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Daily torpor is an energy-saving process that evolved as an extension of non-rapid
eye movement (NREM) sleep mechanisms. In many heterothermic species there is a
relation between torpor expression and the repartition of the different behavioral states
of sleep. Despite the presence of sleep during this period of hypothermia, torpor induces
an accumulation of sleep debt which results in a rebound of sleep in mammals. We
aimed to investigate the expression of sleep-wake rhythms and delta waves during
daily torpor at various ambient temperatures in a non-human primate model, the gray
mouse lemur (Microcebus murinus). Cortical activity was measured with telemetric
electroencephalography (EEG) recordings in the prefrontal cortex (PFC) during the torpor
episode and the next 24 h following hypothermia. Gray mouse lemurs were divided
into two groups: the first group was subjected to normal ambient temperatures (25◦C)
whereas the second group was placed at lower ambient temperatures (10◦C). Contrary
to normal ambient temperatures, sleep-wake rhythms were maintained during torpor
until body temperature (Tb) of the animals reached 21◦C. Below this temperature, NREM
and REM sleep strongly decreased or were absent whereas the EEG became isoelectric.
The different states of sleep were proportional to Tbmin during prior torpor in contrast to
active phases. Delta waves increased after torpor but low Tb did not induce greater delta
power compared to higher temperatures. Our results showed that Tb was a determining
factor for the quality and quantity of sleep. Low Tb might be inconsistent with the
recovery function of sleep. Heterothermy caused a sleep debt thus there was a rebound
of sleep at the beginning of euthermia to compensate for the lack of sleep.

Keywords: gray mouse lemurs, EEG, sleep, torpor, body temperature

INTRODUCTION

Sleep is a regulated recovery mechanism (Tilley et al., 1987; Tononi and Cirelli, 2006), the
timing of which is gated by the circadian clock that modulates its expression according to
endogenous and exogenous factors such as nutritional status or light (Edgar et al., 1993;
Wyatt et al., 1999). This state can be characterized by different behavioral criteria such
as relative inactivity accompanied by a loss of consciousness, reduced responsiveness to
external stimulation, decreased homeostasis and a rapid reversibility (Zimmerman et al., 2008).
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This last point differentiates sleep from coma or anesthesia
(Campbell and Tobler, 1984). Extended wakefulness periods
induce an increase in sleep need related to the duration of
prior wakefulness and this sleep pressure is dissipated during the
next sleep period (Tobler, 2005). Sleep plays an important role
in different processes such as synaptic plasticity and memory
functions (Tononi and Cirelli, 2014) and metabolic functions
and energy balance (Schmidt, 2014). The amount and nature
of sleep is vary according to age, size and ecological factors
(Siegel, 2005). In mammals, sleep is divided into two broad types:
non-rapid eye movement (NREM) and rapid eye movement
(REM) sleep (Rial et al., 2010; Roebuck et al., 2014). These
two types of sleep occur alternatively in cycles throughout the
night (Tobler, 1995). During NREM sleep, biological functions,
such as metabolism, are reduced, and energy is allocated to
repair cellular damages, transform recently encoded neuronal
memory representations for integration into long-term memory
and reorganize neural networks (Tononi and Cirelli, 2003,
2014; Palchykova et al., 2006; Aton et al., 2009; Rasch and
Born, 2013; Schmidt, 2014; Spaeth et al., 2015). In contrast,
REM sleep is characterized by important cerebral activity as
the brain is in a waking state and appears to perform select
brain functions after the recovery process (Vyazovskiy and
Delogu, 2014) and stabilize transformed memory (Rasch and
Born, 2013). Sleep can reduce the cumulative energy demands
and cellular stress produced by wakefulness but it can also
allocate daily energy use more efficiently (Schmidt, 2014).
Indeed, during sleep, energy resources are preferentially allocated
to biological mechanisms (i.e., growth, immune functions
or cellular repair), contrary to wake processes, important
consumers of energy, which are inhibited (i.e., vigilance, foraging
or reproduction). These different findings show that sleep is an
energy-saving mechanism.

When faced with harsh environmental conditions, many
endothermic species exhibit a seasonal heterothermy, which is
usually divided into two types: daily torpor, lasting less than
24 h, and hibernation, lasting more than 24 h (Génin and
Perret, 2003; Geiser, 2011, 2013; Ruf and Geiser, 2015). These
mechanisms are composed of different states (Kilduff et al., 1993;
Heldmaier et al., 2004). First, the entrance into heterothermy
causes a rapid reduction in metabolic rate, which precedes a
decrease in body temperature (Tb). Then, deep hypometabolism
can be maintained for several hours (daily torpor) to several
weeks (hibernation). This state is achieved by induced metabolic
inhibition during the entrance into heterothermy but also by the
slowdown of metabolic reactions through the thermodynamic
effect of hypothermia. Finally, the event is terminated by an
arousal that depends on the activation of non-shivering or
shivering thermogenesis (Cannon and Nedergaard, 2004), and
animals rapidly raise their body temperature to euthermic levels
(Ortmann and Heldmaier, 2000; Heldmaier et al., 2004). The
energy-savings obtained by daily torpor and hibernation are on
the order of approximately 60–70 and 90% (Ruf and Geiser,
2015), respectively.

Heterothermy seems to have the appearance of sleep:
sleep-like posture and a reduction in locomotor activity and
Tb (Heller and Ruby, 2004). However, this process has an

impact on the sleep-wake cycle, especially on NREM and REM
sleep. Several electroencephalographic (EEG) studies have shown
that heterothermy in animals typically starts through NREM
sleep (Florant et al., 1978; Walker et al., 1979; Berger, 1984;
Deboer and Tobler, 1994). Similar to hibernation, the time spent
in REM sleep is reduced or absent at a Tb below 21–25◦C
(Krilowicz et al., 1988; Strijkstra et al., 1999). EEG studies
in hibernators demonstrate that hibernation is characterized
by recurring bouts of heterothermy interrupted by euthermic
periods of NREM and REM sleep suggest that a sleep debt
accumulates during hibernation (Daan et al., 1991; Trachsel et al.,
1991; Kilduff et al., 1993; Strijkstra and Daan, 1997; Palchykova
et al., 2002). These results suggest that euthermy is necessary
for REM sleep and that the occurrence of NREM sleep seems
to be correlated with metabolic rate and Tb (Krystal et al.,
2013). The arousal episodes may be necessary to induce sleep
processes. Moreover, previous studies in Djungarian hamsters
show that hypometabolism is followed by a period of sleep
(Deboer and Tobler, 1994; Vyazovskiy et al., 2017). Contrary to
REM sleep, the time spent in NREM sleep increases with the
prior heterothermy duration (Strijkstra and Daan, 1997). It is
noteworthy that the effects of hypometabolism are similar to
those observed after sleep deprivation (Deboer and Tobler, 1994;
Vyazovskiy et al., 2017). Indeed, after the emergence from daily
torpor, animals show a rebound of sleep, which is explained by
the accumulation of a sleep debt, suggesting that torpor and
hibernation might be inconsistent with the recovery function
of sleep.

Sleep-wake rhythm was also characterized by the level of
delta waves (0.5–4 Hz) during NREM sleep (Borbély and
Achermann, 1999; Borbély et al., 2016). This EEG indicator
during NREM sleep was proportional to the prior duration
of the wake state (Heller and Ruby, 2004). Indeed, it were
higher at the beginning of the euthermic period and then,
it gradually decreased during the late stages of arousal. In
Djungarian hamsters, during the first hour after emergence,
animals entered a NREM sleep characterized by an increase
in delta waves (Vyazovskiy et al., 2017). It has been proposed
that the role in delta waves may reflect recovery processes
typically associated with sleep (Vyazovskiy et al., 2017). Different
hypotheses try to explain the cause of the increase of delta
waves following torpor arousal, but they are debated: the
thermoregulatory hypothesis (García-Allegue et al., 1999), the
brain energy hypothesis (Galster and Morrison, 1975; Nizielski
et al., 1989; Nestler, 1991; Benington and Heller, 1995) and
the synaptogenesis hypothesis (Popov and Bocharova, 1992;
Strijkstra et al., 2003; Arendt and Bullmann, 2013; Horowitz
and Horwitz, 2019). The most convincing hypothesis is that the
changes in delta waves after hypothermia would be associated
with structural changes at the neuronal network level (Arendt
and Bullmann, 2013; Horowitz and Horwitz, 2019). Studies
have shown that during NREM sleep, neurons alternate between
periods of depolarization and hyperpolarization (Steriade et al.,
1993; Vyazovskiy et al., 2009), which are correlated with
delta power (Vyazovskiy et al., 2009). Neuronal populations
tend to be more frequently inactive during NREM sleep
after torpor due to an overall decrease in network activity
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(Sanchez-Vives and McCormick, 2000; Haider et al., 2006).
Hypothermia would cause a loss of neuronal connections,
which would be restored by an increase in delta waves during
euthermia (Larkin and Heller, 1998; Strijkstra and Daan, 1998).
During deep torpor, ground squirrels showed a reduction in
hippocampal dendritic connections (Ruediger et al., 2007; von
der Ohe et al., 2007), and these connections were restored
within 2 h after arousal (Popov and Bocharova, 1992; von
der Ohe et al., 2006). Sleep after hypothermia was a model
to investigate the activation mechanisms of neuronal networks
and could be a possible interpretation of torpor effects on
sleep-wake rhythms.

The goal of this study was to investigate the relation between
daily torpor and the expression of sleep at various ambient
temperatures in a heterotherm non-human primate exhibiting
seasonal daily hypometabolism. The study was performed in the
gray mouse lemur (Microcebus murinus), a nocturnal primate,
endemic to Madagascar, weighing between 60 and 120 g, with
a lifespan of 8–10 years in captivity (Languille et al., 2012).
This species exhibits different adaptive strategies to survive
the 6 months of the dry season. During this season, animals
spontaneously enter into daily torpor to save energy (Génin
and Perret, 2003; Giroud et al., 2008; Canale et al., 2011).
We hypothesized that daily torpor disrupts sleep, limiting its
recovery function and that the accumulation of a sleep debt
causes a rebound of sleep after a torpor bout. To test this
hypothesis, we examined the impact of torpor on sleep-wake
rhythms in gray mouse lemurs using EEG in the prefrontal
cortex (PFC) during episodes of hypothermia compared to
normothermia at different ambient temperatures (25◦C and
10◦C). Then, we investigated the impact of hypothermia on
delta waves during torpor bouts and during the subsequent
euthermic periods.

MATERIALS AND METHODS

Animals and Housing Conditions
Six male gray mouse lemurs (M. murinus) born and raised in
the laboratory colony of UMR 7179 (CNRS/MNHN, France,
license approval n◦ A91.114.1) were studied. All experimental
procedures were approved by the ethical committee ‘‘Comité
d’éthique Cuvier’’ (authorization n◦68–018). Animals were
maintained in individual cages with branches and wooden
nests at constant temperature (24–26◦C) and relative humidity
(55%). In the housing environment, gray mouse lemurs were
handled during the winter-like short day length photoperiod
(10:14 h light:darkness). Animals were fed fresh fruits and a
mixture of cereals, water, banana milk and eggs prepared daily
in the laboratory.

EEG Recording Set up and Surgery
A wireless telemetry system (Data Science International, DSI,
St. Paul, MN, USA) was used to collect physiological data such
as locomotor activity, Tb, EEG and EMG signals for extended
periods of time while animals were left undisturbed in their
cages. The setup consisted of implanted electrodes (silicon
elastomer insulated stainless-steel wires, Ø 0.3 mm), a radio

transmitter (PhysioTelF20-EET, DSI), and a receiver plate placed
below the cage and connected to a personal computer running
the data acquisition software Dataquest Lab Pro v.3.0. (DSI).
Tb (resolution: 0.05◦C), locomotor activity, EEG and EMG
signals (500 Hz sampling rate) were simultaneously acquired for
each animal.

Surgical implantations were conducted in conditions of
sterility, under veterinarian supervision. The surgical procedure
was previously described in several references (Pifferi et al., 2012;
Royo et al., 2018). The epidural electrode tips were placed over
the PFC (2–3 mm from the midline and 7.5 mm anterior to the
interneural line, corresponding to the transversal section shown
in plate 33 of the ‘‘Stereotaxic atlas of the brain gray mouse
lemur’’ Bons et al., 1998), and EMG electrode wires were placed
on the neck muscles with a non-absorbable polyamine suture. At
the end of surgery, an anti-inflammatory drug was administered
subcutaneously (meloxicam, 0.2 mg/kg).

After surgery, the animals returned to their individual
cages. The day after surgery, a subcutaneous injection of
painkiller and anti-inflammatory drug (meloxicam, 0.2 mg/kg)
was administered. Each day, the recovery of Tb, locomotor
activity, EEG signal stabilization and body weight were checked.
At least 4 days were allowed for recovery before the beginning
of recordings. The implant was removed 2–3 weeks after the
first surgery.

Experimental Protocol
Four animals were maintained at constant temperature
(24–26◦C), whereas two gray mouse lemurs were subjected
to a variation of ambient temperature. They were acclimated to
the experimental device for 5 days at 25◦C and then exposed to
a cold environment (17 days at 10◦C). The ambient temperature
gradually increased until the end of the study. Gray mouse
lemurs exhibiting torpor bouts with Tb <33◦C (Génin and
Perret, 2003; Canale et al., 2011) were selected for EEG analysis.
Torpor was characterized by minimum Tb (Tbmin, in ◦C)
and torpor bout duration (Dtorpor, in min). Then, to compare
torpor to non-torpid conditions at 25◦C, a day without torpor
in the same animal, the day before at the same time period,
served as control (pre-torpor condition).To determine the
impact of torpor on the sleep-wake cycle and sleep rebound,
three conditions were analyzed: pre-torpor, during torpor and
post-torpor.

EEG Data Analysis
EEG, EMG and Tb signals were continuously acquired for
12–13 consecutive days. Behavioral states were scored by visual
inspection of the signals in 10-s epochs to determine the periods
of activity, with the aid of the Neuroscore software v.2.1. (Data
Science International), over a period corresponding to the day
with an episode of torpor and the control day in the same animal
corresponding to the day without a torpor bout. The following
behavioral states were discriminated (Grigg-Damberger, 2012):
NREM sleep, REM sleep, quiet wake (W) and active wake (A;
Supplementary Figure S1). The waking state was characterized
by a low-amplitude, high-frequency EEG pattern and phasic
EMG activity (Supplementary Figures S1A,B). During REM
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sleep, the EEG pattern was similar to waking state but there was a
muscular atony (Supplementary Figure S1C). First, an approach
to study NREM phases in all animals allowed us to observe
the existence of only two phases of NREM sleep in gray mouse
lemur NREM 1 and NREM 2 (Supplementary Figures S1D,E).
NREM 1 is the lightest stage of sleep, characterized by slowed
frequency, an increased amplitude of the EEG pattern compared
to the waking state and low EMG activity. NREM 2 represents a
deeper sleep characterized by the occurrence of high-amplitude
slow-waves, low EMG activity and the presence of K-complexes
and sleep spindles that are signs of progression into sleep (De
Gennaro and Ferrara, 2003; De Gennaro et al., 2005; Bellesi et al.,
2014). At Tb below 21◦C, EEG became isoelectric, which and
this change characterized by a complete loss of cortical electrical
activity in EEG recordings (Supplementary Figure S1F).

Delta power analysis was performed on the EEG data with
custom MATLAB scripts (The MathWorks Inc., Natick, MA,
USA) based on the Welch method with a 0.1 Hz frequency
resolution over the 0.5–4 Hz range. The total duration of each
episode for different conditions (control, torpor, pre-torpor and
post-torpor) was analyzed. Delta power data were subjected to
decimal logarithm transformation.

Statistical Analysis
All data were analyzed with R (version 3.5.2.) and were
expressed as median ± interquartile range. We started by
extracting some parameters from the torpor: Tbmin and Dtorpor.
To determine the relationship between parameters, we used
Pearson’s correlation. The two groups of torpor were compared
with Student’s t-tests with a Welch correction. All data of
vigilance state distribution were analyzed with a linear mixed
model for repeated measures with ‘‘animal’’ and ‘‘torpor’’ or
‘‘ambient temperature’’ (control/torpor group) factors. First,
we scored vigilance state repartition during 24 h by visual
inspection. Then, a separation of data was made to study daytime
and nighttime. Finally, we performed statistical analysis on
vigilance state distribution during the episode of torpor and the
post-torpor period at 25◦C and 10◦C compared to the control
and pre-torpor conditions. We analyzed the groups by pairwise
comparisons (Control/Pre-torpor conditions vs. Torpor/Post-
torpor conditions at 25◦C; Control/Pre-torpor conditions vs.
Torpor/Post-torpor conditions at 10◦C; Torpor/Post-torpor
conditions at 10◦C vs. Torpor/Post-torpor conditions at 25◦C).
Then, Spearman’s correlation was performed to determine the
effect of Tbmin on each behavioral state during each time period.
Outliers for each sleep-wake phase were identified with Dixon’s
Q test and the values for the entire event were rejected.

RESULTS

Torpor Features
All torpor episodes were analyzed to investigate the relationship
between Tbmin during torpor and Dtorpor (Figure 1). During
torpor at 25◦C, the median Tbmin was 28.8◦C ± 5.8 and ranged
from 24.4 to 32.5◦C. Torpor bouts lasted between 24.7 and
375 min with a median Dtorpor of 213.5 min ± 156.2. At
10◦C, torpor was deeper with a median Tbmin of 17.4◦C ± 6.8

FIGURE 1 | Torpor features. Relationship between minimum body
temperature (Tbmin) and duration of torpor bouts (Dtorpor). Each symbol
represents an episode of torpor (25◦C: black circle; 10◦C: gray triangle). The
straight line depicts the linear regression line. R- and p-values: Pearson’s
correlation (25◦C: n = 4, number of events = 13; 10◦C: n = 2, number of
events = 9).

(t = 3.74, df = 10.40, p = 0.004) and longer with a median
Dtorpor of 432.5 min ± 343.2 (t = 2.68, df = 9.65, p = 0.02).
At low ambient temperature, Tbmin ranged from 13.9 to
32.5◦C, and episodes lasted between 65 and 746 min. There
was a significant correlation between Tbmin and Dtorpor (25◦C:
r2 = 0.88, p< 0.0001; 10◦C: r2 = 0.69, p = 0.006): the longer torpor
lasted, the deeper it was.

Effects of Torpor on Behavioral States
In a qualitative analysis of the relationship between torpor and
behavioral states, we compared sleep-wake cycles before, during
and after a torpor bout. In pre-torpor conditions, we observed an
alternation between active and sleep phases without the presence
of an isoelectric state (Figure 2A). This fragmentation of activity
was also shown in post-torpor conditions (Figure 2D). The
majority of torpor bouts started with NREM sleep and ended
with wake (Figure 2B). A period of wake generally preceded the
rise in Tb. Sleep-wake rhythms were clearly maintained during
torpor. At an ambient temperature of 10◦C, animals spent most
of their time in NREM sleep (Figure 2C). However, when their
Tb decreased below 21◦C, their EEG became isoelectric.

In a quantitative analysis, we analyzed the sleep-wake cycle
during torpor (Figure 3A, Tables 1, 2). At 25◦C, no difference
in sleep-wake rhythms was observed between torpor and
control conditions for the same duration as the episode of
torpor. However, when animals were subjected to low ambient
temperature (10◦C), NREM2 sleep was significantly reduced,
while the isoelectric state was increased. Moreover, Spearman’s
correlation results suggested that the lower the Tbmin was, the
lower the NREM and REM sleep and the higher the isoelectric
state (Table 3).

Then we tried to identify how torpor could affect behavioral
states after hypothermia during active and rest periods
(Figures 3B–D, Tables 4–12). During the remaining light
period following torpor, we observed a significant increase
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FIGURE 2 | Body temperature and behavioral states during a torpor bout.
Time course of body temperature (Tb, red curve) and behavioral states (in
blue) during the pre-torpor period (A), the 4.5-h torpor at 25◦C (B), the 12.5-h
torpor at 10◦C (C) and the post-torpor period (D) in an individual animal. Gray
and white rectangles indicate night (dark) and day (light) during periods. The
two dotted lines correspond to the threshold value of torpor (33◦C) and the
Tb value below which the electroencephalography (EEG) is isoelectric (21◦C).

in quiet wake after hypometabolism compared to pre-torpor
conditions (Figure 3B, Tables 4, 5). REM and NREM1 sleep
were significantly decreased in the post-torpor period at
25◦C compared to pre-torpor conditions. No difference was
observed in active wake state, REM sleep or NREM sleep
among post-torpor at 10◦C, post-torpor at 25◦C and pre-torpor
conditions. Tbmin during torpor did not have an impact on

behavioral states (Table 6). During the night period following
hypothermia, torpor at 25◦C did not induce differences
regardless of sleep-wake state in animals in comparison to the
pre-torpor period (Figure 3C, Tables 7, 8). Lower ambient
temperature (10◦C) induced significantly decreased activity and
increased NREM and REM sleep. When torpor was deeper,
the active wake state tended to be reduced and NREM1 sleep
tended to predominate (Table 9). Then, the effects of torpor
the day after hypothermia were tested to identify potential
sleep rebounds (Figure 3D, Tables 10–12). Torpor did not
induce a difference the day after in the active state, while
NREM2 sleep was significantly reduced regardless of ambient
temperature conditions in comparison to the pre-torpor period
(Tables 10, 11). At 25◦C, we observed a significant increase in
NREM1 sleep between post-torpor and pre-torpor conditions.
After torpor at 10◦C, there was an increased isoelectric state
when we compared this condition and post-torpor at 25◦C or
pre-torpor conditions. Indeed, Spearman’s correlation results
showed that Tbmin induced a decrease in NREM2 sleep and an
increase in isoelectric state (Table 12).

Effects of Torpor on Delta Waves
All torpor bouts were analyzed to compare the impact of
hypothermia on delta waves (Supplementary Figure S2A,
Supplementary Table S1A). During torpor, no difference
was observed in the frequency bands between 0.5 and 4 Hz
regardless of the conditions. Then, we compared the delta power
during the pre-torpor and post-torpor conditions to determine
the sleep need caused by hypothermia (Supplementary
Figures S2B–D, Supplementary Tables S1B–D). During the
remaining light period following hypothermia, we observed a
significant increase in delta waves during post-torpor at 25◦C
compared to pre-torpor conditions (Supplementary Figure
S1B, Supplementary Table S1B). There were no differences
between the post-torpor at 10◦C group and the pre-torpor
group. Low ambient temperatures (10◦C) induced a significant
decrease in delta activity in comparison to higher temperatures
(25◦C). During the night period following a torpor bout, delta
waves at 10◦C were significantly lower compared to those during
pre-torpor (between 0.8 and 4 Hz) and post-torpor at 25◦C
(Supplementary Figure S2C, Supplementary Table S1C). No
difference was observed in delta power between pre-torpor and
post-torpor at 25◦C. Then, the impact of hypothermia the day
after a torpor bout was also tested (Supplementary Figure S1D,
Supplementary Table S1D). There were no differences between
the post-torpor (10◦C and 25◦C) and pre-torpor conditions. At
25◦C, delta waves were significantly higher between 0.5 and 2 Hz
than those of post-torpor at 10◦C.

DISCUSSION

Since several studies suggest that species that perform torpor
are deprived of NREM and REM sleep (Harris et al., 1984;
Deboer and Tobler, 1994; Krystal et al., 2013), we hypothesized
here that daily torpor in the gray mouse lemur disrupts sleep,
limiting its recovery function, and that the accumulation of
a sleep debt causes a rebound of sleep after a torpor bout.
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FIGURE 3 | Effect of torpor on behavioral states in gray mouse lemurs. (A) Behavioral states percentage in the periods during which torpor was expressed at 25◦C
(gray) and 10◦C (white) and the corresponding control period (black). (B) Behavioral state distribution during the light period following a torpor bout (post-torpor at
25◦C and at 10◦C) and the pre-torpor condition (pre-torpor). (C) Behavioral state percentage during the night period following a torpor bout (post-torpor at 25◦C and
at 10◦C) compared to the pre-torpor period. (D) Behavioral state distribution during the light period the day after torpor bout (at 25◦C and at 10◦C) and
corresponding pre-torpor period. Each box in the figures shows the body temperature (Tb) in each condition (torpor at 25◦C and 10◦C, control, pre-torpor and
post-torpor at 25◦C and 10◦C) during the corresponding period. Results are median ± interquartile range. P values correspond to mixed-model tests. (A) Control
and Torpor at 25◦C: n = 4, number of events = 11, Torpor at 10◦C: n = 2, number of events = 9. (B) Pre-torpor and Post-torpor at 25◦C: n = 4, number of
events = 12, post-torpor at 10◦C: n = 2, number of events = 8. (C) Post-torpor at 25◦C: n = 4, number of events = 12, post-torpor at 10◦C: n = 2, number of
events = 9, pre-torpor: n = 4, number of events = 13. (D) Post-torpor at 25◦C: n = 4, number of events = 11, post-torpor at 10◦C: n = 2, number of events = 8,
pre-torpor: n = 4, number of events = 12.

To test this hypothesis, we examined the impact of torpor on
sleep-wake rhythms in gray mouse lemurs using EEG in the
PFC during episodes of hypothermia and compared it to that
of normothermia at different ambient temperatures (25◦C and
10◦C). As in other heterotherms (Harris et al., 1984; Deboer
and Tobler, 1994; Krystal et al., 2013), our results indicate that
gray mouse lemurs do sleep during torpor episodes at 25◦C. In
addition, the presence of sleep during torpor does not necessitate
sleep rebound in the hours or day following hypometabolism.
However, low Tb disrupts the sleep-wake cycle causing a sleep
debt after torpor.

The EEG analysis of behavioral states before, during and after
torpor episodes in gray mouse lemur clearly indicates that, at
25◦C, this species exhibits both NREM and REM sleep during
torpor episodes, with no difference in sleep phases between

torpor bouts and control periods. More specifically, animals
spend close to 75% of the torpor period in the two stages of
NREM sleep (Figure 3A,Tables 1, 2), which is statistically similar
to the value for the corresponding control condition (non-torpid
period). Torpor also includes REM sleep stages (∼5% of total
torpor duration, which is also statistically similar to the value
for the control condition). Moreover, Tb has an impact on sleep.
When animals are exposed to a cold environment (10◦C), NREM
and REM sleep decrease during torpor whereas the isoelectric
state appears (Table 3).

Moreover, it has been shown in several heterotherms that
torpor caused a sleep debt proportional to the prior torpor
duration (Strijkstra and Daan, 1997). Here, we demonstrated
that in the gray mouse lemur, no sleep rebound was observed
after the arousal from torpor bouts and that animals were
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TABLE 1 | Behavioral state distribution during torpor episodes (at 25◦C and
10◦C) and the corresponding control periods.

Control Torpor at 25◦C Torpor at 10◦C

A 13.3 ± 11.8 12.3 ± 12.1 18.5 ± 10.8
W 7.5 ± 5.6 4.1 ± 3.1 4.1 ± 7.8
REM 6.4 ± 5.4 4.0 ± 11.5 1.2 ± 3.9
NREM1 12.5 ± 3.0 9.9 ± 5.9 4.6 ± 5.4
NREM2 53.9 ± 14.3 63.8 ± 13.5 23.6 ± 22.5
Isoelectric 0.0 ± 0.0 0.0 ± 0.0 49.7 ± 55.6

Values are expressed as median (%) ± interquartile range (Control and Torpor at 25◦C:
n = 4, number of events = 11; Torpor at 10◦C: n = 2, number of events = 9).

TABLE 2 | Mixedmodel results during torpor episodes (at 25◦C and 10◦C) and
the corresponding control periods.

Torpor at 10◦C Torpor at 25◦C

t p-value t p-value

Control A 0.46 0.65 −0.41 0.68
W 0.52 0.60 −0.01 0.99
REM −0.44 0.66 −0.18 0.86
NREM1 −1.61 0.11 −1.06 0.29
NREM2 −3.82 <0.001 0.62 0.53
Isoelectric 2.45 0.01 NA NA

Torpor at 25◦C A −0.57 0.57
W −0.12 0.91
REM −0.16 0.87
NREM1 0.68 0.49
NREM2 2.91 0.04
Isoelectric −2.45 0.01

Control and Torpor at 25◦C: n = 4, number of events = 11; Torpor at 10◦C: n = 2, number
of events = 9.

TABLE 3 | Spearman’s correlation results on the effect of minimum body
temperature during torpor (Tbmin) and behavioral state distribution on torpor
episodes (at 25◦C and 10◦C) and the corresponding control periods.

rs p-value

A −0.20 0.30
W 0.14 0.47
REM 0.33 0.08
NREM1 0.59 <0.001
NREM2 0.42 0.02
Isoelectric −0.65 <0.001

Control and Torpor at 25◦C: n = 4, number of events = 11; Torpor at 10◦C: n = 2, number
of events = 9.

TABLE 4 | Behavioral state distribution during the light period following a torpor
bout (post-torpor at 25◦C and 10◦C) and the corresponding control period
(pre-torpor).

Pre-torpor Post-torpor at 25◦C Post-torpor at 10◦C

A 12.9 ± 11.6 17.2 ± 4.3 15.8 ± 12.1
W 6.1 ± 6.8 8.8 ± 6.2 14.1 ± 14.1
REM 8.4 ± 7.2 4.1 ± 4.5 6.4 ± 8.2
NREM1 11.6 ± 2.6 13.7 ± 4.5 10.9 ± 6.3
NREM2 57.6 ± 8.6 53.6 ± 7.2 52.9 ± 14.1
Isoelectric 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Values are expressed as median (%) ± interquartile range (pre-torpor and post-torpor at
25◦C: n = 4, number of events = 12; Post-torpor at 10◦C: n = 2, number of events = 8).

even more active. Indeed, during the day following torpor,
quiet wake increased (+44.3%), whereas REM sleep decreased
(−51.2%; Figure 3B, Tables 4, 5). No differences were
observed in the proportion of active and sleep phases between

TABLE 5 | Mixed-model results during the light period following a torpor bout
(Post-torpor at 25◦C and 10◦C) and the corresponding control period (pre-torpor).

Post-torpor at 10◦C Post-torpor at 25◦C

t p-value t p-value

Pre-torpor A 0.27 0.79 0.96 0.34
W 3.40 <0.001 2.40 0.02
REM −1.39 0.17 −3.96 <0.0001
NREM1 0.15 0.88 2.96 0.003
NREM2 −0.95 0.34 −1.35 0.18
Isoelectric NA NA NA NA

Post-torpor at 25◦C A 0.84 0.40
W −2.27 0.02
REM 0.09 0.93
NREM1 0.51 0.61
NREM2 0.26 0.79
Isoelectric NA NA

Pre-torpor and post-torpor at 25◦C: n = 4, number of events = 12; post-torpor at 10◦C:
n = 2, number of events = 8.

TABLE 6 | Spearman’s correlation results on the effect of minimum body
temperature during torpor (Tbmin) and behavioral state distribution on the light
period following a torpor bout (post-torpor at 25◦C and 10◦C) and the
corresponding control period (pre-torpor).

rs p-value

A −0.09 0.64
W −0.21 0.27
REM 0.14 0.47
NREM1 −0.09 0.64
NREM2 0.17 0.37
Isoelectric NA NA

Pre-torpor and post-torpor at 25◦C: n = 4, number of events = 12; post-torpor at 10◦C:
n = 2, number of events = 8.

TABLE 7 | Behavioral state distribution during the night period (14 h) following a
torpor bout (post-torpor at 25◦C and 10◦C) and the corresponding control period
(pre-torpor).

Pre-torpor Post-torpor at 25◦C Post-torpor at 10◦C

A 58.3 ± 33.6 54.6 ± 15.9 16.5 ± 11.7
W 13.4 ± 8.4 11.7 ± 5.4 17.1 ± 12.0
REM 2.4 ± 2.9 1.5 ± 1.9 4.2 ± 1.7
NREM1 7.5 ± 5.9 9.5 ± 5.4 14.4 ± 3.9
NREM2 13.5 ± 20.9 21.8 ± 10.5 46.4 ± 12.9
Isoelectric 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Values are expressed as median (%) ± interquartile range (Post-torpor at 25◦C: n = 4,
number of events = 12; post-torpor at 10◦C: n = 2, number of events = 9; pre-torpor:
n = 4, number of events = 13).

pre-torpor and post-torpor conditions during the first night
after torpor (Figure 3C, Tables 7, 8). However, at low ambient
temperature, gray mouse lemurs are less active than during
pre-torpor (−71.7%) and post-torpor at 25◦C (−69.8%), whereas
NREM2 sleep increased (pre-torpor: +70.9%; post-torpor 25◦C:
+53.0%). NREM1 sleep tended to be correlated with Tbmin,
and prior torpor duration and active wake state were inversely
proportional to torpor factors (Table 9). Finally, at 25◦C, the next
day period showed that gray mouse lemurs spent less time in
NREM2 sleep (−29.1%), confirming the absence of sleep debt
due to torpor (Figure 3D, Tables 10, 11). However, gray mouse
lemurs subjected to low ambient temperatures exhibited very
long-lasting torpors explaining the presence of isoelectric EEG
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TABLE 8 | Mixed-model results during the night period (14 h) following a torpor
bout (post-torpor at 25◦C and 10◦C) and the corresponding control period
(pre-torpor).

Post-torpor at 10◦C Post-torpor at 25◦C

t p-value t p-value

Pre-torpor A −4.25 <0.0001 −0.02 0.98
W 1.22 0.22 0.09 0.93
REM 3.83 <0.001 −1.08 0.28
NREM1 2.61 0.009 0.57 0.57
NREM2 3.86 <0.0001 −0.25 0.80
Isoelectric 1.08 0.28 NA NA

Post-torpor at 25◦C A 4.98 <0.0001
W −1.39 0.16
REM −3.68 <0.001
NREM1 −3.75 <0.001
NREM2 −4.53 <0.0001
Isoelectric −0.74 0.46

Post-torpor at 25◦C: n = 4, number of events = 12; post-torpor at 10◦C: n = 2, number
of events = 9; pre-torpor: n = 4, number of events = 13.

TABLE 9 | Spearman’s correlation results on the effect of minimum body
temperature (Tbmin) during torpor and behavioral state distribution on the night
period (14 h) following a torpor bout (post-torpor at 25◦C and 10◦C) and the
corresponding control period (pre-torpor).

rs p-value

A 0.34 0.06
W −0.18 0.33
REM −0.15 0.42
NREM1 −0.35 0.05
NREM2 −0.27 0.14
Isoelectric −0.28 0.12

Post-torpor at 25◦C: n = 4, number of events = 12; post-torpor at 10◦C: n = 2, number
of events = 9; pre-torpor: n = 4, number of events = 13.

TABLE 10 | Behavioral state distribution during the light period (10 h) the day
after a torpor bout (post-torpor at 25◦C and at 10◦C) and the corresponding
control period (pre-torpor).

Pre-torpor Post-torpor at 25◦C Post-torpor at 10◦C

A 14.8 ± 6.7 18.2 ± 14.5 14.3 ± 9.2
W 5.3 ± 6.2 8.7 ± 8.3 5.2 ± 3.2
REM 4.3 ± 2.5 8.8 ± 6.7 6.2 ± 7.8
NREM1 9.4 ± 2.0 11.6 ± 2.9 8.4 ± 10.9
NREM2 62.2 ± 15.3 48.2 ± 13.3 44.4 ± 45.3
Isoelectric 0.0 ± 0.0 0.0 ± 0.0 9.8 ± 55.8

Values are expressed as median (%) ± interquartile range (post-torpor at 25◦C: n = 4,
number of events = 11; post-torpor at 10◦C: n = 2, number of events = 8; pre-torpor:
n = 4, number of events = 12).

and the decrease in NREM2 sleep even during the following day
(the animals were still in torpid state; Table 12).

In hibernating species, the sleep debt is balanced by specific
mechanisms (Daan et al., 1991; Trachsel et al., 1991; Strijkstra
and Daan, 1997; Krystal et al., 2013; Schmidt, 2014; Blanco et al.,
2016; Vyazovskiy et al., 2017). Hibernating animals perform
periodic spontaneous elevations of their Tb, which coincide
with the euthermic periods of NREM and REM sleep (Daan
et al., 1991; Trachsel et al., 1991). This warming, necessary
for animal sleep, allows us to see that Tb has an important
role in the recovery function of sleep (Deboer and Tobler,
1994). For other species, this sleep debt was reflected by a

TABLE 11 | Mixed-model results during the light period (10 h) the day after a
torpor bout (post-torpor at 25◦C and at 10◦C) and the corresponding control
period (pre-torpor).

Post-torpor at 10◦C Post-torpor at 25◦C

t p-value t p-value

Pre-torpor A −0.38 0.71 1.03 0.30
W −0.24 0.81 1.10 0.27
REM 0.84 0.40 1.43 0.15
NREM1 −1.29 0.20 2.01 0.04
NREM2 −2.27 0.02 −2.45 0.01
Isoelectric 2.91 0.003 NA NA

Post-torpor at 25◦C A 1.40 0.16
W 1.10 0.27
REM 0.15 0.88
NREM1 1.21 0.22
NREM2 0.77 0.44
Isoelectric −2.52 0.01

Post-torpor at 25◦C: n = 4, number of events = 11; post-torpor at 10◦C: n = 2, number
of events = 8; pre-torpor: n = 4; number of events = 12.

TABLE 12 | Spearman’s correlation results on the effect of minimum body
temperature during torpor (Tbmin) and behavioral state distribution on the light
period (10 h) the day after a torpor bout (post-torpor at 25◦C and at 10◦C) and
the corresponding control period (pre-torpor).

rs p-value

A −0.04 0.84
W 0.19 0.33
REM −0.07 0.71
NREM1 −0.08 0.70
NREM2 0.42 0.02
Isoelectric −0.42 0.02

Post-torpor at 25◦C: n = 4, number of events = 11; post-torpor at 10◦C: n = 2, number
of events = 8; pre-torpor: n = 4; number of events = 12.

sleep rebound characterized by an increase in the duration and
intensity of NREM sleep and a decrease in REM sleep after
arousal from torpor bouts (Strijkstra and Daan, 1997; Schmidt,
2014; Vyazovskiy et al., 2017). Several studies demonstrated that
hibernation in Cheirolageus showed characteristics in common
with non-primate hibernators (Daan et al., 1991; Trachsel et al.,
1991; Strijkstra and Daan, 1997; Blanco et al., 2016). These
hibernating primates did not sleep during heterothermy but
REM and NREM sleep occurred during euthermic periods
(Krystal et al., 2013; Blanco et al., 2016). These different results
showed that torpor was incompatible with the recovery function
of sleep, exhibiting effects similar to those observed after sleep
deprivation (Deboer and Tobler, 1994). Animals had to emerge
from torpor to be able to fulfil this sleep function. Mouse lemurs
did not need to fill a sleep debt because during torpor, sleep
achieved its recovery function at 25◦C. We can assume that
the animals have a deeper and perhaps more effective sleep
compared to that in the control condition. Gray mouse lemurs
maintain normal circadian rhythms during torpor, which could
explain the lack of differences between periods with and without
torpor. However, when faced with harsh temperatures, torpor
induced sleep rebound after the arousal. Gray mouse lemurs had
characteristics similar to other species using this energy-saving
strategy. Our results showed that Tb was a determining factor for
the quality and quantity of sleep.
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Sleep during torpor or hibernation seems to be linked
to the Tb reached during hypothermia bouts. Studies in
golden-mantled ground squirrels (Callospermophilus lateralis)
indicate that when hibernation is performed at relatively warm
body temperature (22◦C), animals do sleep (Walker et al.,
1981). When Tb decreases below 21◦C, brain activity becomes
incompatible with the expression of sleep (Krilowicz et al.,
1988; Daan et al., 1991). Such observations suggest that the
presence of sleep during hypometabolism is driven by core
body (and more specifically brain) temperature. Studies in
C. medius, a hibernating primate belonging to the same family
of cheirogaleids as mouse lemurs, have demonstrated that the
presence of sleep during hibernation in this species also depends
on Tb. During hibernation at low Tb (down to 10–15◦C in
this case), NREM sleep is absent in C. medius (Krystal et al.,
2013). Since body temperature seems to drive the expression of
NREM sleep during torpor, it might explain why gray mouse
lemurs do sleep during torpor when their Tb are above 21◦C
whereas they do not sleep below 21◦C. When faced with extreme
conditions (10◦C), animals adapted themselves by drastically
reducing their Tb. To conclude, we determined that Tb below
21◦C was inconsistent with the recovery function of sleep in M.
murinus. Animals were in a reversible isoelectric state that was Tb
dependent, and this state explained the presence of sleep rebound
after torpor.

Here, we investigated for the first time the changes in delta
waves caused by hypothermia in gray mouse lemurs. We found
that delta waves were not modified by torpor (Supplementary
Figure S2A, Supplementary Table S1A). Moreover, torpor
induced disturbances after arousal (Supplementary Figures
S2B–D, Supplementary Tables S1B–D). Indeed, during the
day following torpor, at low ambient temperatures, gray mouse
lemurs presented a lower delta activity compared to that in
post-torpor at 25◦C and pre-torpor conditions (Supplementary
Figure S2B, Supplementary Table S1B). No differences were
observed in delta power between pre-torpor and post-torpor
conditions during the first night after torpor (Supplementary
Figure S2C, Supplementary Table S1C). However, at low
ambient temperature, gray mouse lemurs showed a decrease in
delta waves compared to those at pre-torpor and post-torpor
at 25◦C. Finally, delta waves were lower at low temperatures
in comparison to post-torpor at 25◦C (Supplementary Figure
S2D, Supplementary Table S1D). One possible interpretation
of these results is that torpor tends to change delta waves,
reflecting changes in neuronal activity (Vyazovskiy et al., 2009).
Several studies showed that during hibernation, different brain
areas have reduced neuronal connectivity (Popov and Bocharova,
1992; Hut et al., 2002). Indeed, in hibernating species, synaptic
changes were associated with cyclic changes in the density of
synaptic vesicles and proteins mediating the rapid rebuilding
of dendritic spines and synapses during arousal (von der Ohe
et al., 2007; Arendt and Bullmann, 2013). After torpor, a higher
delta power was observed, explained by an increase in synaptic
strength (Vyazovskiy andHarris, 2013; Tononi and Cirelli, 2014).
In this study, we observed that delta waves increased after
torpor, but our results showed that low Tb did not induce
greater delta power compared to higher temperatures. It is

possible that other factors will contribute to specific aspects
of network activity. Torpor may be associated with changes in
the architecture and activity of cortical networks (Vyazovskiy
et al., 2017). During hypothermia, many morphological changes
occurred in the brain, inducing a disruption of network
connectivity (von der Ohe et al., 2007). Sleep after torpor
could help to set up recovery processes. Indeed, during a
selective delta-wave deprivation study, Djungarian hamsters
showed an increase in slow-waves, reflecting a compensatory
homeostatic response.

Conversely to our hypothesis, in gray mouse lemurs, both
REM and NREM sleep occur during torpor, at a level equivalent
to that of non-torpor periods. However, sleep is temperature-
dependent, and low Tb induces an inability to perform REM and
NREM sleep. Animals must compensate for the lack of sleep,
and thus a sleep rebound occurs. Moreover, Tb also induces
an alteration of delta waves after torpor. Other factors must be
involved in recovery processes during sleep rebound.
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