description of the serotonergic neuronal network
in H. armigera larvae, and show a map of the neural architecture
and the distribution of neural substances, allowing us to explore
the neural mechanisms of behaviors, such as host selection,
navigation, and feeding preference and plasticity, by using
electrophysiological and pharmacological approaches on the
target regions.
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