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Cell-type-specific expression of molecular tools and sensors is critical to construct circuit
diagrams and to investigate the activity and function of neurons within the nervous
system. Strategies for targeted manipulation include combinations of classical genetic
tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in
transgenic mice, and gene delivery by AAV and other viral vectors. The combination of
these complex technologies with the goal of precise neuronal targeting is a challenge
in the lab. This report will discuss the theoretical and practical aspects of combining
current technologies and establish best practices for achieving targeted manipulation of
specific cell types. Novel applications and tools, as well as areas for development, will
be envisioned and discussed.

Keywords: AAV, neuroscience, viral vectors, cell-type specificity, gene delivery, intersectional methods, targeted
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INTRODUCTION

Understanding neural networks as they relate to development, behavior, and learning is a critical
objective of neuroscience. These questions can be addressed, in part, by understanding the role of
specific neural cells and brain regions, as well as the impact of individual molecules in these circuits.
The successful execution of these neurobiology studies requires methods that are highly targetable,
efficient, and precise. In this regard, recombinant adeno-associated viral vectors (herein referred
to as AAV) are powerful tools that can be used both to target and manipulate specific neuronal
subtypes (defined based on gene expression, location, and connectivity) and non-neuronal cell
types within the nervous system.

Scientists using AAV for gene transfer and/or neuronal targeting must consider various
questions about experimental design, including: (1) how to best deliver/administer AAV
(Figure 1A); (2) which AAV serotype to use (Figure 1B); and (3) how to drive gene expression
with gene regulatory elements (both within the AAV genome and the host animal or cell line;
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FIGURE 1 | Several aspects of experimental design affect neuronal targeting and manipulation including (A) viral delivery method, (B) composition of viral capsid
proteins, (C) promoters and/or enhancers driving transgene expression, (D) IRES or 2A elements for multicistronic expression coupled with fluorescent proteins (FP)
or protein epitopes, (E) post-translational regulatory elements such as WPRE or 3′-UTR, and (F) Recombinase (Cre, CreER, Flp, or FlpER) expression from
transgenic driver lines (inserted genomically via targeted or random integration) and ligand-dependent or recombinase-dependent expression elements such as TRE
or lox sites, respectively. Abbreviations: TRE, tetracycline-response element; lox, LoxP sequence; IRES, internal ribosomal entry site; 2A, 2A sequence for
self-cleavage; FP, fluorescent protein; WPRE, woodchuck hepatitis virus posttranscriptional regulatory element; 3′-UTR, 3′-untranslated sequence.

Figures 1C–F). These and many other factors can affect how
efficiently cells of interest are targeted by AAV. Further,
experimental parameters such as AAV titer and dosage can
impact AAV efficiency, and these details are often omitted from
experimental methods in the literature and can be expensive and
timely to determine empirically for each study. Overall, designing
an experiment with AAV is multifaceted and suboptimal
experimental design can drastically reduce the quality of results.
In this report, we will discuss practical aspects of using AAV and
considerations for designing experiments.

SELECTING THE ROUTE OF
ADMINISTRATION AND CAPSID

AAV tropism, as dictated by AAV capsid proteins, is an
important factor affecting transduction efficiency and specificity
across cell types. Since the mechanism of AAV transduction
is through the interaction of the AAV capsid with cell surface
proteins and glycans, protein composition of the capsid (i.e., the
AAV serotype) and the cell surface (i.e., based on cell type)
determine transduction efficiency. Additionally, as the landscape
of cell surface molecules varies across species, the efficiency
of AAV may subsequently vary considerably across species
and strains (Watakabe et al., 2015; El-Shamayleh et al., 2016;
Hordeaux et al., 2018; Huang et al., 2019). Consequently,
serotype and route of delivery should be carefully considered
when designing experiments (Figures 1A,B). For an overview
of the primary receptors for AAV serotypes, see Schultz and
Chamberlain (2008).

Direct Intraparenchymal Delivery
When injected directly into the brain, many of the naturally-
occurring AAV capsids, which share homology ranging from

65% to 99% (Drouin and Agbandje-McKenna, 2013), have
distinct but significantly overlapping tropisms and distribution
characteristics. AAV1, AAV2, AAV5, AAV8, AAV9 and the
engineered variant AAV-DJ are commonly used to target local
populations of neurons after direct injections (Table 1).

In addition to exhibiting local transduction, several serotypes
exhibit transduction distal to the injection site (Burger et al.,
2004; Cearley and Wolfe, 2006, 2007; Klein et al., 2006, 2008; Li
et al., 2006; Reimsnider et al., 2007; Sondhi et al., 2007; Taymans
et al., 2007; Cearley et al., 2008; Hollis et al., 2008; Hadaczek et al.,
2009; Masamizu et al., 2011; Bu et al., 2012) and the mechanisms
of these phenotypes are active areas of investigation (Castle et al.,
2014). The AAV vector purification method has also been shown
to impact transduction patterns (Klein et al., 2008).

Furthermore, there are important differences in how
far different capsid variants spread from the injection
site—AAV2 and AAV-DJ diffusion are more confined and,
therefore, these capsids are often chosen for applications that
require precise targeting. While expression from AAV2 is mostly
neuronal, several serotypes, including AAV1, AAV5, AAV8 and
AAV9, also transduce astrocytes and oligodendrocytes.

Despite the tremendous volume of work on serotype-
dependent expression patterns and the complexity of the
mechanisms both hypothesized and shown to drive these
phenotypes, the ability to predict confidently the expression
pattern in a particular experimental setup still requires empirical
evidence. A non-exhaustive list of reported characteristics for
several serotypes is outlined (Table 2) and can be used to narrow
down suitable serotypes, though the importance of empirical
validation at the onset of each study cannot be understated.
Importantly, results reported in this table may vary based on
anatomical region, though the results have not been summarized
in this report to that degree.
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TABLE 1 | AAV administration routes for neuroscience.

Administration route

Direct Intravenous Delivery into the CSF
(IT/ICV/CM)

Advantages
• Regional expression achievable

(serotype dependent; Kaplitt et al.,
1994; McCown et al., 1996; Peel
et al., 1997)

• CNS or PNS-wide transduction
(Zincarelli et al., 2008)

• IT injection can be used to
target spinal motor neurons
and dorsal root ganglia
(Zhang et al., 2010)

• High levels of expression achievable
(high MOI)

• Quick, non-invasive (Stoica et al.,
2013)

• Neonatal ICV injections can
provide widespread gene
delivery to the CNS
(Hammond et al., 2017)

• Requires small volumes of virus • Does not require surgical expertise
(Stoica et al., 2013)

• May (Gray et al., 2013) or
may not (Samaranch et al.,
2011) allow CNS expression
in the presence of
neutralizing antibodies

• Reduced off-target effects • Lower more uniform expression
(Chan et al., 2017)

• Sparse labeling is possible (Chan
et al., 2017)

Disadvantages
• Requires invasive surgery (Stoica

et al., 2013)
• Higher dose and volume of virus

required
• Expression is not confined to

the CNS (Hinderer et al.,
2014)

• Damage to the targeted area
(Mastakov et al., 2001; Carty et al.,
2010)

• Greater risk of immune response
(Colella et al., 2018)

• Requires moderately large
volumes of virus

• Challenging in certain deep brain
structures

• Off-target effects may confound
experiment

• Expression is not as uniform
as it is after systemic delivery
(Hinderer et al., 2014)

• Transduction gradient from injection
site

Expression considerations
• High levels of expression may be

important for opsin expression
(Yazdan-Shahmorad et al., 2018)

• Moderate expression provided by IV
AAV-PHP.B/eB may be preferable for
GCaMP6 expression (no nuclear
expression observed), see Hillier et al.
(2017)

• Expression is higher around
CSF spaces and the
brain/SC surface (Hinderer
et al., 2014; Lukashchuk
et al., 2016)

• High-level expression makes cell-type
specific transgene expression using
regulatory elements more challenging

Capsids
• AAV2—confined spread, mostly

neuronal (Kaplitt et al., 1994;
McCown et al., 1996; During et al.,
1998; Mandel et al., 1998; Davidson
et al., 2000; Burger et al., 2004)

• AAV9 and rh.10—efficient neonatal
CNS transduction (Foust et al., 2009,
2010; Zhang et al., 2011; Ruzo et al.,
2012)

• AAV7, AAV9, and rh.10 are
the most widely tested
serotypes for delivery into the
CSF (Federici et al., 2012;
Samaranch et al., 2013;
Gurda et al., 2016; Borel
et al., 2016)

• AAV-DJ—Confined spread, higher
expression (vs. AAV2; Grimm et al.,
2008)

• AAV-BR1—brain endothelial
cell-specific (Marchiò et al., 2016)

• AAV4 enables transduction of
ependymal cells (Liu et al.,
2005)

• AAV1, 5 and 8—widespread,
moderate expression, neurons and
glia (Burger et al., 2004; Tenenbaum
et al., 2004; Cearley and Wolfe,
2006; Li et al., 2006; Taymans et al.,
2007; Hadaczek et al., 2009; Dodiya
et al., 2010; Masamizu et al., 2010,
2011)

• AAV-PHP.B—enhanced neuron and
glial transduction after adult IV
injection in mice (Deverman et al.,
2016; Chan et al., 2017)

• AAV SCH9 and
AAV4.18 enable SVZ
progenitor cell transduction
(Murlidharan et al., 2015;
Ojala et al., 2018)

(Continued)
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TABLE 1 | (Continued)

Administration route

Direct Intravenous Delivery into the CSF (IT/ICV/CM)

• AAV2-Retro—widespread distribution,
enhanced axonal uptake and retrograde
expression (Tervo et al., 2016)

• AAV-PHP.eB—further evolved
AAV-PHP.B variant with improved
neuronal transduction (Deverman
et al., 2016; Chan et al., 2017)

• AAV1—paired with Cre exhibits
trans-synaptic (anterograde) transduction
(Zingg et al., 2017)

• AAV-PHP.S—evolved capsid with
improved transduction of peripheral
nerves and heart (Chan et al., 2017)

• AAV2-HBKO—robust and widespread
expression, primarily in neuronal cells, higher
expression than parental AAV2 (Sullivan et al.,
2018)

• AAV-TT—widespread and high transduction
of both glia and neuronal cells relative to
parental AAV2. Wider spread than AAV9 and
rh.10 (Tordo et al., 2018)

Systemic Delivery
Several natural AAV capsids cross the blood-brain barrier
(BBB). In contrast to direct injections, intravenous injections
of AAV can provide a central nervous system (CNS)-wide
gene delivery. This activity is present across several species
and is most pronounced when AAV is administered to the
neonate. Neonatal injections of AAV9 and rh.10 have been
used to transduce neurons broadly across the CNS. However,
when delivered at later developmental stages including in the
adult, transduction is more limited and primarily restricted to
endothelial cells and astrocytes, with transduction occurring in
1–2% of neurons in the forebrain (Foust et al., 2009; Dufour
et al., 2014; Deverman et al., 2016). In this context, engineered
AAV capsids have provided new and dramatically more efficient
options for widespread gene delivery to the CNS. The first
of these vectors, AAV-PHP.B, enabled researchers to deliver
genes to more than 50% of neurons and astrocytes across
numerous brain regions with a single non-invasive injection
(Deverman et al., 2016). Achieving this efficiency requires
relatively high viral doses (∼1 × 1014 vector genomes/kg),
thus requiring large volumes of high titer virus. A further-
evolved AAV-PHP.B variant, AAV-PHP.eB, addresses this issue
and can achieve >50% transduction of most neuron and
astrocyte populations even with a 20-fold reduction in dose
(Chan et al., 2017). While the activity of the PHP capsids
is not universally observed across all species, or even strains
of a given species, the receptor engaged by the PHP capsids
during AAV transduction has been identified and can be
used to predict permissivities of cell or tissue types to these
engineered capsids (Hordeaux et al., 2019; Huang et al., 2019).
In addition, the same group has developed an additional
AAV variant (the PHP.S variant) that can efficiently transduce
dorsal root ganglia and other peripheral neuron populations
following systemic administration, which should enable the
study of these otherwise difficult to target peripheral neuron
populations (Chan et al., 2017).

CSF Delivery
The third option for gene delivery to the CNS is to inject
vectors into the cerebral spinal fluid (CSF). Several access points
can be used: the lateral ventricle (intracerebroventricular, ICV),
the cisterna magna (CM), subpial (Miyanohara et al., 2016)
or the intrathecal (IT) space along the spinal cord. When
performed in neonates, ICV AAV administration can provide
widespread gene delivery. In the adult, ICV and CM injections
result in gene delivery in multiple brain regions, however, the
expression is not uniform across all brain regions and superficial
structures are preferentially targeted. Beyond neurons, ICV
injections also provide access to periventricular cell populations.
For example, after ICV injection, AAV4 can be used to transduce
the ependymal cells (Liu et al., 2005), and two engineered
AAV capsids, SCH9 and AAV4.18, enable transduction of
subventricular zone neural progenitors (Murlidharan et al., 2015;
Ojala et al., 2018). IT injection can be used to deliver genes to
spinal cordmotor neurons and dorsal root ganglions (Foust et al.,
2010; Federici et al., 2012; Schuster et al., 2014).

Retrograde and Anterograde Transport for
Circuit Studies
AAV vectors are commonly used as part of circuit studies.
Numerous natural AAV serotypes exhibit retrograde trafficking
activity from their uptake at axon terminals (see Table 2).
However, retrograde transduction with natural serotypes such
as AAV1, AAV2, AAV6, and AAV9 requires high vector doses
due to the relative inefficiency of this transduction mechanism.
More recently Tervo et al. (2016) and Davidsson et al. (2018)
have created modified capsids AAV2-Retro and AAVMNM008,
respectively, that provide efficient transduction of neurons that
send axon projections into the injection site. Transduction
efficiencies of both capsids are shown to be circuit-dependent,
and thus capsids should be validated for circuits of interest
when planning experiments. Zingg et al. (2017) report that
AAV1 and AAV9 exhibit transsynaptic anterograde transport
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TABLE 2 | Transduction characteristics of select AAV serotypes.

Serotype Transport
phenotypesa

Transduction levels Spread from
injection siteb

Transduced cells Additional notes

AAV1 Retrograde (Burger
et al., 2004; Reimsnider
et al., 2007; Hollis et al.,
2008; Bu et al., 2012)

High, similar to AAV9,
AAVrh10 (Cearley et al.,
2008; Aschauer et al.,
2013)

Greater than AAV2,
similar to AAV5, AAV8
(Burger et al., 2004)

Primarily neurons
(Burger et al., 2004;
Dodiya et al., 2010;
Masamizu et al., 2010)

Expression levels were
stable over a 9-month
period at the injection site
(Reimsnider et al., 2007)

Anterograde (Cearley
et al., 2008)

Anterograde
transsynaptic at high
titers (Zingg et al.,
2017)

Far from the injection
site (Burger et al., 2004;
Cearley and Wolfe,
2006; Sondhi et al.,
2007; Taymans et al.,
2007; Bu et al., 2012;
Watakabe et al., 2015)

Astrocytes at low
frequency (Tenenbaum
et al., 2004; Li et al.,
2006; Taymans et al.,
2007; Hadaczek et al.,
2009)

Expression via retrograde
transduction decreased
over a 9 month period
(Reimsnider et al., 2007)

AAV2 Anterograde (Salegio
et al., 2013)

Lower than AAV1 and
AAV5 (Davidson et al.,
2000; Burger et al.,
2004; Aschauer et al.,
2013)

Smaller than AAV1,
AAV5, AAV8 and AAV9
(Burger et al., 2004;
Taymans et al., 2007;
Sondhi et al., 2007;
Watakabe et al., 2015)

Neurons (to different
degrees and not all
types; Kaplitt et al.,
1994; McCown et al.,
1996; During et al.,
1998; Mandel et al.,
1998)

Expression levels were
stable over a 9-month
period at the injection site
(Reimsnider et al., 2007)

Retrograde
at >2 months following
gene transfer (Kaspar
et al., 2002; Halbert
et al., 2006; Sondhi
et al., 2007)

Other cell types at low
efficiencies (Kaplitt et al.,
1994; McCown et al.,
1996; Peel et al., 1997;
Klein et al., 1998; Lo
et al., 1999; Davidson
et al., 2000; Cucchiarini
et al., 2003)
Astrocytes at low
frequency (Taymans
et al., 2007)

AAV5 Anterograde (Aschauer
et al., 2013)

Higher than AAV2,
similar to AAV8
(Davidson et al., 2000;
Taymans et al., 2007;
Aschauer et al., 2013)

Greater than AAV2,
similar to AAV1, AAV8,
AAV9 at high doses
(Burger et al., 2004;
Sondhi et al., 2007;
Taymans et al., 2007;
Aschauer et al., 2013;
Watakabe et al., 2015)

Primarily neurons
(Burger et al., 2004)

Expression levels
increased over time in
cells at the injection site
(Reimsnider et al., 2007)

Retrograde (Burger
et al., 2004; Reimsnider
et al., 2007)

Astrocyte at low
frequency (Tenenbaum
et al., 2004; Taymans
et al., 2007)

Expression via retrograde
transduction decreased
over a 9-month period
(Reimsnider et al., 2007)

Greater than AAV8 at
low doses (Taymans
et al., 2007)

Oligodendrocytes (von
Jonquieres et al., 2013)

AAV8 Anterograde (Masamizu
et al., 2011)

Higher than AAV2,
similar to AAV1, AAV5
(Taymans et al., 2007;
Aschauer et al., 2013)

Greater than AAV2,
similar to AAV1, AAV5,
AAV9 at high doses
(Sondhi et al., 2007;
Watakabe et al., 2015)

Primarily neurons
(Cearley and Wolfe,
2006; Masamizu et al.,
2010)

Expression levels then
remained stable over a
9-month period
(Reimsnider et al., 2007)

Retrograde (Masamizu
et al., 2011)

Higher than AAV9 (Klein
et al., 2008)

Smaller than AAV5 at
low doses (Taymans
et al., 2007)

Astrocytes at low
frequency (Taymans
et al., 2007)

Expression via retrograde
transduction increased
then decreased over a
9-month period
(Reimsnider et al., 2007)

Oligodendrocytes at low
frequency (Masamizu
et al., 2011; von
Jonquieres et al., 2013)

(Continued)
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TABLE 2 | (Continued)

Serotype Transport
phenotypesa

Transduction levels Spread from
injection siteb

Transduced cells Additional notes

AAV9 Anterograde (Cearley
et al., 2008; Masamizu
et al., 2011; Castle
et al., 2014)

High, similar to AAV1,
AAVrh10 (Cearley and
Wolfe, 2006; Cearley
et al., 2008; Aschauer
et al., 2013)

Similar to AAV1, AAV5,
AAV8 and greater than
AAV2 (Watakabe et al.,
2015)

Primarily neurons
(Cearley and Wolfe,
2006; Masamizu et al.,
2011)

Transport and
Contralateral
transduction observed
(Cearley and Wolfe,
2006)

Retrograde (Cearley
and Wolfe, 2006;
Masamizu et al., 2011)

Lower than AAV8,
similar to AAVrh10
(Klein et al., 2008)

Astrocytes (Hammond
et al., 2017)

Anterograde
transsynaptic at high
titers (Zingg et al.,
2017)

Oligodendrocytes at
low frequency
(Masamizu et al., 2011)

AAV
rh10

Anterograde (Klein
et al., 2008)

High, similar to AAV1,
AAV9, AAVrh10
(Cearley and Wolfe,
2006; Klein et al., 2008)

Far from the injection
site (Burger et al., 2004;
Cearley and Wolfe,
2006; Sondhi et al.,
2007; Bu et al., 2012)

Primarily neurons
(Cearley and Wolfe,
2006; Sondhi et al.,
2007; Cearley et al.,
2008)

Retrograde (Klein et al.,
2008)

aFor relative retrograde transport efficiencies, see Tervo et al. (2016). bFor relative retrograde transport efficiencies, see Tervo et al. (2016).

at high titers, specifically showing that AAV1-directed Cre can
activate Cre-dependent transgene expression in a post-synaptic
neuron. Importantly, they note that retrograde transmission also
can occur, making interpretation clear only for circuits where
there is a unidirectional pattern of connectivity.

AAV Can Cause Toxicity at High Doses
Although AAV is less inflammatory than some other viruses, it
is not inert with respect to the innate (Rogers et al., 2011) or
adaptive (Mingozzi and High, 2011) immune system, and may
also perturb other cellular activities. Several studies have found
neurotoxicity when the virus was delivered systemically or via
direct injections into the CNS, or into the sub-retinal space of
the retina. For rabies monosynaptic tracing studies, AAV is often
delivered as a helper virus to supply TVA and rabies G protein. A
recent study found that high doses of helper did not enable rabies
infection or tracing, while diluted preparations did (Lavin et al.,
2019). Although the mechanism was not determined, the authors
suggest that the high doses were toxic. Similarly, neurotoxicity
was seen in piglets injected systemically (Hinderer et al., 2014). In
the retina, toxicity was associated with dose, if the viral promoter
was expressed in a support cell type, the retinal pigmented
epithelium, but not if the viral promoter activity was restricted
to photoreceptor cells (Xiong et al., 2019). Innate immunity has
been shown to result from stimulation of TLR9, a sensor of
unmethylated CpG’s, in studies of AAV infection of muscle (Zhu
et al., 2009) and liver (Martino et al., 2011). Inclusion of a short
TLR9 blocking oligonucleotide within the AAV genome has been
shown to alleviate this problem in some instances (Chan et al.,
2019). It is thus worth carefully considering this aspect of virus
dose when setting up an experiment.

In summary, a consensus of opinion has not been reached
regarding the best serotype for each cell type, brain region or
application. Choosing the optimal serotype requires reviewing

the literature most relevant to the planned experiment and
performing pilot testing for new or at least for challenging
applications. As new engineered capsids with unique features
continue to be developed, the available options will become
more numerous and more powerful (Deverman et al., 2016;
Tervo et al., 2016; Chan et al., 2017; Davidsson et al., 2018;
Ojala et al., 2018).

CONTROLLING GENE EXPRESSION WITH
REGULATORY ELEMENTS

Cre and Flp recombinase-dependent expression elements within
AAV vectors remain the go-to system for restricting transgene
expression to genetically defined cell types in model organisms.
However, few Cre or Flp transgenic lines have been developed
in other mammalian species. Furthermore, breeding multiple
transgenic lines to generate the desired offspring can be time
consuming and expensive. Therefore, there is significant interest
in developing the means to achieve similar expression specificity
in nontransgenic animals using flexible vector-based approaches
that will translate across species.

Cis-regulatory elements can be used to control transgene
expression from AAV genomes. These elements include
promoters and enhancers (Figure 1C), as well as introns,
micro-RNA recognition sequences, and internal ribosome entry
sites (IRES; Figure 1D) that can be used to tailor RNA processing,
stability, and translation to the experimental needs. Here we will
discuss how these regulatory elements can be used to restrict
AAV-mediated gene expression.

Enhancers and Promoters
Enhancer and promoters (hereafter referred to as promoters
for simplicity) can generally be divided into two classes:
general/ubiquitous and cell type-specific. Typically, ubiquitous
promoters provide high-level, long-term expression in most cell
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types, though some, such as the viral CMV promoter, have been
shown to exhibit silencing in specific tissues over time (McCown
et al., 1996; Klein et al., 1998; Paterna et al., 2000; Tenenbaum
et al., 2004; Table 3).

AAV and other single-stranded DNA viruses evolutionarily
exhibit some of the smallest viral genomes (Campillo-Balderas
et al., 2015), which has generally provided a selective pressure
toward shorter promoter sequences. In contrast, the regulatory
elements that control mammalian gene transcription are often
distributed over thousands to hundreds of thousands of bases.
Due to the limited packaging capacity of the AAV genome,
identifying AAV-compatible promoters has been challenging
and the development of shortened promoters is an area of active
study (Nathanson et al., 2009a; de Leeuw et al., 2016). A list
of cell type-specific promoters compatible with AAV vectors
is provided in Table 4. High expression levels are not optimal
for every application and alternative regulatory elements, such
as those from the mammalian MeCP2 or PGK genes (Table 3)
may be suitable for experiments where high-level viral enhancer
driven expression is not desired. General recommendations for
expression levels of various types of transgenes are summarized
in Table 5.

Multicistronic Vectors
Although AAV vectors have a limited packaging capacity, it
is possible to express multiple short transgenes from a single
vector using one of several approaches: (1) separate translational
units where each cDNA is controlled by separate 5′ and 3′

regulatory elements; (2) using IRES sequences to insert two
separate translational units into a single mRNA; or (3) the use of
viral 2A sequences to generate separate proteins from the same
translational unit (Figure 1D). Table 6 highlights considerations

for choosing between the use of IRES sequences and 2A ‘‘self-
cleaving’’ peptides.

One important consideration when evaluating expression
strategies and determining specificity is that the expression
levels required for reporter detection may not match what is
necessary for the activity of an opsin, DREADD or recombinase.
For example, fluorescent proteins are commonly used to
evaluate gene regulatory elements and vector design. However,
fluorescent reporter assays may give the false impression of
specificity if high levels of expression are seen in target cell
types and low-level expression goes undetected in off-target
populations. If these same regulatory elements are then used to
drive DREADDs or Cre, which can mediate their effects at low
expression levels, then the specificity may appear reduced. If this
goes unexamined, then the interpretation of experimental results
could be compromised. Moreover, though they are commonly
used, fluorescent proteins are not necessarily inert and can lead
to immune responses in larger animals (Samaranch et al., 2014),
and over-expression related toxicities in mice.

Post-transcriptional Regulatory Elements
Transgene expression can also be controlled
post-transcriptionally through the use of elements impacting
RNA splicing, nuclear export, stability, and translation
into proteins (Figure 1E). Inclusion of an intron can have
positive impacts on expression levels. Introns have also been
combined creatively with recombinase sites and partially
inverted transgenes to achieve tight intersectional control
of transgene expression (Fenno et al., 2014, 2017). Many
recombinant AAV genomes also include a woodchuck hepatitis
virus posttranscriptional regulatory element (WPRE), which can
dramatically enhance expression. For several examples of how

TABLE 3 | Ubiquitous enhancers and promoters.

Promoter Characteristics Length (bp) Notes References

CMV, Cytomegalovirus early
enhancer and promoter

Ubiquitous 590–800 Robust, rapid, long term expression in
many cell types. Prone to silencing in
some tissues, specifically the
hippocampus, striatum, and substantia
nigra. Silenced by 10 weeks in the
spinal cord. Only modest expression in
glial cells in rat. Minimal expression in
rAAV2-retro helper- packaged AAV

Thomsen et al. (1984),
McCown et al. (1996), Klein
et al. (1998), Paterna et al.
(2000), Tenenbaum et al.
(2004), Gray et al. (2011)
and Yaguchi et al. (2013)

CAG, CMV enhancer, CBA
promoter, globin intron

Ubiquitous 1,700 Expression in excitatory and inhibitory
neurons and glia

Miyazaki et al. (1989) and
Nathanson et al. (2009b)

CAGGS, CMV immediate-early
enhancer, CBA promoter,
hybrid intron (CBA
exon1/intron1/rabbit b-globin
acceptor)

Ubiquitous, strong in
neurons

1,600 Ubiquitous and long term expression in
the brain

Niwa et al. (1991) and Klein
et al. (1998)

CBh, CBA hybrid intron: CMV
early enhancer, CBA promoter,
CBA/MVM intron

Ubiquitous, strong in
neurons

800 Stronger expression than the CBA
promoter

Gray et al. (2011)

EF1a, Elongation Factor 1a Ubiquitous, strong in
neurons

1,200, 2,500 Moderate, lower expression in glia
compared with CMV/CAG

Kim et al. (1990) and Gill
et al. (2001)

EFS, EF1a short version Ubiquitous 250 Montiel-Equihua et al.
(2012)

UBC, Ubiquitin C Ubiquitous, weak 400, 1,200 Seita et al. (2019)
PGK, phosphoglycerate kinase Ubiquitous 425 Weak expression Qin et al. (2010)
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TABLE 4 | Cell type-specific promoters.

Promoter Characteristics Length (bp) Notes References

hSyn1, human Synapsin1 Neuronal, broad 485 Broadly neuronal in mice, low-level
expression in Purkinje cells. Excitatory
neuron expression in monkeys and rats.
Inhibitory neuron expression also
observed, with serotype and
brain-region dependent biases

Hoesche et al. (1993),
Kügler et al. (2003),
Dittgen et al. (2004),
Nathanson et al.
(2009b) and Yaguchi et al.
(2013)

MeCP2, mMeCP2 promoter Mostly neuronal, broad,
weak expression

229 Expresses in neurons and in spinal cord
motor neurons

Gray et al. (2011)

NSE, Neuron-specific enolase Neuronal, broad 1,300, 1,800 Provides strong and long-term
expression

Xu et al. (2001)

BM88, Neuron-specific protein Preferentially neuronal 88 Pignataro et al. (2017)
CaMKII, Ca2+/Calmodulin-dependent
kinase II

Neuronal, glutamatergic
(cortical)

400, 1,200, 2,300 Excitatory neuron preference
expression in monkeys and rat. Some
inhibitory neuron expression in mouse
varies with serotype, titer, and brain
region

Dittgen et al. (2004),
Hioki et al. (2007),
Nathanson et al. (2009b),
Yaguchi et al. (2013) and
Scheyltjens et al. (2015)

mDLX, mouse DLX5/6 enhancer,
minimal promoter and chimeric intron

Forebrain GABAergic
neurons

850 Validated GABAergic neuron specificity
in multiple serotypes

Dimidschstein et al. (2016)

mTH/rTH, mouse/rat Tyrosine
Hydroxylase

Catecholamine neurons 2,500 Oh et al. (2009) and Chan
et al. (2017)

DBH, Dopamine β hydroxylase Adrenergic and
noradrenergic neurons

1,150 Hwang et al. (2001)

PRSx8, DBH synthetic Adrenergic and
noradrenergic neurons

NR Evaluated in noradrenergic neurons in
the LC

Hwang et al. (2001)

PCP2, Purkinje Cell Protein 2 (Ple155) Purkinje neurons 1,650 de Leeuw et al. (2016) and
Chan et al. (2017)

FEV, ETS transcription factor (Ple67) Serotonergic neurons 2,000 Serotonergic neurons de Leeuw et al. (2016) and
Chan et al. (2017)

MCH, Melanin-concentrating hormone Subpopulation, dorsal
lateral hypothalamus

830 van den Pol et al. (2004)

SLC6A4, Serotonin Transporter
(Ple198)

3,050 Expression is strongest in the thalamus de Leeuw et al. (2016)

NR2E1 (Ple264) Müller glia 2,030 de Leeuw et al. (2016)
GfABC1D, truncated GFAP Astrocytes 680 Lee et al. (2008)
Aldh1l1 Astrocytes 1,300 Koh et al. (2017)
mMBP, mouse myelin basic protein Oligodendrocytes 1,900 Gow et al. (1992)
MAG, Myelin-Associated Glycoprotein Oligodendrocytes 300, 1,500, 2,200 All provide expression in

oligodendrocytes, 1,500 and 2,200 bp
versions are more specific

von Jonquieres et al. (2016)

ICAM-2, Intracellular Adhesion
Molecule 2

Endothelial 330 Cowan et al. (1998)

CLDN5, Claudin5 (Ple261) Endothelial 2,960 de Leeuw et al. (2016)
Tie-2, TEK Receptor Tyrosine Kinase Endothelial 730 Leung et al. (2009)
vWF, von Willebrand Factor Endothelial 730 Jahroudi and Lynch (1994)
FLT1, Endothelial Growth Factor
Receptor

Endothelial 1,030 Morishita et al. (1995)

TRE, rtTA-tTA responsive element Inducible 320–400,
(1,400 w/tTA)

Chenuaud et al. (2004) and
Chan et al. (2017)

c-FOS Activity-dependent 760 Ye et al. (2016)
eSARE Activity-dependent 980 Kawashima et al. (2014)

the inclusion of a WPRE affects expression from AAV vectors,
please see de Leeuw et al. (2016).

Complementary miRNA target sites (TS) are frequently
engineered into the 3′-untranslated region (3′-UTR) of
recombinant AAV vector genomes to mitigate off-target
transgene expression. These sequences are complementary
to miRNAs expressed within off-target cell types but not
within the target population. miRNA binding to the perfectly
complementary miRNA TS results in degradation of the RNA.
Inclusion of multiple copies of the short miRNA TS sequences
can dramatically lower off-target transgene expression. For

example, by incorporating three copies each of miR-1 and
miR-122, which are specifically expressed in muscle and liver,
respectively, Xie et al. (2011) reduced transgene expression
from intravenously administered AAV9 in muscle, heart, and
liver, while maintaining brain expression. miRNA TS that
enhance the restriction of lentiviral mediated gene expression
to GABAergic neurons have also been identified (Xie et al.,
2011; Keaveney et al., 2018), as have miRNA TS that result in
more selective GCaMP6f expression from a strong ubiquitous
promoter (Challis et al., 2019). Given their short lengths, miRNA
TS can be multiplexed within the same genome, making them
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TABLE 5 | General expression considerations for specific transgenes and
applications.

Transgene Application Optimal expression
level

Opsins Optogenetics High
DREADDs Chemogenetics Low for optimal

specificity
Ca2+ sensors Activity monitoring Moderate
Voltage sensors Activity monitoring Moderate-high
dLight1 Dopamine indicator Not yet known
Fluorescent reporters
(XFPs)

Expression reporters,
protein tagging

Moderate

Luciferase/AkaLuc Expression reporter Low-High
Cre/FlpO/Dre/KD/B3
Recombinases

Intersectional
expression/Circuit studies

Low

CRISPR-Cas9 Gene editing Moderate-High
TVA and rabies G Circuit studies/retrograde

tracing/TRIO/cTRIO
TVA (low) Rabies G
(Moderate)

TABLE 6 | Bicistronic expression options.

Bicistronic expression elements

2A IRES

Advantages • Requires minimal
sequence space

• Protein products are
unmodified

• Results in similar
expression of both
proteins

• Can be used to
express >2 proteins

Disadvantages • May reduce expression
of both proteins

• May not provide equivalent
expression of both
transgenes

• Adds peptide sequence
to the C-terminus of the
first protein and proline to
the N-terminus of the
second protein

• May not provide equivalent
expression of both
transgenes

• Digestion at the 2A site is
not always complete and
may lead to fusion
protein expression

• IRES sequences
are >500 bp

attractive elements for reducing expression outside of the cell
type of interest.

Conditional Expression
The mammalian CNS contains extremely diverse types of
neurons. These neuronal cell types can be distinguished by
their intrinsic gene expression profiles, which are differentially
regulated throughout development. Binary expression systems of
drivers and reporters can be used to drive transgene expression
in genetically-defined cells (reviewed in Huang et al., 2014).

There are two general strategies for using binary expression
systems to access genetically-defined cell types: transactivation-
based systems (based on tetracycline (TET)-response elements,
TRE) and recombination-based systems (based on lox-site
recombination, lox) described in (Taniguchi, 2014; Figure 1F).
Gene targeting techniques can be used to insert Cre or Flp
site-specific recombinases in the mouse genome. These knock-in
driver mouse lines express Cre or Flp under the activity of a

target gene’s endogenous promoter. Thus, Cre and Flp driver
mouse lines constitute a genetic switch to turn on a recombinase-
dependent reporter or effector. Since the recombinase is only
expressed in cells defined by the target gene’s endogenous
promoter activity, this system allows labeling and manipulation
of neurons defined by the targeted gene’s expression pattern. A
recently developed strategy can direct Cre or Flp activity to cells
expressing GFP (Tang et al., 2017). Nanobodies directed against
GFP have been engineered as fusion proteins with Cre or Flp.
The recombinases are active only in GFP-expressing cells. This
method can be used for the activity of only one recombinase, or
can be used intersectionally, e.g., mating GFP and Cre mouse
lines, infecting with a GFP-dependent Flp-nanobody fusion,
and then using a Cre+ and Flp-dependent readout (see further
below for intersectional methods). For temporal control, one
can use TET-inducible systems to provide rapid and detectable
expression at a given time point (Hioki et al., 2009; Sadakane
et al., 2015). The TET system also has the advantage of amplified
gene expression (Watakabe et al., 2012; Chan et al., 2017). This
may be particularly important in studies on non-human primates
since transduced cells could be maintained long-term without
affecting cell integrity (Sadakane et al., 2015).

The reporter or effector whose expression is dependent on
the driver’s activity is introduced in vivo by either crossing
the driver to a transgenic reporter mouse line, using a viral
vector, or electroporating the DNA construct into the cells. With
the widely used Cre or Flp drivers, the conditional reporter
expression depends on the recombination of specific lox or frt
sites, respectively. In the case of the TET system, a tet-on, reverse
tetracycline transactivator (rtTA) or tet-off (tTA) driver is paired
with an AAV vector with a promoter harboring tet-responsive
elements (TRE).

Targeting at Random vs. Targeting to a Specific
Gene’s Locus
Knock-in Cre and Flp recombinases or GFP can be inserted
into the genome either randomly or at a particular gene
locus (Figure 1F). Conventional transgenic and BAC transgenic
approaches result in relatively random insertions into the
genome. However, knock-in mouse lines targeted to a specific
locus by homologous recombination have the advantage that the
expression of the inserted gene will recapitulate the expression
pattern within cells of the endogenous gene of interest. There
are several advantages to using targeted knock-in driver mouse
lines (Table 7). Targeted knock-in of Cre or Flp or GFP into a
specific gene’s transcription/translation initiation site can result
in the recapitulation of expression of the endogenous locus.
When using this strategy, it should be noted that individuals can
exhibit variable levels of silencing. Typically, an optimal ‘‘non-
silencing’’ male should be identified and used for genetic crosses.
However, the offspring of this male may exhibit silencing and
must be revalidated.

Temporal Control With Tamoxifen
To control the expression of a reporter in a subset of neurons that
uniquely and transiently express a certain marker at a particular
time point, tamoxifen-inducible recombinases (Feil et al., 2009),
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TABLE 7 | Methods of delivering Cre for cell-type targeting, labeling, and manipulation.

Method of Cre delivery

Targeted knock-in Cre mouse line Transgenic Cre mouse line (not generated
by homologous recombination)

Cre via AAV

Advantages • Specific and reliable by genetic
targeting to the locus of interest
(higher certainty that driver activity will
reflect the endogenous expression of
the gene of interest)

• Cheap and easy to produce mouse lines • Stable over time

• Comprehensive with Cre mouse lines • Lower Cre expression than AAV • Spatial control: can restrict
delivery to a particular region

• Sparse if using CreER by adjusting
tamoxifen dose

• Can be delivered broadly by systemic (e.g.,
tail vein or retro-orbital) injection

• Can combine with viral strategies to
achieve spatial control or very strong
expression

• Lower Cre expression than AAV

Disadvantages • Time-consuming and costly to
produce and maintain mouse lines

• Does not necessarily recapitulate the
endogenous gene’s expression

• Expression gradients from
injection site(s)

• Genetic silencing in mouse lines can
affect Cre expression

• AAV vectors increase interleukin levels in the
animal

• Sexual dimorphism can arise that does not
reflect the gene’s native expression profile

• High levels of Cre protein
exhibit cell toxicity

• Transgenic animals can lose specificity over
time

so-called CreER or FlpER, can be used as drivers. In CreER
driver mice, activation of the expressed Cre recombinase
requires administration of the estrogen receptor modulator
drug tamoxifen to the animal, allowing for temporal control of
recombination.

The typical tamoxifen dose varies from 10 to 200 mg/kg,
depending on the desired degree of recombination at the reporter
allele. In effect, this controls the sparseness/density of the labeling
of the targeted neuronal population. The timing for tamoxifen
administration depends on the temporal characteristics of the
promoter driving CreER in the specific population to be targeted.
Importantly, the half-life of tamoxifen (approximately 48 h)must
be taken into consideration. Tamoxifen preparation is detailed in
the published protocol in (Vaughan et al., 2015).

Tamoxifen can be administered in one of three ways,
depending on the desired developmental time point for activating
the CreER driver: oral gavage to the mother for embryonic
induction; subcutaneous injection to offspring for early postnatal
induction, or intraperitoneal injection in offspring for late
postnatal and adult induction.

Best Practices for Induction of CreER or FlpER
Mouse Lines
To generally improve the reliability of results obtained with
CreER or FlpER mouse lines, several tamoxifen doses should
be evaluated. If the level of recombination of the reporter
achieved with a high dose of tamoxifen is low, administration of
4-hydroxytamoxifen (the native form of tamoxifen) can improve
activation of CreER (Jahn et al., 2018). Tamoxifen needs to be
metabolized in the liver to reach its active 4-hydroxytamoxifen
form. Tamoxifen is often preferred over 4-hydroxytamoxifen
for routine applications in highly active CreER driver lines due

to lower cost and improved solubility. Following tamoxifen
induction, CreER or FlpER will be active for ∼48 h, which may
impact induction during developmentally active time periods.
4-hydroxytamoxifen is a better choice for tighter control of
the window of activation. Administration of tamoxifen or
4-hydroxytamoxifen by gavage to the pregnant mother to induce
the pups at embryonic timepoints can lead to problems of
miscarriage or poor mothering. When administering tamoxifen
at embryonic time-points, use of Swiss or CD1 compared to
C57Bl6 mice can improve outcomes in two ways: they produce
larger litters and females are better mothers, which overall can
improve pup survival.

Validating a Knock-in Driver Mouse Line
Knock-in driver mouse lines are designed to control the
expression of reporter probes, sensors, and effectors in
genetically-defined cell-types. It is important to validate
that the driver mouse line expressing a site-specific recombinase
(e.g., Cre, CreER, Flp, FlpER) reflects the endogenous expression
pattern of the gene targeted by the knock-in driver. Various
approaches can be used separately or jointly to validate a
knock-in driver mouse line: (1) Crossing the mice with a
suitable reporter like Rosa26-CAG-LSL-td-tomato (Ai14)
or Rosa26-CAG-LSL-h2B-GFP and assessing brain-wide
expression; (2) Immunostaining of the target regions; and
(3) dual fluorescent in situ hybridization (dual fISH) with probe
for reporter (e.g., RFP or GFP for Rosa26-CAG-LSL-td-tomato
(Ai14) or Rosa26-CAG-LSL-h2B-GFP, respectively). Note
that assessing Cre lines by crossing to a reporter line gives an
integrated view of Cre activity over the lifetime of the animal. To
assess Cre activity in the target cell population at the particular
age of interest, a viral vector with a Cre-dependent reporter
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FIGURE 2 | Various strategies for neuronal targeting using AAV. Delivery of neuronal effectors via AAV labels (green) axons and terminals with cell bodies at the
injection site. (A) Effectors under a general promoter express in all transduced neurons with cell bodies at the injection site. Specific regions can be optically
stimulated (red beam). (B) Effectors under cell-type promoters express only within a cell type. (C) Effectors delivered via a retrograde AAV express in all transduced
neurons with axons that project into the injection site. Cell bodies in regions of interest can be optogenetically stimulated (red beam). (D) Delivery of a retrograde AAV
expressing Cre recombinase (Retrograde Cre) to the projection site coupled with local delivery of a Cre-dependent effector limits expression to neurons within
specific circuits.

in a Cre line can be used. Similarly, for CreER lines tamoxifen
induction should be performed at different developmental
time-points to assess temporal specificity.

In addition, leakiness of both mouse lines and viruses must
be assessed prior to the interpretation of experimental results
that rely on the complete restriction of transgene expression.
Leakiness of a mouse line can be assessed when validating
the mouse line, ensuring that expression of the site-specific
recombinase or activator (i.e., Cre, CreER, Flp, FlpER or tTA)
is consistent with the gene of interest in its native form.
Crossing the driver to a reporter (e.g., fluorescent reporter) and
performing dual fluorescent in situ hybridization (dual fISH),
with probes for the fluorescent reporter and for the gene of
interest allows one to check that endogenous expression of
the gene and activity of the driver are present in the same
cells. Using knock-in driver mouse lines instead of randomly
inserted BAC or plasmid driver mouse lines allows for targeted
expression, with a higher likelihood of expression within cells
expressing the endogenous gene of interest. Leakiness of the
tamoxifen-inducible driver mouse line can be assessed by
crossing the inducible driver CreER or FlpER to a Cre or

Flp dependent fluorescent reporter and checking for expression
of the fluorescent protein without administering tamoxifen.
Finally, leakiness of the Cre- or Flp-dependent or tTA-activated
AAV can be checked by injecting the virus in a mouse that
has been crossed to a fluorescent reporter mouse line for
the driver/activator. If expression from the virus and from
the mouse reporter line match, this indicates that the AAV
is specific to the driver/activator. One further evaluation of
a given virus prep for background recombination (or leak)
is to inject it into a mouse line that does not encode the
cognate recombinase. Recombination can occur during the
growth of the AAV plasmid in bacteria, and/or during virus
preparation in mammalian cells, and should be assessed using
this test.

VIRAL STRATEGIES FOR TARGETING
DEFINED POPULATIONS

Combining various experimental techniques can enable the
precise targeting of specific neuronal populations of interest.
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The general advantage of using combinatorial approaches is
that the specificity of cell targeting can be improved with each
additional technique. Applying known characteristics of AAV
and the genetically encoded transgenes they carry, neuronal
populations can be specifically targeted and manipulated based
on their locations and connectivity. Here we will review several
targeting strategies.

Axon Terminals
A viral encoded transgene can be targeted to axon terminals.
Such terminals can then be targeted optogenetically in specific
areas by only delivering light to the region harboring the
terminals of interest (Figure 2A). This technique can be
further restricted such that only axons of a particular cell
type are targeted by using cell-type-specific promoters
to drive the AAV expression (Figure 2B). Additional
specificity can be achieved by choosing an injection site,
AAV serotype, and titer so that only desired cell types are
infected (Nassi et al., 2015).

Projection Neuron Targeting
Targeting the cell bodies of projection neurons can be important
for manipulating only those neurons that terminate at a
particular site. To target these neurons, an AAV capable of
retrograde transduction (e.g., AAV2-Retro) can be delivered to
projection sites and the cell bodies of those neurons terminating
at that region will be targeted (Tervo et al., 2016). This method
alone will not give rise to pathway specificity. However, if used
to deliver optogenetic tools, light can be delivered only to the
region harboring the cell bodies of interest (Figure 2C; Nassi
et al., 2015).

Finally, specific populations of projection neurons can be
targeted by coupling local delivery of a Cre-dependent, inducible
neuromodulator (e.g., a DREADD or opsin) with retrograde
delivery of Cre to the site where the targeted projection neurons
originate (Figure 2D). Using this approach, a subset of projection
neurons (Figure 2D), rather than all the projection neurons
(Figure 2C), then express the Cre-dependent neuromodulator.
This has the advantage that effectors (e.g., the DREADD ligand)
can then be delivered systemically rather than locally and still
only manipulate the subset of projection neurons that have been
targeted (Nassi et al., 2015).

AREAS FOR DEVELOPMENT

The arsenal of new sensors, actuators, recombinases, genes, RNA
and base editing enzymes, and other genetically encoded tools
for studying the nervous system is rapidly growing. AAV vectors
remain the most versatile and powerful approach for delivering
these tools to the CNS. Nevertheless, delivery challenges remain
and efforts are ongoing to develop new vectors that address
several key needs including: (1) improved widespread CNS gene
transfer via IV and ICV routes; (2) AAV vectors capable of
more efficient trans-synaptic anterograde transport; (3) vector
solutions for delivering transgenes too large to fit in a single
AAV virus; (4) capsids that specifically target defined neural cell
types and neuronal subtypes; and (5) viral vectors that enable
transduction of microglia.

Overall, consistency and repeatability of both existing and
newly developed AAV tools can be improved by following best
practices and guidelines. While powerful technologies are being
developed, each has technical limits that need to be considered
both when designing experiments and when interpreting results.
To this end, improved platforms for sharing information,
including technical guidelines and best practices, will serve the
research community by enabling technologies to be used to their
fullest capacities consistently across labs.
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