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Obtaining a catalog of cell types is a fundamental building block for understanding the
brain. The ideal classification of cell-types is based on the profile of molecules expressed
by a cell, in particular, the profile of genes expressed. One strategy is, therefore, to
obtain as many single-cell transcriptomes as possible and isolate clusters of neurons
with similar gene expression profiles. In this study, we explored an alternative strategy.
We explored whether cell-types can be algorithmically derived by combining protein
tissue stains with transcript expression profiles. We developed an algorithm that aims to
distribute cell-types in the different layers of somatosensory cortex of the developing rat
constrained by the tissue- and cellular level data. We found that the spatial distribution of
major inhibitory cell types can be approximated using the available data. The result is a
depth-wise atlas of inhibitory cell-types of the rat somatosensory cortex. In principle,
any data that constrains what can occur in a particular part of the brain can also
strongly constrain the derivation of cell-types. This draft inhibitory cell-type mapping is
therefore dynamic and can iteratively converge towards the ground truth as further data
is integrated.

Keywords: cell density, rat brain, inhibitory interneurons, somatosensory cortex, composition, cell types, cell
counting, neuronal distribution

INTRODUCTION

Mapping the anatomical location of interneurons subtypes within the cerebral cortex is an unsolved
problem. Interneurons exhibit different morphological and electrophysiological properties and
consequently, each type of interneuron plays a unique role in nervous system function (Markram
et al., 2004). Therefore, properly placing cells in the correct layer is an important step in creating
models of cortical function. Simulations of the cortex, for example, can potentially use the resulting
cell type-specific densities (Markram et al., 2015; Schmidt et al., 2018).

The definition of what constitutes particular cell types is not yet fully established, though
standards are emerging (Petilla Interneuron Nomenclature Group, 2008). Neurons in the cortex
can be classified in terms of their electrical and morphological properties, the projection patterns,
and the proteins and genes they express (ibid.). We expect that the most detailed classification will
come from single-cell transcriptomes. Asmany as 50 cortical interneuron typesmay exist (Lim et al.,
2018). A definitive classification together with a distribution approach will allow establishment
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of the cell-type composition of the whole brain, brain regions,
areas and nuclei, and layers in any region (Zeisel et al., 2015).

Currently, inhibitory neurons in rodent somatosensory cortex
can be categorized into at least the following morphological
types: Martinotti cells (MC), Double Bouquet cells (DB), Bitufted
Cells (BC), Bipolar cells (BP), Neurogliaform Cells (NGC),
Chandelier Cells (ChC), Small Basket Cells (SBC), Large Basket
Cells (LBC), and Nest Basket Cells (NBC; Markram et al.,
2004). Additional sub-classification can be made according
to electrophysiology (Contreras, 2004), and their transcript
expression (Zeisel et al., 2015; Lake et al., 2016; Mi et al., 2018).

Here, we develop a fitting approach to first establish the
distribution of morphologically defined inhibitory cell types
based on their molecular staining. We focus on interneurons
because there is a clearly-identified subset of proteins known to
be expressed in separate populations of interneurons: calbindin
(CB), calretinin (CR), neuropeptide Y (NPY), parvalbumin (PV),
somatostatin (SOM) and vasointestinal peptide (VIP; Rudy et al.,
2011; Tremblay et al., 2012). These protein markers have been
previously shown as extremely valuable tools for the classification
and identification of inhibitory neuron subtypes (Xu et al., 2010).
The fitting process then adjusts the density of the inhibitory
neuron types in order to best match the density of markers seen
in multiple experimentally stained tissue sections.

Based on these approaches, morphological interneuron types
can then be categorized depending on the expression level (RNA
and/or protein) of each of these markers. For example, NGC
cells are positive for NPY (Zambrano, 2012), ChC cells are
positive for PV (Tremblay et al., 2016) and in some cases CB
(del Rio and DeFelipe, 1997; Rocco et al., 2017), whereas BTC
cells can be positive for all markers except PV (Arbib, 2003).
In this study, we use cell counts obtained from fluorescent
immunohistochemistry images of these proteins in conjunction
with reverse-transcriptase polymerase chain reaction (RT-PCR)
measurements of transcript expression levels as cell type makers,
to predict the number of each inhibitory cell morphology type,
through the depth of the somatosensory cortex of P14 rat.

We provide an algorithm to distribute cellular types in the
cortical column of the developing rat that matches well the
experimental data. The presented method improves biological
relevance of digital simulations of the neocortex, and provides a
framework for the improvement of models of other brain regions
and cell subtypes as more data becomes available. For example,
single-cell transcriptomics data for many genes is now available
(Zeisel et al., 2015, 2018; Tasic et al., 2016, 2018; Saunders
et al., 2018), though co-registration with electrophysiological and
morphological properties is not always performed.

MATERIALS AND METHODS

Immunohistochemistry
Animals
All animal procedures were approved by the Veterinary
Authorities and the Cantonal Commission for Animal
Experimentation of the Canton of Vaud, according to the
Swiss animal protection laws.

Outbred Wistar Han rats (Janvier Laboratories, France) were
ordered with their litter aged to 8 postnatal days (P8). Dams were
housed individually and allowed to raise their own litters until
experimentation onmale offspring on P14. Animals were housed
in standard plastic laboratory cages, with bedding, nesting
material and paper tube and ad libitum access to food and water,
cleaned once a week, and kept in a 12 h light-dark schedule
with lights on at 6:30 am, in rooms under controlled humidity
and temperature.

Brain Tissue Processing
On P14, rats were transferred to the experimental room
and allowed to acclimatize, before being deeply anesthetized
with pentobarbital (intraperitoneal dose 150 mg/kg; conc.
150 mg/ml), followed by transcardial perfusion with cold
0.1 M phosphate buffer (PB; pH 7.4), then by cold 4%
paraformaldehyde (PFA) in PB 0.1 M. The brain was dissected
from the skull, postfixed overnight in 4% PFA (4◦C) and
rinsed in PB 0.1 M. Brains were consecutively stored in
15% sucrose solution (in PB 0.1 M) at 4◦C during an
approximate of 24 h, followed by 30% sucrose solution at
4◦C during approximately 24 h. Sagittal sections from the
right hemisphere were cut on a cryostat at 50 µm with an
approximate angle of 3–5 degree rotation along the anterior-
posterior axis. Brain slices were stored in cryoprotectant until
immunohistochemistry assays.

Protein Staining
To quantify the density of the total neurons in the neocortical
column, we first stained the brain slice using antibodies against
neuronal nuclear protein (NeuN); which is expressed in all
neurons; and γ-aminobutyric acid (GABA); which is specific
to inhibitory interneurons (methods and results detailed in
Markram et al., 2015; Figure 1A). The primary antibodies were
mouse anti-neuron specific nuclear protein 1:1,000 (anti-NeuN,
Chemicon, MAB377) and rabbit anti-GABA 1:500 (anti-GABA,
Sigma-Aldrich Inc., A2052).

We re-counted the original dataset and mapped the resulting
density into 100 equal-width bins extending from the top of layer
1 (L1) to the bottom of layer 6 (L6). The obtained cell densities
were smoothed using a moving average of width four bins. The
smooth curves were rescaled to match counts obtained through
stereology in the center of each layer (Markram et al., 2015).
The scaling factor differed between layers and was interpolated at
points between the layer centers in order to obtain a contiguous
output. Smoothing was done by fitting the averaged trace with a
piecewise linear function with line segments of width five bins
and averaging the results of using all possible starting offsets.
Inhibitory interneuron density was also measured for use as a
later constraint in the fitting process.

To obtain the layer-dependent protein expression data in
P14 rat, brain slices from somatosensory cortex (from Bregma:
1.90 to 2.40 mm lateral; Paxinos and Watson, 1998) were
immunostained and processed against inhibitory cell protein
markers (Table 1) following previously-published methods
(Markram et al., 2015), using the following proteins: CB, CR,
NPY, PV, SOM and VIP. For visualization of laminar and area
boundaries and for cell counting quality procedures, slices were
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FIGURE 1 | Workflow for input data to predict cell-type distribution profiles. (A) Experimental pipeline to obtain anatomical location of interneuron subtypes based
on immunostaining profiles: first, collect and fix brain tissue, then run separate immunoassays on separate brain slices, each staining for a known cell type-specific
protein, then take the average distribution of each cell type, and combine them on a map of the cortical column. Six different inhibitory cell markers were stained for,
as well as neuronal nuclear protein (NeuN) and γ-aminobutyric acid (GABA). (B) Experimental pipeline to obtain interneuron single-cell morphology and
transcriptomics: harvest tissue and patch-clamp to record the electrophysiological profile while injecting biocytin intracellularly, followed by cytoplasmic harvesting
(Toledo-Rodriguez et al., 2005). Subsequent tissue fixation and digital reconstruction give cell morphology. Reverse-transcriptase polymerase chain reaction
(RT-PCR) of the harvested cytoplasm yields transcript expression levels. The RT-PCR transcript expression data is averaged on a cell type-specific basis to produce
a refined transcript expression matrix. The entries correspond to the proportion of cells of a particular morphological type expressing a particular marker, so the rows
and columns do not need to add up to unity.

TABLE 1 | Antibodies in use for each marker.

Primary antibody Secondary antibody Nucleic acid staining

Calbindin (CB) Mouse monoclonal anti-calbindin, Swant
300, 1:2,500

Donkey anti-mouse, Alexa Fluor 568,
Invitrogen A10037, 1:1,000

DAPI, Sigma-Aldrich D9542, 1:25,000

Calretinin (CR) Mouse monoclonal anti-calretinin, Swant
6B3, 1:5,000

Donkey anti-mouse, Alexa Fluor 568,
Invitrogen A10037, 1:1,000

DAPI, Sigma-Aldrich D9542, 1:25,000

Neuropeptide Y (NPY) Rabbit polyclonal anti-neuropeptide Y,
Immunostar 22940, 1 :2,500

Donkey anti-rabbit, Alexa Fluor 568,
Invitrogen A10042, 1:1,000

DAPI, Sigma-Aldrich D9542, 1:25,000

Parvalbumin (PV) Goat polyclonal anti-parvalbumin, Swant
PVG-213, 1:2,000

Donkey anti-goat, Alexa Fluor 568,
Invitrogen A11057, 1:1,000

DAPI, Sigma-Aldrich D9542, 1:25,000

Somatostain-14 (SOM) Rabbit polyclonal anti-somatostatin,
Peninsula T-4103, 1:2,500

Donkey anti-rabbit, Alexa Fluor 568,
Invitrogen A10042, 1:1,000

DAPI, Sigma-Aldrich D9542, 1:25,000

Vasointestinal peptide (VIP) Rabbit polyclonal anti-vasoactive intestinal
peptide, Immunostar 20077, 1:750

Donkey anti-rabbit, Alexa Fluor 568,
Invitrogen A10042, 1:1,000

DAPI, Sigma-Aldrich D9542, 1:25,000

stained for 4′,6-diamidino-2-phenylindole (DAPI; Figure 1A,
Supplementary Table S1).

Microscopes and Immunofluorescence (IF)
Standard confocal microscopy was performed on multi-
color immunostained brain slices on a confocal microscope
(LSM700, Zeiss) in the upright configuration with 40×/1.30 NA

Plan-Apochromat oil-immersion objective (Zeiss). Acquisitions
of the neocortical column on its entire length and slice thickness
(50 µm) were performed with a zoom factor of 1 (to minimize
uneven illumination artifacts), with a pixel size of 0.15 µm
and a z-step of 1 µm, and with pinhole size set at 33 µm
(or 1.0 Airy unit, optimized for A568), leading to an optical
section of 1.0 µm. The DAPI signal was obtained using laser

Frontiers in Neuroanatomy | www.frontiersin.org 3 August 2019 | Volume 13 | Article 78

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Keller et al. Inhibitory Cell Profiles in the Rat Brain

FIGURE 2 | The fitting procedure. Cell type-specific densities are optimized such that the expression pattern of predicted markers best matches the experimental
marker distribution, for all markers.

excitation at 405 nm; single-probe-labeled slices were excited
with 555 nm laser. Images were visualized using ZEN software
(ZEN 2009, Zeiss) and processed using the open source image
processing package Fiji (Schindelin et al., 2012; public domain,
GPL v2 license). A quality check of brain regions was performed
on images captured with a slide scanner (Olympus, VS120-L100)
with a 10×/0.40 UPLSAPO air objective (Olympus) by visually
comparing them with the Rat Brain Anatomy Atlas (Paxinos and
Watson, 2014). Data were excluded if not part of the primary
somatosensory cortex, hindlimb region (S1HL).

Image Processing
Image processing (stitching, reslicing, maximum intensity
projections and height map calculation), the cell counts and
the layer boundaries drawings were performed with Fiji
processing package.

Cell Counting
Cells immunostained for the expression of specific protein were
counted following stereology rules on the resliced projections,
using the cell counter plugin from Fiji1. The whole S1HL
acquired volume was counted. The top and left borders were
excluded from the cell counts but we have considered the –z top
and the –z bottom of the slice being part of the volume. A slice
thickness of 50µm (equal to the theoretical slicing thickness) was
used in the volume calculation. Cell counts were divided by layer
volume to obtain an estimate for the density of cells expressing a
particular marker within each bin.

1https://imagej.nih.gov/ij/plugins/cell-counter.html

To facilitate counting of cells, a series of macros were used
to relate the cursor’s position between two opened images
(one of which is assumed to be a reslice from the other). A
cell was considered being positive when both the DAPI and
the specific cell marker were stained. DAPI co-staining was
necessary to ensure that cell bodies and not finer processes were
counted. Cells that were doubtful or negative for one or both
the conditions were excluded. Cell counts were performed by
one experimenter and peer-verified completely at least once to
ensure that: (1) no cells were missing; (2) each cell marked
was positive for the marker and DAPI; and (3) no cells were
counted twice.

Single-Cell Electrophysiology, Morphology
and Transcriptomics
We used a data set obtained in a previously-published
work (Toledo-Rodriguez et al., 2005). Individual neurons
in P13–P16 rat somatosensory cortex were characterized
for their electrical, morphological and transcript expression
(RNA) properties. Briefly, during whole-cell patch-clamp
electrophysiological recordings, neurons were also loaded
intracellularly with the chemical compound biocytin, for
subsequent immunohistochemistry and digital reconstruction of
their morphological characteristics. To obtain cell-type transcript
expression profiles, the same cells with electrophysiological
measurements and biocytin injected for morphological
reconstructions, also had their cytoplasm harvested at the
end of experimentation, for single-cell RT-PCR measurements.
The same six proteins targeted in the immunohistochemistry
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experiment were studied (CB, CR, PV, NPY, VIP and SOM).
This allowed characterization of cells according tomorphological
types (Figure 1B). For each cell, the detected RNA expression of
a target gene was encoded as one and its absence as zero. For a
given cell, this resulted in a binary vector whose length was the
number of genes. Multiple instances of each morphological cell
type were present in the complete data set.

Fitting Procedure
The goal is to solve for the cell densities of each morphological
type (m-type) in every bin of the neocortical column (Profile
Matrix), using as input a Transcript Expression Matrix derived
from RT-PCR and a Protein Matrix derived from the stained
images. An overview of the process is given in Figure 2.

The ‘‘Transcript Expression Matrix’’ is the measure of the
frequency of each RNA transcript marker for each interneuron
m-type (data from RT-PCR experiment, Figure 1B). The
dimensions of this matrix are the m-types by the measured
number of transcript. If every cell of a particular m-type
expressed a given RNA marker, the frequency of expression
would be 1. If the targeted RNA is not expressed, the frequency
of expression is 0. After averaging across m-types, the expression
frequency is hence a value between 0 and 1.

The ‘‘Protein Matrix’’ is the measure of the density of cells
expressing each protein marker in every bin of the neocortical
column (data from the immunohistochemistry experiment,
Figure 1A). The dimensions of this matrix are the number
of protein-positive cells by the number of bins. It is equal
to the product of the proportion of each morphological type
expressing the transcript marker and the profile matrix, as in the
following equation:

[Protein Matrix] = [Transcript Expression Matrix]
[Profile Matrix]

Therefore, the Profile Matrix can be solved for as:

[Profile Matrix] = [Transcript Expression Matrix]−1

[Protein Matrix]

In order to obtain a better estimate for inhibitory cell type
density, we constrained the total sum of inhibitory neurons
types to be equal to the total measured distribution of inhibitory
interneurons, as measured from GABA staining. This was done
by appending a row corresponding to the inhibitory cell density
to the proteinmatrix and appending a corresponding row of ones
to the transcript expression matrix. Another constraint was that
the solution be non-negative. We could then solve for the profile
matrix that would best satisfy the constraints.

In order to obtain a robust prediction of cell-type profiles
reflecting the uncertainty in each input measurement, we
sampled from a normal distribution with the standard deviations
measured for every entry in the transcript expression matrix
and the protein matrix. This process was repeated 500 times
and the results were averaged together to obtain the final profile
matrix used as the solution. We performed this fitting process in
Matlab (Mathworks, Natick, MA, USA). Hence, the final output
represents an average brain, rather than a unique individual.

The sample size of collected Chandelier cells in the RT-PCR
data set was low (n = 4 of 226 total cells). Therefore, we did not
attempt to fit ChC but rather took their proportion in each bin to
be a fixed proportion (1.8%) of the total inhibitory cell density in
that bin. All of the other inhibitory cell types were obtained from
the predicted profiles.

RESULTS

Single-Cell Electrophysiology, Morphology
and Transcriptomics
The RT-PCR data set collected in Toledo-Rodriguez et al. (2005)
was used. It had 45 MCs, 11 BPs, 27 BCss, 4 ChCs, 12 DBs,
69 LBCs, 47 NBCs, and 11 SBCs Almost all MCs expressed SOM
(98%). BPs expressed CR and VIP at moderate frequencies (36%
and 45%). BCs expressed CB and CR at moderate frequencies
(35% and 33%). DBs expressed VIP at high frequency (73%).
SBCs expressed CB at moderate frequencies (36%). LBCs and
NBCs expressed most markers except for CR and VIP.

Immunohistochemistry
Neuron Fractions
The densities of excitatory and inhibitory neurons per bin (E-I
fractions) were established by counting cells stained for NeuN (all
neurons), and GABA (all inhibitory neurons) in the tissue block
(Figure 3A). For visualization of laminar and area boundaries
and for cell counting quality procedures, slice was stained for
DAPI. Overall, excitatory and inhibitory neurons represented
87% ± 1% and 13% ± 1% of the population, respectively,
with a trend toward higher fractions of excitatory neurons in
deeper layers (Figures 3B,C). Total neuron density was highest
in L2 and L4 (Figure 3B). Inhibitory cell density was highest in
L2 (Figure 3C).

Inhibitory Protein Markers
The IF images produced high-resolution volumetric data sets. At
least three brain slices (data sets) were analyzed for each protein
marker (Figure 3D), from at least two animals per marker
(sources delineated in Supplementary Material). The chosen
antibodies targeted epitopes localized in the cell body, allowing
counting of cells (Figure 4). The average coefficient of variation
per bin was 1.7 across all stains. This high variability might be
attributable to the fact that expression levels are rapidly changing
at this age (Sánchez et al., 1992; Schierle et al., 1997).

CB positive inhibitory cells (n = 3 slices) showed a
heterogeneous distribution throughout the cortical column
depth (from L2 to L6), exhibited layer-averaged peaks in L2/3 and
L5, consistent with previous studies in adult rat (Gonchar
and Burkhalter, 1997). With rare cell marked in L1 (4% of
labeled cells in volume), a highest number in L2/3, L5 and L6
(29%, 23% and 36% of labeled cells in volume, respectively).
As expected (Hof et al., 1999), some pyramidal cell bodies
were stained and we observed subcellular localization of the
CB stain in cytoplasm and nuclei for both interneurons and
pyramidal cells, in addition to arborization stainings. Only
pyramidal cells from L2/3 seem to be CB-positive (Staiger
et al., 2004; Gonchar et al., 2008). Considering the stains
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FIGURE 3 | Immunohistochemistry-labeled cell densities across cortical layers. (A) NeuN and GABA+ cells were stained and counted in the same slice to obtain
density estimates. (B) Total neuron density smoothed estimates using 100 bins are shown in the green line. The purple line shows estimates obtained in the center of
each layer using stereological techniques (Markram et al., 2015). The green line shows the final scaled version of the neuron estimates. This was obtained by scaling
the raw densities to match the more accurate stereologically-obtained layer densities at the center of each layer (Markram et al., 2015). Scaling factors were L1:
2.36, L2: 1.34, L3:0.9, L4:1.04, L5a:1.28, L5b: 1.37, L6: 1.15. (C) Total inhibitory interneuron density from the experiment. (D) Cell density as a function of cortical
depth for common interneuron protein markers: calbindin (CB), calretinin (CR), neuropeptide Y (NPY), parvalbumin (PV), somatostatin (SOM) and vasointestinal
peptide (VIP). A cortical depth of zero corresponds to the top of L1, while 100 is the bottom of L6. The blue lines are the averages data, while the black lines are the
smoothed data. Gray indicates the range of the standard error of the mean for the average values.

FIGURE 4 | Maximum intensity projections of typical soma shapes observed for various markers (CB, CR, NPY, VIP, SOM, PV). The upper line shows multipolar
neurons, whereas the lower line shows bipolar neurons. Note that no example of bipolar-shaped somas could be found for PV. Scale bar is 25 µm.
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enabled morphological visualization, we also observed different
anatomical types, bipolar and multipolar for interneurons, and
pyramidal for excitatory cells. The average density across S1HL
somatosensory cortex was 2,124± 322 cells/mm3.

Inhibitory neurons stained for CR (n = 3 slices) showed
a heterogeneous distribution throughout the cortical column
depth, with rare cell marked in L1, L5 and L6 (5%, 19%, and
26% of cells in volume, respectively) and a highest number
in L2/3 (36% of cells in volume). The layer-averaged peaks in
L2/3 and L5 agree with studies of adult rats (Gonchar and
Burkhalter, 1997).We observed subcellular localization of the CR
stain in cytoplasm and nuclei for interneurons cells, in addition
to arborization stainings. We observed bipolar and multipolar
interneurons anatomical types. The average density across S1HL
somatosensory cortex was 1,576± 554 cells/mm3.

Inhibitory neurons stained for SOM (n = 5 slices) showed a
homogenous distribution throughout the cortical column depth,
except in L1 (1% of cells in volume), and a highest density
in L5 and L6 (29% and 32% of cells in volume, respectively).
We observed subcellular localization of the SOM stain in
the cytoplasm (nucleus not stained) for interneurons cells, in
addition to arborization stainings (with a highest density in L1).
We observed different anatomical types with a majority of the
cells being multipolar but some showing a bipolar morphology
with ovoid-shaped soma (Wang et al., 2004). SOM peaked in
L6, in agreement with the adult rat (Gonchar and Burkhalter,
1997). The average density across S1HL somatosensory cortex
was 2,496± 344 cells/mm3.

PV (n = 3): as expected (Tremblay et al., 2016), inhibitory
neurons stained for PV showed a heterogeneous distribution
throughout the cortical column depth, with lower amount of
cells marked in L1 (10% of cells in volume) and a highest
number in L4 (15% of cells in volume). We observed subcellular
localization of the PV stain in cytoplasm and nuclei for
interneurons, in addition to arborization stainings (highest
density in L4). PV peaked in L4, in contrast to the adult animal,
in which a peak was observed in L5 (Gonchar and Burkhalter,
1997). We observed multipolar PV positive interneurons.
The average density across S1HL somatosensory cortex was
3,160± 554 cells/mm3.

NPY positive inhibitory cells (n = 3 slices) showed a
heterogeneous distribution throughout the cortical column
depth, with rare cell marked in L1 (4% of cells in volume)
and a highest number in L5 and L6 (14% and 45% of cells in
volume, respectively). These results differ from previous reports
of NPY-expressing interneurons as a majority of L1 interneurons
(Karagiannis et al., 2009). We observed subcellular localization
of the NPY stain in the cytoplasm and arbors (highest density
in L1), but not in the nucleus. We observed different anatomical
inhibitory cell types: bipolar and multipolar. NPY density peaked
in L6. The average density across S1HL somatosensory cortex was
676± 244 cells/mm3.

As shown in the barrel cortex of mice (Prönneke et al.,
2015), inhibitory neurons stained for VIP (n = 3 slices) showed
a heterogeneous distribution throughout the cortical column
depth, with fewer cells marked in L5 and L6 (9% and 14%
of cells in volume, respectively) and a higher number in L2/3

(57% of cells in volume). We observed subcellular localization
of the VIP stain in the cytoplasm (nucleus not stained), in
addition to arborization stainings. Considering the stains enabled
morphological visualization, the majority of the positive cells
show a fusiform anatomical type and in L5 and L6 a multipolar
pattern. The average density across S1HL somatosensory cortex
was 797± 187 cells/mm3.

Fitting of Cell Types
Applying the fitting procedure (see equations in ‘‘Materials and
Methods’’ section and Figure 2 for explanation) produced an
estimate of the morphological types within each layer (Figure 5).
L1 cell types used were not present in the RT-PCR data set, so we
cannot predict these the composition of L1. With this caveat, we
performed the mapping of the cell types from the other layers to
L1 for the sake of completeness.

With the limited number of markers, LBC and NBC cells
cannot be reliably distinguished in the RT-PCR data set.
Therefore, for the purposes of fitting, we combined them into
a common group, LBC-NBC. After the profile was assigned, it
was post-facto re-divided into separate LBC and NBC groups.
Accordingly, 59.5% of the LBC-NBC profiles were assigned to
be LBC and the rest to NBC, since this proportion reflects the
frequency in the sampled dataset.

It is not possible to perfectly match all the original staining
profiles. NPY positive cells are relatively few so the error
contribution is outweighed by the contribution of the other
cell types. PV is expressed primarily by the LBC/ NBC
morphology type in the data set, which also happens to
express CB, NPY, and CCK at moderate levels. Improved
fitting of the PV marker would therefore likely result in
poorer match for the other markers. Division of the original
morphology classes into additional subtypes could potentially
improve the fit.

Predicted densities were used to make a virtual slice plot
in which cells of each type were placed in representative layer
positions (Figure 6A) and a layer-wise bar plot (Figure 6B). The
percent composition in L2/3 is dominated by LBCs and NBCs,
while in the deeper layers MCs are also prevalent. Other cell
types, most notably SBCs, make up the remainder.

To validate the results, transcript expression density by layer
was compared to the result of a previous estimate obtained
by large-scale experimental sampling (Markram et al., 2015).
Although the most frequent morphological types exhibited
acceptable agreement and correlation with the experimental
results (Figure 6C), lower frequency expressed morphological
types could not be reliably distinguished. This aspect can
be explained by high variability of immunohistochemistry
and RT-PCR measurement, and can be improved with larger
sample size.

Some common trends are apparent when comparing the
experimental and predicted profiles of the most frequent cell
types (Markram et al., 2004). LBCs and NBCs are broadly
expressed, with a peak in percent composition in L4. This
is in agreement with results in the literature (ibid.). The
predicted MCs cell density proportion peaks in the deep layers,
also consistent with literature results (ibid.). SBCs cell density
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FIGURE 5 | High-resolution fitting results. (A) Experimental profiles for Small Basket Cells (SBC), Double Bouquet (DB), Large and Nest Basket Cells (LBC-NBC),
Bipolar cells (BP), Bitufted Cells (BC), Martinotti Cells (MC), Chandelier cells (ChC). (B) The predicted marker distribution (red) and experimental marker distribution
(black).

is higher expressed in L2/3, again consistent with literature
results (ibid.). Trends for less frequent cell types were not as
evident. Some common trends are apparent when comparing
the experimental and predicted profiles of the most frequent
cell types.

Finally, the expression profile resulting from the cell
distribution prediction was compared to the original
experimental staining profile (Figures 5B, 6D). Although
the contour and trends are generally followed, mismatch in the
magnitude occurs.

DISCUSSION

In this work, we have developed a fitting method for
estimating the distribution of inhibitory interneurons in P14 rat
somatosensory cortex. This method obviates the need to directly
sample cortical regions to determine morphological composition
and is, therefore, less laborious than traditional methods.

Every predicted configuration of inhibitory interneuron
profiles results in a corresponding total marker expression
profile when cells expressing a given marker are summed. The
method finds the density of cells of all types that minimizes
the error between the predicted expression of markers and the
experimental immunostained images of the same markers.

This method offers several advantages over traditional
methods: it is less prone to bias caused by certain cell types being
chosen over others in the sampling process; this is because it uses
cell density information collected by counting cell somas directly

and not staining intensity as a proxy for cell density as done in
other methods (Grange et al., 2014), it is not subject to artifacts
caused by variations in soma sizes. However, we recognize
that there could be some cell counting bias in subjectively
determining if a cell positively expresses a particular marker.

Finally, it uses cell types that have been linked to both
morphology and electrophysiology, allowing the use of an
extensive dataset collected for other purposes (Toledo-Rodriguez
et al., 2005). The working assumption is that levels of RNA
expression for a particular gene correspond well with the protein
expression obtained via immunohistochemistry. This may not
necessarily be the case since protein degradation rates can differ
and translational regulatory mechanisms can result in different
levels of protein relative to mRNA levels.

One drawback of the method is that, because it uses image
data drawn from different slices, the fit profiles do not necessarily
correspond to any particular individual cell. Recent advances in
colabeling of the transcriptomic state of single cells (Codeluppi
et al., 2018; Wang et al., 2018) have the potential to allow more
accurate assignment of cell types.

For the most part, the results obtained by the new method
agree with the trends seen in earlier work in which hundreds
of cells were sampled in different layers (Markram et al.,
2004, 2015). The calculated MCs density in the deep layers
in our prediction is lower than these estimates. Furthermore,
we have additional substructure in the distributions due to
the finer sampling bins used. This substructure is most
evident at the layer 1–layer 2 boundary. The overall inhibitory
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FIGURE 6 | Distribution of predicted marker expression and validation. (A) Virtual slice. Scale bar is 100 µm. Note that layer 1 cell types cannot be predicted using
the available data and so are not included. (B) Composition results. The most prevalent types are Martinotti cells, Large Basket Cells, and Nest Basket cells. (C)
Correlation of predicted fractions vs. experimental fractions (r = 0.85) and experimental comparison of the two most common inhibitory cell types (LBC and MC). In
the case of a perfect prediction, all points would lie on a straight line. BPs are overpredicted while NBCs are underpredicted. (D) Comparison of predicted expression
of protein cell markers (right subpanels, red) to experimental stainings (left). Scale bar is 100 µm.

cell profile also agrees with experimental measurements
(Meyer et al., 2011).

Two factors, in particular, could lead to improve results.
First, there are likely to be more subdivisions of inhibitory cell
types than the ones used here. For example, transcriptome-based
study described 16 types of interneuron in the somatosensory
cortex (Zeisel et al., 2015). Subtypes can be expected to
exhibit different properties in electrical behavior. Furthermore,
we expect that additional transcriptomics data will also allow
improved subtype classification of neurons and identification
of markers specific to those types. In this manner, the
approach can be extended to include more cell types and
additional regions of the brain. If more subtypes were to

be mapped, however, one would need to use more protein
markers for different cell-specific gene products. Second, the
accuracy of the results would benefit from more antibody
staining image replicates for each marker. As automatic cell
counting methods improve, more cell counting datasets suitable
for this method will become available. Since the mean cell
density for a given marker is used as input in the process,
having more replicates would decrease the standard error
of the mean (increase the certainty of estimation of the
true mean).

Overall, we have shown that a fitting approach can be
used to estimate cell densities at finer levels of resolution than
previously possible. Cell type distributions are predicted without
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the need to count each type separately. The method is scalable to
accommodate more data as it becomes available.
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