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1 School of Medicine, Institute of Anatomy “Niko Miljanić”, University of Belgrade, Belgrade, Serbia, 2 Department
of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia, 3 Pharmacogenetics Section, Department
of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden, 4 Group for Molecular Oncology, Institute
for Medical Research, University of Belgrade, Belgrade, Serbia, 5 Department of Hematology, Clinical Center “Dragiša
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Early life adversities leave long-lasting structural and functional consequences on the
brain, which may persist later in life. Dopamine is a neurotransmitter that is extremely
important in mood and motor control. The aim of this study was to investigate
the effect of maternal deprivation during the ninth postnatal day on the volume of
dopaminergic nuclei and the number of dopaminergic neurons in adolescence and
adulthood. Maternally deprived and control Wistar rats were sacrificed on postnatal day
35 or 60, and the dopaminergic neurons were stained in coronal histological sections of
ventral midbrain with the tyrosine hydroxylase antibody. The volume of dopaminergic
nuclei and the number of dopaminergic neurons in the substantia nigra (SN) and
ventral tegmental area (VTA) were analyzed in three representative coordinates. Maternal
deprivation caused weight loss on postnatal day 21 (weaning) and corticosterone blood
level elevation on postnatal days 35 and 60 in stressed compared to control rats. In
maternally deprived animals, the volumes of SN and VTA were increased compared
to the controls. This increase was accompanied by an elevation in the number of
dopaminergic neurons in both nuclei. Altogether, based on somatic and corticosterone
level measurements, maternal deprivation represents a substantial adversity, and the
phenotype it causes in adulthood includes increased volume of the dopaminergic nuclei
and number of dopaminergic neurons.
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INTRODUCTION

Development of the nervous system plays a pivotal role in
the establishment of healthy adult brain, while stressful events
in critical neurodevelopmental periods may cause abberations
and maladaptive phenotypes, such as schizophrenia and other
neurocognitive disorders (Murray et al., 1992; Waddington
et al., 1997). In support of this, maternal deprivation (MD)
has been proposed as an animal model for studies of certain
neuropsychiatric disorders, including schizophrenia (Ellenbroek
and Cools, 2002). Maternal deprivation is an animal model
in which rat pups are suddenly separated from their mothers
for a defined period of time (Husum and Mathe, 2002; Aksic
et al., 2013). Early traumatic experiences are postulated to
cause long-term neural changes which are an integral part of
the etiology of numerous psychiatric disorders (Llorente et al.,
2012). Ellenbroek and Cools (2002) have shown that early
maternal deprivation induces schizophrenia-like phenotypes.
In experimental animals, early life stress caused by maternal
deprivation of pups during a critical period of development is
known as the stress hyporesponsive period (SHRP) (Chocyk et al.,
2011). The SHRP for rats occurs between postnatal days 4 and 14,
and it is a period of time during which pup–mother interactions,
such as licking, grooming, and arched-back nursing, suppress the
basal and stress-induced levels of glucocorticoids (de Kloet et al.,
2005). One of the main biological functions of the SHRP is to
protect the developing brain from fluctuations of glucocorticoid
levels (Champagne et al., 2009). Glucocorticoids profoundly
affect brain development as they are involved in neurogenesis,
gliogenesis, myelination, differentiation, and apoptosis (Almeida
et al., 2000; Champagne et al., 2009). Adversities during SHRP
can profoundly affect the neuronal functioning later in life, and
the timing has been shown to be crucial for the development
of various phenotypes. It has been previously shown that early
maternal deprivation can disrupt normal salience in adult rats
and that this phenotype is dependent on the day of deprivation
(Ellenbroek and Cools, 2002). In particular, prepulse inhibition
was disrupted when deprivation took place on postnatal day
9 (P9), but it remained intact when the rats were deprived
on P13 (Ellenbroek et al., 1998; Ellenbroek and Cools, 2002),
meaning that prepulse inhibition was most severely affected when
deprivation took place around P6–P9, right in the middle of
SHRP (Ellenbroek and Cools, 2002).

The substantia nigra (SN) and the ventral tegmental area
(VTA) are the principal dopaminergic nuclei with projections
throughout the brain and which control various processes. The
enrichment of dopaminergic innervation continues to increase
until postnatal day 60 in rats, whereas after that point, the
density and topography of the dopaminergic afferents remain
relatively constant (Suri et al., 2015). Profound changes in the
dopaminergic system morphology and signaling caused by early
life stress have been observed in a series of previous findings; in
particular, maternal deprivation increased the circulating level of
dopamine in the rat brain (Huppertz-Kessler et al., 2012) and
increased the number of tyrosine hydroxylase positive neurons
in the SN (Chocyk et al., 2011) and VTA (Jahng et al., 2010)
later in life. In addition, a short period of maternal deprivation

increased the expressions of Drd1 and Drd2 throughout many
regions of the adult brain (Ploj et al., 2003; Brenhouse et al.,
2013; Li et al., 2013). However, relatively little is known regarding
the consequences of early life stress on the dopaminergic system
morphology during adolescence and adulthood.

Previous studies have shown an important role for
glucocorticoids, primarily dexamethasone, which mimic the
effects of stress and which can alter the cytoarchitecture and
number of dopaminergic cells in the SN and VTA in adult rats
when administrated during the prenatal and early postnatal
periods (McArthur et al., 2005). Previous morphometric
microscopy studies revealed alterations in the neuronal density
of the limbic system and temporal and frontal cortices (Arnold
and Trojanowski, 1996). During the first 2 weeks of postnatal
development, the dopaminergic neurons are particularly
sensitive to adversities (Chocyk et al., 2011); therefore, the
aim of this study was to investigate the effect of maternal
deprivation conducted on the ninth postnatal day on the volume
of dopaminergic nuclei and the number dopaminergic neurons
in the dopaminergic nuclei in adolescent and adult rats.

MATERIALS AND METHODS

Animals and Procedures
Male and four nulliparous female Wistar rats (3 months old) were
put together in standard Plexiglass cages with normal embedding
(26× 42× 15 cm) in a temperature-controlled room (23± 1◦C).
The rats were on a standard 12-h light/dark cycle with lights on
from 7:00 a.m. to 7:00 p.m., with freely available water and food.
Two weeks later, the males (one per each group) were removed,
and pregnant female (one per each group) rats were checked
twice daily for a potential delivery. The day of delivery was noted
as postnatal day 0 (P0). On P9, two litters were weighed and
subjected to the maternal deprivation (MD) procedure according
to the previously published protocol (Ellenbroek and Cools, 2000;
Roceri et al., 2002; Aksic et al., 2013; Aleksic et al., 2016). Briefly,
the mothers were removed from the litter at 10:00 a.m., after
which the pups were weighed and returned to their home cage.
They remained in their home cage at room temperature for
24 h. This meant that the pups also remained without access
to food during this period. The mothers of the control litters
(two groups) were very briefly (3 min) removed from their
home cages. All litters were later left undisturbed, except for
the routine cleaning of the cages twice per week, until P21,
when the litters were weaned and classified according to gender;
at this point, the animals were weighed. For this experiment,
20 animals were divided into four groups, out of which two
groups (five control and five MD rats) were sacrificed on P35,
which corresponds to periadolescence. The other two groups
(five control and five MD rats) were sacrificed at the period of
young adulthood (P60). All efforts were made to minimize animal
suffering and reduce the number of animals used in the study.
All experimental procedures were in compliance with the EEC
Directive (2010/63/EU) on the protection of animals used for
experimental and other scientific purposes and were approved
by the Ethical Committee for the Use of Laboratory Animals
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of the School of Medicine, University of Belgrade (approval no.
323-07-01245/2014-05/2).

Tissue Processing
The rats were deeply anesthetized and transcardially perfused,
starting with a vascular rinse until the liver was discolored
(200 ml of 0.9% saline, perfusion speed of 40 ml/min), followed
by a 4% paraformaldehyde solution in 0.1 M phosphate-buffered
saline (PBS; 200 ml, 100 ml at 40 ml/min and then 30 ml/min),
and finally with the 10% sucrose solution in 0.1 M PBS (200 ml,
30 ml/min). The animals’ brains were extracted and cleared
of the meninges and blood vessels and then immersed in 4%
paraformaldehyde solution overnight. On the next day, the brains
were moved to the 30% sucrose solution for several days until
they sunk and then were flash frozen. The brains were cut
in a coronal plane into 40-µm-thick sections using a cryostat
(Leica Instruments, Nußloch, Germany). Free-floating sections
were stained, mounted, and coverslipped with DPX (Sigma)
and then examined under an Olympus CH2 (Japan) microscope
equipped with a camera.

Immunohistochemistry was performed under the same
conditions for all experimental samples, and the volume of the
dopaminergic nuclei as well as the number of dopaminergic
neurons were quantified based on tyrosine hydroxylase (TH)
positively immunostained (TH +) cells in the substantia nigra
pars reticulata (SNpr), substantia nigra pars compacta (SNpc),
and in the ventral tegmental area (VTA). Brain sections
were initially thoroughly rinsed with 0.1 M PBS, pH 7.4.
The endogenous peroxidase activity was neutralized with 3%
hydrogen peroxide/10% methanol for 15 min, and non-specific
binding was prevented by 60 min incubation in 5% normal
donkey serum (D9663, Sigma-Aldrich, United States)/0.1 M
PBS at room temperature. The sections were further incubated
for 48 h at 4◦C with primary mouse monoclonal anti-TH
antibody (dilution 1:1,000, T2928, Sigma-Aldrich, United States)
in blocking solution (0.5% Triton X-100 in 0.1 M PBS)
and subsequently for 90 min in donkey anti-mouse IgG-HRP
(dilution 1:50, sc-2318, Santa Cruz, United States). Between each
immunolabeling step, the sections were washed in fresh 0.1
M PBS (3 × 5 min). Immunoreactive signals were visualized
with a diaminobenzidine solution [1% 3,3′-diaminobenzidine
(11208, Acros Organics)/0.3% hydrogen peroxide/0.1 M PBS]. All
sections were finally mounted on slides, dehydrated in a series of
solutions with increasing ethanol concentrations (70, 96%, and
100% ethanol; Zorka Pharma, RS), placed in a clearing agent
(xylene; Zorka Pharma, RS), mounted with DPX (Sigma-Aldrich,
United States), and coverslipped.

Serum Corticosterone Assay
After the sacrifice of animals on P35 and P60, blood was collected
from the rats in both the MD and control groups by cardiac
puncture. After the blood was harvested, it was allowed to clot
for 1 h at room temperature and centrifuged at 2,000 rpm for
10 min at 4◦C to obtain the serum. The serum samples were
collected into ice-cooled tubes and stored at −20◦C until the
corticosterone assay. Corticosterone concentration was measured
in 1:10 diluted serum samples using a commercially available

enzyme immunoassay (EIA) kit (IDS; EURL Paris, France).
Briefly, 100 µl of the diluted serum or corticosterone standards
was added to the wells of an antibody-coated microtiter plate.
Then, 100 µl of the enzyme conjugate was added to each well
of the plate and incubated for 24 h at 4◦C. After the plate
was washed three times with the wash solution, 200 µl of
tetramethylbenzidine (TMB) substrate was added to each well
and incubated for 30 min at room temperature. The absorbance
was read at 450 nm using a microplate reader within 30 min
of adding the stop solution. Each sample was run in duplicate
and the concentration of corticosterone was determined by
using the calibration curve based on the concentrations of the
external standards.

Volumetric Measurements of
Dopaminergic Nuclei
All the tissue samples of the control and experimental brains
(three sections per rat) were grouped into three defined
stereotaxic ranges of the overall SNpr, SNpc, and VTA rostro-
caudal dimensions. Namely, the volume of each structure
was approximated by the surface area in three 40-µm-thick
coronal sections per brain, representing the overall rostro-
caudal dimension of SNpr, SNpr, and VTA in three defined
stereotaxic ranges (4.60–5.10 mm, 5.20–5.70 mm, and 5.80–
6.30 mm caudally from bregma). The whole SNpr, SNpc, and
VTA were delineated in three stereotaxic ranges and the area
was measured from the micrographs using ImageJ 1.46 software.
All measurements were performed on both sides of each brain
in a defined stereotaxic range, after which the mean value of the
measured sides was used as a result for the statistical analysis of
each brain. The volumes of the whole SNpr, SNpc, and VTA were
approximated by the surface area in three coordinates according
to Cavalieri’s principle (Chocyk et al., 2011), i.e., [Area 1 (left
side of the section) + Area 2 (right side of the section)]/2 × 0.04
(thickness of the section/1,000).

Image Acquisition and Quantitative
Analysis of Tyrosine Hydroxylase (TH +)
Cells
Images were taken using an Olympus CH2 (Japan) microscope
and analyzed in ImageJ 1.46 software. Tyrosine hydroxylase-
positive cells were counted in stereological sections of the rat
brains through the overall rostro-caudal dimension of SNpr,
SNpc, and VTA in three defined stereotaxic ranges (4.60–
5.10 mm, 5.20–5.70 mm, and 5.80–6.30 mm caudally from
bregma). All counts were performed on both sides of each
brain in a defined stereotaxic range, after which the mean value
of the measured sides was taken for each brain as results for
statistical analysis.

Statistical Analysis
All numerical data are presented as group mean values with
standard errors of the mean (SEM). All statistical analyses were
done in the IBM SPSS 11.0 software using Student’s t test.
The differences were considered significant if the p-value was
lower than 0.05.
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FIGURE 1 | Effect of maternal deprivation on the animals’ weight at weaning age and on the corticosterone levels in adolescence and adulthood. All results are
presented as the mean values ± SEM. Asterisk indicates significant between-group differences of the mean values (Student’s t-test for two independent groups,
p < 0.05). (A) The body weight reduction in maternally deprived animals at weaning period, P35 and P60, was reduced compared with the controls (p < 0.05), while
on P9 there was no statistically significant difference (p > 0.05). (B) The corticosterone levels were elevated in maternally deprived rats compared with the controls in
adolescence (p < 0.05) and adulthood (p < 0.05).

RESULTS

To address whether maternal deprivation affected the animals’
development and growth, the animals were weighed upon

TABLE 1 | Volumes of the substantia nigra pars reticulata (SNpr), substantia nigra
pars compacta (SNpc), and ventral tegmental area (VTA) in adolescence (postnatal
day 35, P35) and adulthood (postnatal day 60, P60).

A/P coordinate
4.60–5.10 mm from
bregma

A/P coordinate
5.20–5.70 mm from

bregma

A/P coordinate
5.80–6.30 mm from

bregma

Volume (mm3) Volume (mm3) Volume (mm3)

SNpr SNpr SNpr

P35 day P35 day P35 day

Control 0.45 ± 0.03 Control 0.46 ± 0.02 Control /

MD 0.68 ± 0.06 MD 0.81 ± 0.12 MD /

P60 day P60 day P60 day

Control 0.51 ± 0.01 Control 0.68 ± 0.04 Control /

MD 0.59 ± 0.02 MD 0.79 ± 0.01 MD /

SNpc SNpc SNpc

P35 day P35 day P35 day

Control 1.02 ± 0.05 Control 1.07 ± 0.07 Control 0.30 ± 0.01

MD 1.74 ± 0.25 MD 2.11 ± 0.18 MD 0.73 ± 0.03
P60 day P60 day P60 day

Control 1.37 ± 0.03 Control 1.61 ± 0.08 Control 1.39 ± 0.08

MD 1.83 ± 0.09 MD 2.02 ± 0.04 MD 1.78 ± 0.14
VTA VTA VTA

P35 day P35 day P35 day

Control 1.06 ± 0.06 Control 1.35 ± 0.15 Control 0.59 ± 0.02

MD 1.98 ± 0.13 MD 2.40 ± 0.26 MD 1.10 ± 0.16
P60 day P60 day P60 day

Control 1.23 ± 0.02 Control 1.69 ± 0.04 Control 1.43 ± 0.04

MD 2.12 ± 0.11 MD 2.43 ± 0.10 MD 1.75 ± 0.08

All results are presented as mean values ± SEM. Numbers in bold are statistically
significant mean values at p ≤ 0.05.

separation from their mothers. At weaning, maternal deprivation
caused a profound 56% loss of weight in stressed rats compared
with the controls (Figure 1A). To address whether maternal
deprivation affected the glucocorticoid levels in adolescent and
adult animals, the concentration of circulating corticosterone was
measured in the blood of the rats sacrificed on postnatal days 35
and 60 (P35 and P60, respectively). Maternally deprived animals
exhibited 1.9- and 1.4-fold elevations in blood corticosterone
levels on P35 and P60 (Figure 1B), respectively. This implies
that the early life adversity caused profound phenotype changes
connected with the early development arrest and the elevation of
glucocorticoid levels at later stages of life, more so in adolescence
than in adulthood.

To address whether maternal deprivation affected the volume
and composition of dopaminergic nuclei in adolescence and
adulthood, histological slides containing coronal sections of
ventral midbrain prepared from postmortem rat brains sacrificed
on P35 and P60 were analyzed. The volume of the outlined
nuclei was assessed for volumetric changes approximated by
the surface area in three coordinates, whereas the number of
tyrosine hydroxylase-positive (TH+) neurons was used to assess
the changes in the number of dopaminergic neurons. On P35,
1.7-, 3. 1-, and 2.8-fold increases in the volume and 1.7-, 1.6-,
and 1.6-fold increases in the number of TH + neurons were
observed in SNpr, SNpc, and VTA, respectively (Figures 2A–F
and Tables 1, 2). These increases were observed along the
whole anteroposterior axis of the analyzed nuclei. On P60, 1.2-,
1.3-, and 1.7-fold increases in the volume of dopaminergic
nuclei and 1.7-, 2.3-, and 2.6-fold increases in the number
of TH + neurons were observed in SNpr, SNpc, and VTA,
respectively (Figures 3A–F and Tables 1–3). These increases were
observed along the whole anteroposterior axis of the analyzed
nuclei. Altogether, early life adversity leads to a long-lasting
pronounced increase in the volume of dopaminergic nuclei
and the number of dopaminergic neurons among all major
dopaminergic nuclei.
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TABLE 2 | Number of TH + neurons in the substantia nigra pars reticulata (SNpr),
substantia nigra pars compacta (SNpc), and ventral tegmental area (VTA) in
adolescence (postnatal day 35, P35) and adulthood (postnatal day 60, P60).

A/P coordinate 4.60 –
5.10 mm from
bregma

A/P coordinate 5.20 –
5.70 mm from

bregma

A/P coordinate
5.80–6.30 mm from

bregma

Number of
TH + neurons

Number of
TH + neurons

Number of
TH + neurons

SNpr SNpr SNpr

P35 day P35 day P35 day

Control 17.2 ± 5.27 Control 19.7 ± 5.95 Control /

MD 28.6 ± 2.56 MD 34.4 ± 7.30 MD /

95% CI 11.4 ± 6.04 95% CI 14.7 ± 9.71 95% CI /

P60 day P60 day P60 day

Control 15.1 ± 3.86 Control 20.75 ± 3.97 Control /

MD 28.7 ± 2.69 MD 30.25 ± 5.58 MD /

95% CI 13.5 ± 4.85 95% CI 9.50 ± 7.06

SNpc SNpc SNpc

P35 day P35 day P35 day

Control 76.2 ± 20.83 Control 88.3 ± 6.76 Control 41.60 ± 13.32

MD 112.5 ± 15.81 MD 122.10 ± 16.25 MD 81.20 ± 8.40

95% CI 36.3 ± 26.97 95% CI 33.8 ± 18.15 95% CI 39.6 ± 16.24

P60 day P60 day P60 day

Control 83.50 ± 11.04 Control 80.75 ± 12.63 Control 40.00 ± 3.00

MD 109.75 ± 9.60 MD 112.5 ± 14.50 MD 78.87 ± 6.21

95% CI 26.25 ± 15.09 95% CI 31.75 ± 19.83 95% CI 38.87 ± 7.11

VTA VTA VTA

P35 day P35 day P35 day

Control 68.70 ± 17.95 Control 79.5 ± 10.25 Control 41.9 ± 3.15

MD 117.8 ± 13.50 MD 111.10 ± 16.52 MD 70.30 ± 11.05

95% CI 49.1 ± 23.16 95% CI 31.6 ± 20.05 95% CI 28.4 ± 11.85

P60 day P60 day P60 day

Control 69.25 ± 8.87 Control 75.13 ± 4.71 Control 37.13 ± 5.94

MD 124.38 ± 12.67 MD 103.75 ± 9.99 MD 69.50 ± 19.87

95% CI 55.13 ± 15.95 95% CI 28.62 ± 11.39 95% CI 32.37 ± 21.39

All results are presented as mean values ± SEM. Numbers in bold are statistically
significant mean values at p ≤ 0.05;[Frame2] CI, confidence interval.

DISCUSSION

The present study was focused on the effects of early life stress
caused by maternal deprivation on the volume of dopaminergic
nuclei and the number of dopaminergic cells within these nuclei.
The key findings of this report are that both adolescent and adult
brains are affected by early life adversity, which is accompanied by
an elevation of corticosterone levels. Also, our study supports the
findings of Hancock and Grant, who showed that after maternal
separation in different periods of development, food intake
dropped (Hancock and Grant, 2009). In particular, maternal
deprivation increases the volumes of all dopaminergic nuclei
and the total number of dopaminergic neurons therein in
adolescence and adulthood.

Postnatal separation of pups from their mother caused
an aberrant development of the dopaminergic system, which
is postulated to play a role in the pathology of psychiatric

TABLE 3 | Density (number of TH + neurons per square millimeter) of the
substantia nigra pars reticulata (SNpr), substantia nigra pars compacta (SNpc),
and ventral tegmental area (VTA) in adolescence (postnatal day 35, P35) and
adulthood (postnatal day 60, P60).

A/P coordinate
4.60–5.10 mm from
bregma

A/P coordinate
5.20–5.70 mm from

bregma

A/P coordinate
5.80–6.30 mm from

bregma

Density (Number of
TH+neurons/mm2)

Density (Number of
TH+neurons/mm2)

Density (Number of
TH+neurons/mm2)

SNpr SNpr SNpr

P35 day P35 day P35 day

Control 39 ± 5.79 Control 42 ± 4.53 Control /

MD 43 ± 2.90 MD 44 ± 4.03 MD /

P60 day P60 day P60 day

Control 30 ± 3.94 Control 31 ± 2.85 Control /

MD 48 ± 3.10 MD 39 ± 3.80 MD /

SNpc SNpc SNpc

P35 day P35 day P35 day

Control 75 ± 9.50 Control 84 ± 5.10 Control 118 ± 3.2

MD 69 ± 8.30 MD 59 ± 3.60 MD 111 ± 2.8

P60 day P60 day P60 day

Control 61 ± 3.40 Control 50 ± 2.10 Control 29 ± 2.60

MD 59 ± 3.70 MD 56 ± 4.60 MD 46 ± 3.60

VTA VTA VTA

P35 day P35 day P35 day

Control 65 ± 6.80 Control 62 ± 7.30 Control 71 ± 2.80

MD 61 ± 5.60 MD 44 ± 2.50 MD 67 ± 6.80

P60 day P60 day P60 day

Control 56 ± 3.20 Control 45 ± 1.60 Control 26 ± 2.50

MD 51 ± 3.30 MD 50 ± 2.70 MD 41 ± 7.10

All results are presented as mean values ± SEM. Numbers in bold are statistically
significant mean values at p ≤ 0.05.

diseases (Malnic et al., 1971). By restricting mother–pup contact,
which also includes food deprivation at this stage, maternal
deprivation disrupted the SHRP adaptation response and led to
the abnormal functioning of the hypothalamic–pituitary–adrenal
(HPA) axis and enhanced stress response (Champagne et al.,
2009). Previous studies have shown that perinatal glucocorticoid
treatment can permanently alter the basal and stress-induced
levels of circulating glucocorticoids in experimental animals,
and it is documented that endogenous adrenal steroids augment
the activity of dopamine in the striatum (McArthur et al.,
2005). Body weight loss in rats also corresponded with
elevations of hypothalamic corticotropin-releasing hormone
(CRH) messenger RNA (mRNA) expression (Kawaguchi et al.,
2005) and increases in circulating adrenocorticotropic hormone
(ACTH) (Wong et al., 1993) and corticosterone (Burden et al.,
1993). The maternal deprivation method used in this study is
different from that used in the majority of other studies reported
in the literature, but the obtained results are in concordance with
the outcome of a study conducted by Chocyk et al. (2011). They
have shown a transient increase in the number of TH + neurons
in SNpr in adolescent female rats as well as an increase in the
number of TH + neurons in the VTA in adult female rats, with
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FIGURE 2 | Effect of maternal deprivation on the volume of dopaminergic nuclei and the number of dopaminergic neurons in adolescence (postnatal day 35, P35).
Representative examples of six sections are presented for (A) 4.6–5.1 mm from bregma; (B) 5.2–5.7 mm from bregma; and (C) 5.8–6.3 mm from bregma. The
upper pictures depict surface areas, and these are marked with dashed lines encircling the dopaminergic structures, i.e., ventral tegmental area (VTA), substantia
nigra pars compacta (SNpc), and substantia nigra pars reticulate (SNpr). The lower pictures depict the quantification of the number of tyrosine hydroxylase-positive
(TH +) neurons, where TH + neurons belonging to the VTA, SNpc, and SNpr are shown are purple, yellow, and white circles, respectively. Bar graphs depict the
comparisons between the maternally deprived and control rats for (D) 4.6–5.1 mm from bregma; (E) 5.2–5.7 mm from bregma; and (F) 5.8–6.3 mm from bregma.
Volumes of the dopaminergic nuclei are presented on the left, while the total numbers of the TH + neurons per nucleus are represented on the right. The results are
presented as the mean values ± SEM. Asterisk indicates significant between-group differences of the mean values (Student’s t-test for two independent groups,
p < 0.05). ∗ Increases in the volume of the dopaminergic nuclei and the number of TH + neurons in the maternally deprived (MD) group were present in all analyzed
sections. Anterior/posterior (A/P) 4.60–5.10 mm caudally from bregma, there were 1.5- (p < 0.05), 1.7- (p < 0.05), and 1.9-fold (p < 0.001) increases in the volume
of the dopaminergic nuclei and the 1.6- (p < 0.05), 1.5- (p < 0.05), and 1.7-fold (p < 0.05) increases in the number of TH + neurons in the SNpr, SNpc, and VTA.
A/P 5.20–5.70 mm caudally from bregma, there were 1.8- (p < 0.05), 2.0- (p < 0.05), and 1.8-fold (p < 0.05) increases in the volume of the dopaminergic nuclei and
1.7- (p < 0.05), 1.4- (p < 0.05), and 1.4-fold (p < 0.05) increases in the number of TH + neurons in the SNpr, SNpc and VTA. A/P 5.80–6.30 mm caudally from
bregma, there were 2.4- (p < 0.001) and 1.9-fold (p < 0.05) increases in the volume of the dopaminergic nuclei and 1.9- (p < 0.05) and 1.7-fold (p < 0.05) increases
in the number of TH + neurons in the SNpr, SNpc, and VTA.

no changes in the volume of the examined structures. Depending
on the stage development of the brain, there are several possible
explanations for the increased number of TH-positive neurons
in SN and VTA. Due to the dependence of the perikaryal TH
protein levels on axonal transport rate, it is possible that TH is not
present in the cell body or is present in large quantities (Nestler,
1992). Constitutive and sustained changes in the expression of
TH + neurons in the midbrain are possible because, in the
SN and VTA, Nurr1 and Pitx3 transcription factor expressions

occur during the pre- and postnatal periods of brain development
and are responsible for the survival of dopaminergic neurons
(Ojeda et al., 2003; Korotkova et al., 2005; Katunar et al., 2009,
2010). There is also a possibility that the difference is caused by
the TH expression from cells which are different from typical
dopaminergic cells in SN and VTA (Ugrumov, 2009). Our results
have shown an increase in the density of TH + neurons on
P60 in both the examined stereotaxic range of SNpr as well
as SNpc and VTA in the anterior/posterior (A/P) coordinate
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FIGURE 3 | Effect of maternal deprivation on the volume of dopaminergic nuclei and the number of dopaminergic neurons in adulthood (postnatal day 60, P60).
Representative examples of six sections are presented for (A) 4.6–5.1 mm from bregma; (B) 5.2–5.7 mm from bregma; and (C) 5.8–6.3 mm from bregma. The
upper pictures depict surface areas, and these are marked with dashed lines encircling the dopaminergic structures i.e., ventral tegmental area (VTA), substantia
nigra pars compacta (SNpc), and substantia nigra pars reticulate (SNpr). The lower pictures depict the quantification of the number of tyrosine hydroxylase-positive
(TH +) neurons, where TH + neurons belonging to the VTA, SNpc, and SNpr are shown as purple, yellow, and white circles, respectively. Bar graphs depict the
comparisons between the maternally deprived and control rats for (D) 4.6–5.1 mm from bregma; (E) 5.2–5.7 mm from bregma; and (F) 5.8–6.3 mm from bregma.
Volumes of the dopaminergic nuclei are presented on the left, while the total numbers of the TH + neurons per nucleus are represented on the right. The results are
presented as the mean values ± SEM. Asterisk indicates significant between-group differences of the mean values (Student’s t-test for two independent groups,
p < 0.05). ∗ Increases of the volume of the dopaminergic nuclei and the number of TH + neurons in the maternally deprived (MD) group were present in all analyzed
sections. Anterior/posterior (A/P) 4.60–5.10 mm caudally from bregma, the increases in the volume of the dopaminergic nuclei were 1.2- (p < 0.05), 1.3- (p < 0.05),
and 1.7-fold (p < 0.05), respectively, and those in the number of TH + neurons in the SNpr, SNpc, and VTA were 1.9- (p < 0.05), 1.3- (p < 0.05), and 1.8-fold
(p < 0.05), respectively. A/P 5.20–5.70 mm caudally from bregma, increases in the volume of the dopaminergic nuclei were 1.2- (p < 0.05), 1.3- (p < 0.05), and
1.4-fold (p < 0.05), respectively, and those in the number of TH + neurons in the SNpr, SNpc, and VTA were 1.4- (p < 0.05), 1.4- (p < 0.05), and 1.4-fold (p < 0.05),
respectively. A/P 5.80–6.30 mm caudally from bregma, there were 1.3- (p < 0.05) and 1.2-fold (p < 0.05) increases in the volume of the dopaminergic nuclei and
1.9- (p < 0.05) and 1.9-fold (p < 0.05) increases in the number of TH + neurons in the SNpc and VTA, respectively.

5.80–6.30 mm from bregma. These results are in correlation with
the study conducted on female Wistar rats obtained by Chocyk
et al. (Chocyk et al., 2011) which showed that MD increased
the number and density of TH + neurons in the SNpr, but
not in the VTA, during adolescence. The results obtained in
our study are similar to the study demonstrated by McArthur
et al. (McArthur et al., 2007), which (in pharmacological terms)
can imitate stress effects. De Souza et al. (de Souza et al.,

2018) have shown that early life stress induced during the dark
phase of the luminosity cycle increased the gene expressions of
the dopaminergic receptors Drda and Drd2a. This effect was
observed only in male rats.

Summing up, dopamine receptor expression is strongly
regulated by aversive early life experiences. Actually, these effects
may have a sex-specific developmental trajectory. It is known that
MD disturbs the action of the HPA axis and affects the levels
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of circulating glucocorticoids (GCs) (de Kloet et al., 2005). GCs,
acting via glucocorticoid and mineralocorticoid receptors and are
widely expressed in the brain, affect the transcription of specific
genes or exert many non-genomic effects. GCs have a substantial
role in the regulation of brain development and maturation. Early
life stress-induced imbalance in GC levels may program brain
functions, including dopamine neurotransmission, for later life
(de Kloet et al., 2005).

Finally, we cannot completely exclude the possibility that an
increase in the total number of TH-positive neurons occurs
due to neurogenesis at a certain point during ontogenesis, even
though this concept is very disputable (Shan et al., 2006; Zhao
and Janson Lang, 2009).

CONCLUSION

This is the first study to provide evidence that early life stress
caused by MD conducted on P9 in male rats leads to alterations
in the morphological and biochemical parameters, including
the body weight of rats, volume of the dopaminergic nuclei,
number of TH + neurons in three different stereotaxic ranges
through the overall rostro-caudal dimension, and the density
of TH + neurons in the same ranges. The observed changes
may facilitate the understanding of how early life stress may
increase the tendency for neurological disorders, schizophrenia,
and attention deficit hyperactivity disorder (ADHD). These
disorders are known to be associated with irregular functions
in dopaminergic neurotransmission, which may be mediated by
aberrant maturation, which may include volumetric changes in
the dopaminergic nuclei as well as alterations in the number and
density of dopaminergic neurons.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the
article/supplementary material.

ETHICS STATEMENT

All experimental procedures were in compliance with EEC
Directive (2010/63/EU) on the protection of animals used for
experimental and other scientific purposes, and were approved
by the Ethical Committee for the Use of Laboratory Animals of
the School of Medicine, University of Belgrade (Approval No.
323-07-01245/2014-05/2).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

A 2018-S4 grant was awarded to MJ by the non-governmental
organization Centar za Razvoj Liderstva and company Phillip
Morris doo Serbia. Phillip Morris doo Serbia sponsored the
competitive grant application call in Serbia “Pokreni se za
Nauku.” The grant obtained by MJ financed the procurement of
the TH antibody used in this study. This study was supported
by the Ministry for Science and Environmental Protection of the
Republic of Serbia (Grant Nos. III41020 and ON175058).

REFERENCES
Aksic, M., Radonjic, N. V., Aleksic, D., Jevtic, G., Markovic, B., Petronijevic, N.,

et al. (2013). Long-term effects of the maternal deprivation on the volume and
number of neurons in the rat neocortex and hippocampus. Acta Neurobiol. Exp.
73, 394–403.

Aleksic, D., Aksic, M., Radonjic, N. V., Jovanovic, A., Markovic, B., Petronijevic, N.,
et al. (2016). Long-term effects of maternal deprivation on the volume, number
and size of neurons in the amygdala and nucleus accumbens of rats. Psychiatr.
Danubina 28, 211–219.

Almeida, O. F., Conde, G. L., Crochemore, C., Demeneix, B. A., Fischer, D., Hassan,
A. H., et al. (2000). Subtle shifts in the ratio between pro- and antiapoptotic
molecules after activation of corticosteroid receptors decide neuronal fate.
FASEB J. 14, 779–790. doi: 10.1096/fasebj.14.5.779

Arnold, S. E., and Trojanowski, J. Q. (1996). Recent advances in defining the
neuropathology of schizophrenia. Acta Neuropathol. 92, 217–231. doi: 10.1007/
s004010050512

Brenhouse, H. C., Lukkes, J. L., and Andersen, S. L. (2013). Early life adversity alters
the developmental profiles of addiction-related prefrontal cortex circuitry.
Brain Sci. 3, 143–158. doi: 10.3390/brainsci3010143

Burden, V. R., White, B. D., Dean, R. G., and Martin, R. J. (1993).
Activity of the hypothalamic-pituitary-adrenal axis is elevated in rats with
activity-based anorexia. J. Nutr. 123, 1217–1225. doi: 10.1093/jn/123.7.
1217

Champagne, D. L., de Kloet, E. R., and Joels, M. (2009). Fundamental aspects of the
impact of glucocorticoids on the (immature) brain. Semin. Fetal Neonatal Med.
14, 136–142. doi: 10.1016/j.siny.2008.11.006

Chocyk, A., Przyborowska, A., Dudys, D., Majcher, I., Mackowiak, M., and
Wedzony, K. (2011). The impact of maternal separation on the number of
tyrosine hydroxylase-expressing midbrain neurons during different stages of
ontogenesis. Neuroscience 182, 43–61. doi: 10.1016/j.neuroscience.2011.03.008

de Kloet, E. R., Sibug, R. M., Helmerhorst, F. M., and Schmidt, M. V. (2005). Stress,
genes and the mechanism of programming the brain for later life. Neuroscience
Biobehav. Rev. 29, 271–281. doi: 10.1016/j.neubiorev.2004.10.008

de Souza, J. A., da Silva, M. C., de Matos, R. J. B., do Amaral Almeida, L. C., Beltrao,
L. C., de Souza, F. L., et al. (2018). Pre-weaning maternal separation increases
eating later in life in male and female offspring, but increases brainstem
dopamine receptor 1a and 2a only in males. Appetite 123, 114–119. doi: 10.
1016/j.appet.2017.12.004

Ellenbroek, B. A., and Cools, A. R. (2000). The long-term effects of maternal
deprivation depend on the genetic background. Neuropsychopharmacology 23,
99–106. doi: 10.1016/s0893-133x(00)00088-9

Ellenbroek, B. A., and Cools, A. R. (2002). Early maternal deprivation and prepulse
inhibition: the role of the postdeprivation environment. Pharmacol. Biochem.
Behav. 73, 177–184. doi: 10.1016/s0091-3057(02)00794-3

Ellenbroek, B. A., van den Kroonenberg, P. T., and Cools, A. R. (1998). The effects
of an early stressful life event on sensorimotor gating in adult rats. Schizophrenia
Res. 30, 251–260. doi: 10.1016/s0920-9964(97)00149-7

Hancock, S., and Grant, V. (2009). Early maternal separation increases symptoms
of activity-based anorexia in male and female rats. J. Exp. Psychol. Anim. Behav.
Process. 35, 394–406. doi: 10.1037/a0014736

Huppertz-Kessler, C. J., Poeschl, J., Hertel, R., Unsicker, K., and Schenkel, J. (2012).
Effects of a new postnatal stress model on monoaminergic neurotransmitters in
rat brains. Brain Dev. 34, 274–279. doi: 10.1016/j.braindev.2011.07.008

Frontiers in Neuroanatomy | www.frontiersin.org 8 October 2020 | Volume 14 | Article 578900

https://doi.org/10.1096/fasebj.14.5.779
https://doi.org/10.1007/s004010050512
https://doi.org/10.1007/s004010050512
https://doi.org/10.3390/brainsci3010143
https://doi.org/10.1093/jn/123.7.1217
https://doi.org/10.1093/jn/123.7.1217
https://doi.org/10.1016/j.siny.2008.11.006
https://doi.org/10.1016/j.neuroscience.2011.03.008
https://doi.org/10.1016/j.neubiorev.2004.10.008
https://doi.org/10.1016/j.appet.2017.12.004
https://doi.org/10.1016/j.appet.2017.12.004
https://doi.org/10.1016/s0893-133x(00)00088-9
https://doi.org/10.1016/s0091-3057(02)00794-3
https://doi.org/10.1016/s0920-9964(97)00149-7
https://doi.org/10.1037/a0014736
https://doi.org/10.1016/j.braindev.2011.07.008
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroanatomy#articles


fnana-14-578900 October 19, 2020 Time: 21:33 # 9

Kapor et al. Stress and Dopaminergic Nuclei

Husum, H., and Mathe, A. A. (2002). Early life stress changes concentrations
of neuropeptide Y and corticotropin-releasing hormone in adult rat brain.
Lithium treatment modifies these changes. Neuropsychopharmacology 27, 756–
764. doi: 10.1016/s0893-133x(02)00363-9

Jahng, J. W., Ryu, V., Yoo, S. B., Noh, S. J., Kim, J. Y., and Lee, J. H. (2010).
Mesolimbic dopaminergic activity responding to acute stress is blunted in
adolescent rats that experienced neonatal maternal separation. Neuroscience
171, 144–152. doi: 10.1016/j.neuroscience.2010.08.063

Katunar, M. R., Saez, T., Brusco, A., and Antonelli, M. C. (2009).
Immunocytochemical expression of dopamine-related transcription factors
Pitx3 and Nurr1 in prenatally stressed adult rats. J. Neurosci. Res. 87, 1014–1022.
doi: 10.1002/jnr.21911

Katunar, M. R., Saez, T., Brusco, A., and Antonelli, M. C. (2010). Ontogenetic
expression of dopamine-related transcription factors and tyrosine hydroxylase
in prenatally stressed rats. Neurotoxicity Res. 18, 69–81. doi: 10.1007/s12640-
009-9132-z

Kawaguchi, M., Scott, K. A., Moran, T. H., and Bi, S. (2005). Dorsomedial
hypothalamic corticotropin-releasing factor mediation of exercise-induced
anorexia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R1800–R1805.

Korotkova, T. M., Ponomarenko, A. A., Haas, H. L., and Sergeeva, O. A. (2005).
Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic
neurons. Eur. J. Neurosci. 22, 1287–1293. doi: 10.1111/j.1460-9568.2005.04
327.x

Li, M., Xue, X., Shao, S., Shao, F., and Wang, W. (2013). Cognitive, emotional and
neurochemical effects of repeated maternal separation in adolescent rats. Brain
Res. 1518, 82–90. doi: 10.1016/j.brainres.2013.04.026

Llorente, R., Villa, P., Marco, E. M., and Viveros, M. P. (2012). Analyzing the effects
of a single episode of neonatal maternal deprivation on metabolite profiles in rat
brain: a proton nuclear magnetic resonance spectroscopy study. Neuroscience
201, 12–19. doi: 10.1016/j.neuroscience.2011.11.033

Malnic, G., De Mello Aires, M., and Giebisch, G. (1971). Potassium transport
across renal distal tubules during acid-base disturbances. Am. J. Physiol. 221,
1192–1208. doi: 10.1152/ajplegacy.1971.221.4.1192

McArthur, S., McHale, E., Dalley, J. W., Buckingham, J. C., and Gillies, G. E.
(2005). Altered mesencephalic dopaminergic populations in adulthood as a
consequence of brief perinatal glucocorticoid exposure. J. Neuroendocrinol. 17,
475–482. doi: 10.1111/j.1365-2826.2005.01331.x

McArthur, S., McHale, E., and Gillies, G. E. (2007). The size and distribution
of midbrain dopaminergic populations are permanently altered by
perinatal glucocorticoid exposure in a sex- region- and time-specific
manner. Neuropsychopharmacology 32, 1462–1476. doi: 10.1038/sj.npp.130
1277

Murray, R. M., O’Callaghan, E., Castle, D. J., and Lewis, S. W. (1992).
A neurodevelopmental approach to the classification of schizophrenia.
Schizophrenia Bull. 18, 319–332. doi: 10.1093/schbul/18.2.319

Nestler, E. J. (1992). Molecular mechanisms of drug addiction. J. Neurosci. 12,
2439–2450.

Ojeda, V., Fuentealba, J. A., Galleguillos, D., and Andres, M. E. (2003). Rapid
increase of Nurr1 expression in the substantia nigra after 6-hydroxydopamine
lesion in the striatum of the rat. J. Neurosci. Res. 73, 686–697. doi: 10.1002/jnr.
10705

Ploj, K., Roman, E., and Nylander, I. (2003). Long-term effects of maternal
separation on ethanol intake and brain opioid and dopamine receptors in male
Wistar rats. Neuroscience 121, 787–799. doi: 10.1016/s0306-4522(03)00499-8

Roceri, M., Hendriks, W., Racagni, G., Ellenbroek, B. A., and Riva, M. A. (2002).
Early maternal deprivation reduces the expression of BDNF and NMDA
receptor subunits in rat hippocampus. Mol. Psychiatry 7, 609–616. doi: 10.1038/
sj.mp.4001036

Shan, X., Chi, L., Bishop, M., Luo, C., Lien, L., Zhang, Z., et al. (2006). Enhanced
de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease-
like mice. Stem Cells 24, 1280–1287. doi: 10.1634/stemcells.2005-0487

Suri, D., Teixeira, C. M., Cagliostro, M. K., Mahadevia, D., and Ansorge,
M. S. (2015). Monoamine-sensitive developmental periods impacting adult
emotional and cognitive behaviors. Neuropsychopharmacology 40, 88–112. doi:
10.1038/npp.2014.231

Ugrumov, M. V. (2009). Non-dopaminergic neurons partly expressing
dopaminergic phenotype: distribution in the brain, development
and functional significance. J. Chem. Neuroanat. 38, 241–256. doi:
10.1016/j.jchemneu.2009.08.004

Waddington, J. L., Scully, P. J., and Youssef, H. A. (1997). Developmental trajectory
and disease progression in schizophrenia: the conundrum, and insights from a
12-year prospective study in the Monaghan 101. Schizophrenia Res. 23, 107–118.
doi: 10.1016/s0920-9964(96)00111-9

Wong, M. L., Licinio, J., Gold, P. W., and Glowa, J. (1993). Activity-induced
anorexia in rats does not affect hypothalamic neuropeptide gene expression
chronically. Int. J. Eating Disord. 13, 399–405. doi: 10.1002/1098-108x(199305)
13:4<399::aid-eat2260130408>3.0.co;2-j

Zhao, M., and Janson Lang, A. M. (2009). Bromodeoxyuridine infused into the
cerebral ventricle of adult mice labels nigral neurons under physiological
conditions–a method to detect newborn nerve cells in regions with a low rate of
neurogenesis. J. Neurosci. Methods 184, 327–331.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Kapor, Aksić, Puškaš, Jukić, Poleksić, Milosavljević, Bjelica and
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