
METHODS
published: 06 October 2020

doi: 10.3389/fnana.2020.585793

Edited by:

Shigeo Okabe,
The University of Tokyo, Japan

Reviewed by:
Guy Elston,

University of the Sunshine Coast,
Australia

Zdravko Petanjek,
University of Zagreb, Croatia

*Correspondence:
Ivan Velasco

ivan.velasco@urjc.es
Ruth Benavides-Piccione

rbp@cajal.csic.es

Received: 21 July 2020
Accepted: 07 September 2020
Published: 06 October 2020

Citation:
Velasco I, Toharia P,

Benavides-Piccione R,
Fernaud-Espinosa I, Brito JP,

Mata S, DeFelipe J, Pastor L and
Bayona S (2020) Neuronize v2:

Bridging the Gap Between Existing
Proprietary Tools to Optimize

Neuroscientific Workflows.
Front. Neuroanat. 14:585793.

doi: 10.3389/fnana.2020.585793

Neuronize v2: Bridging the Gap
Between Existing Proprietary Tools to
Optimize Neuroscientific Workflows
Ivan Velasco1*, Pablo Toharia2,3, Ruth Benavides-Piccione3,4,5*,
Isabel Fernaud-Espinosa3,4,5, Juan P. Brito6,7, Susana Mata1,7, Javier DeFelipe3,4,5,
Luis Pastor1,7 and Sofia Bayona1,7

1Department of Computer Science, Universidad Rey Juan Carlos, Madrid, Spain, 2DATSI, ETSIINF, Universidad Politécnica
de Madrid, Spain, 3Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain,
4Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid,
Spain, 5Instituto Cajal (CSIC), Madrid, Spain, 6DLSIIS, ETSIINF, Universidad Politécnica de Madrid, Madrid, Spain, 7Center for
Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain

Knowledge about neuron morphology is key to understanding brain structure and
function. There are a variety of software tools that are used to segment and trace
the neuron morphology. However, these tools usually utilize proprietary formats. This
causes interoperability problems since the information extracted with one tool cannot
be used in other tools. This article aims to improve neuronal reconstruction workflows
by facilitating the interoperability between two of the most commonly used software
tools—Neurolucida (NL) and Imaris (Filament Tracer). The new functionality has been
included in an existing tool—Neuronize—giving rise to its second version. Neuronize
v2 makes it possible to automatically use the data extracted with Imaris Filament Tracer
to generate a tracing with dendritic spine information that can be read directly by NL.
It also includes some other new features, such as the ability to unify and/or correct
inaccurately-formed meshes (i.e., dendritic spines) and to calculate new metrics. This
tool greatly facilitates the process of neuronal reconstruction, bridging the gap between
existing proprietary tools to optimize neuroscientific workflows.

Keywords: neuron morphology, interoperability, neuronal tracing, spine meshes, data sharing, 3D morphological
reconstruction, pyramidal structure

INTRODUCTION

In recent years, the emergence of novel methods that provide new insights into the organization
of the brain has produced a wealth of data that needs to be analyzed, shifting the bottleneck
from the acquisition to the analysis of data. In particular, analyzing neuron morphology is
essential to better understand cell functioning (Segev and Rall, 1998; Spruston, 2008), including
dendritic spines (for simplicity, spines), which are of great relevance for the study of brain
processing (Yuste, 2010; Heck and Benavides-Piccione, 2015). Several laboratories have made
significant contributions in recent times to gathering data on and analyzing neuron morphology.
These studies have contributed significantly to better understand the diversity and regional
specialization of the cortical organization (e.g., Huttenlocher and Dabholkar, 1997; Cline, 1999;
Preuss, 2001; Elston and DeFelipe, 2002; Jacobs and Scheibel, 2002; Elston, 2003; Luebke, 2017).

Frontiers in Neuroanatomy | www.frontiersin.org 1 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://www.frontiersin.org/journals/neuroanatomy#editorial-board
https://doi.org/10.3389/fnana.2020.585793
http://crossmark.crossref.org/dialog/?doi=10.3389/fnana.2020.585793&domain=pdf&date_stamp=2020-10-06
https://creativecommons.org/licenses/by/4.0/
mailto:ivan.velasco@urjc.es
mailto:rbp@cajal.csic.es
https://doi.org/10.3389/fnana.2020.585793
https://www.frontiersin.org/articles/10.3389/fnana.2020.585793/full
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

There are several software tools that aim to facilitate
the reconstructions of the neurons, employing different
approaches—either extracting tracings from stacks of images, as
is the case for Snake (Wang et al., 2011), APP2 (Xiao and Peng,
2013), flNeuronTool (Ming et al., 2013), SmartTracing (Chen
et al., 2015), NeuTube (Feng et al., 2015), Rivulet (Liu et al.,
2016), TreeMap (Zhou et al., 2016), NeuroGPS-Tree (Quan
et al., 2016), Neuron tracer (Wang et al., 2017) and ShuTu
(Jin et al., 2019); or processing neuronal tracings as occurs
with Lasserre (Lasserre et al., 2012), Filament editor (Dercksen
et al., 2014), NeuTube (Feng et al., 2015) and NeuroMorphoVis
(Abdellah et al., 2018). Some tools use the neuronal tracings
to create 3D meshes; for example, NeuroTessMesh (Garcia-
Cantero et al., 2017), NeuroMorphoVis (Abdellah et al.,
2018), Neuronize (Brito et al., 2013), and Lasserre (Lasserre
et al., 2012). These tools facilitate the automatic tracing of
neuronal structures and the correction of tracing errors to make
reconstructions more accurate and efficient. In particular, the
first version of the tool Neuronize was conceived to overcome
the problems caused by the unrealistic (or absent) image of the
somata and low-quality unconnected 3D meshes, which are
typically generated with other existing neuronal tools based
on computer-aided tracings. Some of the most frequently used
available reconstruction software suites are Neurolucida (NL;
MicroBrightfield, VT, USA) and Imaris (BitplaneAG, Zurich,
Switzerland). However, these tools are based on proprietary
formats. This usually results in little or no interoperability
between the tools, as users cannot reuse the data that has been
generated with a tool to process or analyze it with another
tool. Hence, neuroanatomists dealing with 3D morphological
reconstructions face the dilemma of having to choose between
the functionality and analyses provided by one tool or another.
Therefore, current workflows sometimes force users to repeat
the work in the different software tools if they want to benefit
from the different analyses and capabilities provided by each
of them. Proprietary formats and lack of interoperability also
make data sharing difficult since the data files are linked to a
specific tool.

To the best of our knowledge, none of the existing software
tools (open or commercial) offer the possibility of bridging
the gap between existing proprietary tools. Thus, the present
study focuses on improving interoperability between the two
commercial software suites Imaris and NL. These tools have
different approaches: NL was conceived as a tool oriented toward
neuron tracings, whereas Imaris was designed for 3D use and
represents neurons in a three-dimensional way using isosurfaces.
Imaris facilitates the reconstruction of dendrites and spines from
a particular intensity threshold. It creates isosurface meshes that
allow a quite detailed reconstruction of spines. However, to
capture the precise morphology of a given spine, it is often
necessary to use several intensity threshold isosurfaces. As a
result, the file containing a single spine may be composed
of several meshes (sub-meshes) that may intersect, leading to
inaccurate metrics. To partly overcome this problem, Imaris
provides the option to use an extension called Imaris Filament
Tracer, which performs a semi-automatic segmentation process
that is less accurate than the isosurface tool but that ensures

that the spines are attached to their dendrite. Regarding NL, the
manufacturer MBF has developed 3D-reconstruction software
(NL360), which also makes it possible to semi-automatically
reconstruct spines based on intensity thresholds. Although the
visualization tools are not optimal, NL360 displays a wide variety
of morphometrics to analyze the dendritic arbor.

This article proposes bridging the gap between these two
existing proprietary tools to optimize neuron reconstruction
workflows. In particular, the tool presented here can create a
tracing file that is usable in NL from a neuron extracted using
Imaris Filament Tracer. Also, it includes a method to convert the
separate sub-meshes into a single corrected unified mesh, based
on the method proposed in Eyal et al. (2016). A series of metrics
can then be calculated from these unified meshes. The unified
meshes can subsequently be visually compared and exported
to widely used three-dimensional representation formats and
both the meshes and their metrics can be stored in a database
and shared.

These improvements have been integrated into the existing
Neuronize tool (Brito et al., 2013), giving rise to the second
version—Neuronize v2. Improvements have been made with
regard to the method of constructing somata, dendrites and
spines; new metrics; and comparison of meshes; and a more
complete and accurate visualization has also been incorporated.

The following section describes the material and methods,
outlining these processes in detail. Three use cases are then
described to exemplify the usage and potential of the tool. Finally,
we discuss the implications of the contributions and possible
impact of the tool.

METHODS AND RESULTS

New Soma Generation Method
Since the first version of Neuronize (Brito et al., 2013), tracing
formats have substantially advanced, including new information
to describe the neuronmore precisely.While in previous versions
of the NL ASC format, the soma was represented through a
single 2D contour (or a center and a radius), in the new version
the soma can be defined by a set of 2D contours describing
its 3D shape. The original Neuronize tool could generate a
three-dimensional mesh of the neurites from a neuronal path,
approaching the soma (which could be incompletely described)
from a spherical soma and deforming it based on the beginning
of the neuron first-order dendrites, as if they were pulling from
the soma.

The application Neuronize v2 includes a new method of
generating the soma, based on the new information describing
the 3D shape of the soma. The method applies a Convex Hull
algorithm to the input set of 2D contours, thus generating an
approximated mesh. However, the obtained mesh has irregular
triangles and their density is very low. This is inconvenient
because the soma mesh will be used later in the deformation
process to join the soma with the neurites; hence, the mesh
is processed until an isotropic mesh is achieved with a greater
density of more uniform triangles. It should be noted that this
method has the limitation of only creating convex somata.

Frontiers in Neuroanatomy | www.frontiersin.org 2 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

Before applying the deformation process to this isotropic
mesh, the application checks if there is any neurite that
originates from the soma. In these cases, the method
assumes that the information representing the soma is
correct and removes the tracing points of these starting
points, considering the intersection between each neurite and
the soma as the real initial tracing point and applying the
algorithm accordingly.

However, it is not always possible to retrieve 3D information
from NL (due to a low signal to noise ratio). Neuronize
v2 can help by including Imaris-generated soma isosurface in
the reconstruction to be later imported to NL. Hence, the
user can select whether to use: (i) the soma generated from
the multiple NL contours; (ii) a soma based on incomplete
information (e.g., soma center and radius); (iii) a soma built
using exclusively the information about the starting point of
the first-order dendrites, following the procedure explained in
the first version of Neuronize (when no soma information is
available); or (iv) an Imaris surface soma.

Skeleton Generator
This section describes the method for generating a tracing
from the Imaris Filament Tracer file. First, a summary of the
components of a tracing is shown, followed by a description of
the specific Imaris Filament Tracer format (VRML file) to be
exported. Finally, straightforward user instructions about how to
export the files are provided.

Description of a Tracing
A comprehensive list of the different formats used for neuronal
tracings can be found in NLMorphologyConverter: Format
Status (NLMorphologyConverter: Format Status). While the
tracings accepted by the first version of NL did not include spine
information, the newer format of NL ASC can contain spine
information as well as a more detailed description of the soma,
since it can be defined through a set of 2D contours to describe
its shape.

All of these formats include a hierarchy of tracing points. Each
tracing point belongs to a particular part of the neuron (soma,
axon, apical dendrite, basal dendrite, spine) and the hierarchy
between the points can be inferred. Hence, for a tracing point
that is part of a neurite, its 3D coordinates, an associated radius
(representing the neurite thickness), and its precedent tracing
point are defined.

However, the file exported by Imaris Filament Tracer does
not have tracing points or a hierarchy between the 3D meshes
it describes. In this article, we present a method for generating
a hierarchical tracing, in order to be able to obtain NL metrics,
including branched structure analysis (comprising segment
order analysis), Sholl analysis or vertex analysis, among others.

Imaris Filament Tracer VRML Format
Before describing the skeleton generation method, the main
particularities of the exported file are outlined to explain the
challenges our method faces when unraveling the different pieces
of information included in the VRML format.

The VRML file exported from Imaris Filament Tracer needs
to be processed before being visualized since it is an old format

that some 3D viewers cannot directly process. Note that the files
do not contain either the tracing points or the hierarchy between
them. Hence, this information needs to be created from the 3D
mesh data included in the file.

The VRML format allows the storage of a differentiated
set of three-dimensional structures. However, there are some
peculiarities in the output files generated using Imaris Filament
Tracer exportation. One such peculiarity is that there are
identifiers associated with each VRML volume. Identifiers
starting with ‘‘FilamentSegment6’’ and ‘‘FilamentSegment7’’
correspond to fragments of dendritic shafts and spines,
respectively. Following these prefixes, there is a series of numbers
providing an identifier for each volume. The first problem that
our method faces regarding the extraction of skeletons is that the
volume identifiers are not unique (they are only unique if they
belong to the same neurite), so different volumes with the same
identifier can be found within the file.

Fragments do not include bifurcations—on the contrary, a
bifurcation will be composed of different fragments: the parent
fragment which corresponds to the neurite that is going to
bifurcate, and a different fragment for each of the ‘‘child’’
neurites, i.e., the neurites resulting from the bifurcation.

In the VRML files, volumes are represented in a rather
peculiar way. Neurite and spine meshes are represented by
elliptical sections, each defined by a series of points. Thus, each
neurite fragment or spine is composed of a series of slices or
elliptical sections, with each of these slices in turn formed by
17 points. This allows complete slices of objects to be obtained
by simply processing the points of the file in groups of 17
(see Figure 1).

To process these structures, our method starts by reading
groups with the three coordinates of a point, and continues
until 17 points have been read, providing a slice. In this
way, for a particular fragment, we: (i) save the points that
form it; (ii) store the number of slices; and (iii) give it
a unique identifier. By applying this process consecutively,
we read the different fragments in a file. The method then
processes the fragments so that, for each slice, it extracts

FIGURE 1 | Example of the information contained in the VRML file.
(A) Example of the slices defining a fragment of a dendritic shaft. (B) Slices
defining a spine.

Frontiers in Neuroanatomy | www.frontiersin.org 3 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

its center, to obtain a tracing point that will be stored
with a thickness equal to the slice radius (the distance
from the central point to the farthest point of that elliptical
slice). Fragments can correspond to dendrite fragments or
spines. Hence, each fragment (spine or neurite fragment)
is converted into a polyline formed by a set of connected
tracing points.

In the VRML file, some spines are defined with two
geometrical structures: the main geometry of the spine and a
mesh representing a small sphere with a neck that corresponds
to the insertion of the spine. This second geometry is
probably added by the plugin to prevent spines from appearing
disconnected from the neurites or to avoid spines appearing
without necks. In this work, only the main geometry of the
spine will be considered, since also considering the sphere
artificially added by Imaris could lead to errors in future area or
volume calculations.

Tracing Hierarchy Construction
As mentioned, tracings are typically stored in structured files in
which the different tracing points have a hierarchical structure,
a preceding tracing point, and a posterior tracing point (unless
they represent the termination of a neurite). However, in the
VRML file exported from Imaris, the fragments are unconnected
since there is no hierarchy.

A method to create a hierarchy starting with the unconnected
fragments has been designed. The hierarchy is created based
on the proximity of the different polylines representing each
fragment. As the VRML file can contain no soma information,
the presented method will assume that, for each neurite, the first
fragment found is the closest to the soma.

Each neurite is processed independently. Note that, whereas
the neurite is highly fragmented in small parts in the Imaris
Filament Tracer files, the NL ASC format forces all the tracing
points in between two bifurcations (or in between the soma
and one bifurcation) to belong to a single polyline. Initially,
all polylines are included in a polylines-to-be-processed list. By
convention, the first polyline to be extracted from the list for
processing will be the polyline representing the fragment closest
to the soma, and it will be established as the initial polyline for
that neurite.

We defined a connection search algorithm that measures
the distance from each point of the polyline being processed
to all the points of the rest of the unprocessed polylines. If
any of these distance values are below a threshold (called
the ‘‘connection threshold’’), the method assumes that they
are connected. Once all of the connections to the current
polyline have been found, they are classified and processed
depending on their type of connection (we consider three
different types of connections), and the current polyline is
added to the hierarchy. Next, the method chooses—from
amongst the rest of the polylines involved in those
connections—which one will be the next polyline to be
repeatedly processed. The method continues in this way,
processing one polyline at a time, extracting each one from the
polylines-to-be-processed list, calculating its connections, and
adding it to the hierarchy.

Next, the different kinds of connections and how they are
dealt with will be explained:

1. The simplest case occurs when the current polyline has no
subsequent connection. This implies that it is a polyline
representing a terminal fragment. If this is the case, the
polyline is simply added to the hierarchy information,
according to the previous polyline to which it was connected.
To add the polyline to the hierarchy, its starting point is
stored as a child of the final point in the last polyline added
to the hierarchy (or as the initial point of the tracing if it
is the first polyline). Consecutively, the following point after
the starting point of the current polyline is added as a child
of the first point, and so on (thus, each point of the current
polyline has its preceding point as a parent and its subsequent
point as a child, except for the last point which will have no
child; Figure 2A).

2. When the current polyline has one posterior connection, there
are two subcases:

2.1. If the first point of the posterior connection
corresponds to the last point of the current polyline, the
posterior polyline is extracted from the polylines-to-
be-processed list and the two polylines are then joined
into a single one. This newly joined polyline will be the
next current polyline to be processed (Figure 2B).

2.2. If the first point of the posterior connection
corresponds to an intermediate point of the current
polyline, the current polyline will be divided into
two sub-polylines. The first sub-polyline, from the
starting point to the point of connection is added to
the hierarchy. The method will continue repeatedly
processing both the second sub-polyline (starting at
the connection point and finishing at the final point
of the original current polyline) and the posterior
connection polyline (Figure 2C).

3. If the current segment has two posterior connections,
whose initial points correspond to the final point of the
current polyline, which means that the current polyline will
bifurcate into two: the current polyline will be added to the
hierarchy information, according to the previous polyline that
was connected to it. The method will continue repeatedly
processing the two posterior polylines (see Figure 2D).

4. If there are two posterior connections, where—for at
least one of the posterior connections—its initial point
corresponds to an intermediate point of the current polyline,
a specific procedure is applied. The points in the current
polyline corresponding to the starting points of the posterior
connections are calculated. Among them, the method chooses
the connection point closest to the initial point of the
current polyline. This connection point will be used to divide
the current polyline into two parts as in the case of the
polyline of Figure 2C, where the first part will be added
to the hierarchy. The method will then repeatedly continue
with the second part of the divided current polyline and
with the first posterior connection (that will be removed
from the polylines-to-be-processed list), whereas the polyline

Frontiers in Neuroanatomy | www.frontiersin.org 4 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

FIGURE 2 | (A) A case in which the current polyline does not have posterior connections and is, thus, a terminal fragment. In this case, the current fragment is
added to the hierarchy. The green color shows polylines already added to the hierarchy which needs no further processing. (B) The current polyline has a posterior
connection where the last point of the current polyline corresponds to the first point of the posterior connection. The two polylines are joined into a single polyline and
this new polyline is processed (the blue color represents polylines to be processed). (C) The current polyline has a posterior connection at an intermediate point. In
this case, the current polyline is split into two sub-polylines. The first sub-polyline is added to the hierarchy (green color). The second sub-polyline and the posterior
connection are processed (blue color). (D) The current polyline has two posterior connections to its last point. The current polyline is added to the hierarchy (in green)
and the two posterior connections will be processed (in blue).

of the second posterior connection will continue to be in the
polylines-to-be-processed list (Figure 3A). In the event that
the two (or more) posterior connections correspond to the
same intermediate point of the current polyline (or that there
are three or more connections if it is a fragment final point), a
pre-process will be applied to match the initial point of one of
the posterior connections to another existing nearby tracing
point in the current polyline. As a result, each posterior
connection has its own corresponding point, and then the
method proceeds as explained (Figure 3B).

5. When there are more than two posterior connections, the
problem is simplified by treating each of the posterior

connections, in turn, starting with the connection closest
to the initial point of the current polyline, by successively
subdividing the current polyline as in the previous cases.
Again, if two (or more) posterior connections have the same
corresponding point, a preprocess is applied (as in Figure 3B).

This method assumes that fragments are constructed from
the initial part of the dendrite towards the endpoints, i.e., from
the soma towards the end of the dendrites. However, this is
not always the case in the exported files and some fragments
are inverted, with their initial point further from the soma than
their final point. These inverted fragments caused problems in

Frontiers in Neuroanatomy | www.frontiersin.org 5 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

FIGURE 3 | (A) The current polyline has two posterior connections at some intermediate points. The current polyline is split into two sub-polylines, and the first
sub-polyline is added to the hierarchy (green). The second sub-polyline and the first posterior connection will be processed. Note that the second posterior
connection is added to the polylines-to-be-processed list. (B) The current polyline has two posterior connections at the same intermediate point. Here, one of the
posterior connections is modified to change its initial point to a nearby different point in the current polyline.

the algorithm, and NL ASC does not support this method of
construction. To solve this, a stage has been added just after the
connection search in which, if the connecting point is located
on the second half of a polyline representing a fragment, it is
detected as being inverted and it is realigned before continuing
normally with the algorithm.

This method is repeated for each neurite in the neuron
until the complete hierarchy has been built. Since the geometry
provided by the VRML file has some intersection zones
between the consecutive fragments, the hierarchy computed can
sometimes present repeated points. To solve this problem, the
resulting hierarchy is post-processed by traversing the neurites
and eliminating repeated points (points closer than a threshold).

Connection Threshold
This configuration parameter determines the maximum distance
threshold (in microns) between two dendrite fragments for them
to be considered connected. Note that a connection threshold
value that is too small can cause some dendrite fragments to
be disconnected because they are far from the others. On the
contrary, a value that is too large will ensure that no dendrite

fragment is unconnected, but this could cause problems such
as erroneous connections and bad management of bifurcations;
therefore, a value that is too large is not recommended.

For usability reasons, the tool automatically searches an
appropriate value for the connection threshold parameter. It
starts with a small value and progressively increases the value
if unconnected fragments are still found, re-processing the
tracing generation.

Soma Generation for the Tracing
Once the dendrite hierarchy and geometry have been calculated
and are fully described, it is necessary to calculate the points
that define the soma. However, as mentioned above, the soma
may come from Imaris or, if the input file does not contain
any information related to soma, it is necessary to make an
approximation from the available information. In the latter case,
the soma will be approximated starting with a sphere, where
its center is calculated as the barycenter of the initial points of
the first order neurites. The radius will be the shortest distance
between the newly calculated center and the beginning of the first
order neurites.

Frontiers in Neuroanatomy | www.frontiersin.org 6 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

Finally, it is necessary to transform the point-radius sphere
representation used, or the 3D mesh obtained from Imaris,
to convert it into a representation based on a set of 2D
contours (since this representation is supported by the NL ASC
format). Note that this soma will later be deformed by the
tool as in Brito et al. (2013) and the set of 2D contours will
be updated.

Adding Spines to the Tracing
Finally, once the dendrites and the soma have been generated and
described, an algorithm will add spines to the tracing. The spines
can be provided in a geometry Filament Tracer file or an Imaris
file containing the spine skeletons as polylines.

If the input file is an Imaris Filament Tracer file, the spines’
skeletons are calculated analogously to the above-mentioned
neurites’ skeletons calculation. However, if the Imaris Filament
Tracer file does not contain spine information, but the user
has provided—as an input file—an Imaris file that contains
measurements of the spine lengths (manually measured from
the point of insertion in the dendritic shaft to the distal tip of
the spine), spines can also be added. In order to process this
file, for each spine length, the first point will be considered the
spine’s head, and the final point will be considered the spine’s
insertion point.

Once the spine information has been obtained, spines are
hierarchically added to the tracing. For each spine, the distances
from the spine’s insertion point (the beginning of the spine) and
all the points from the tracing are calculated. If the minimum
distance calculated is below the connection threshold, the spine
will be connected to the tracing point from which this minimal
distance was calculated.

One limitation of the previous version of the tool was
that the tracings file format that was compatible with it
could not contain spine information, so the tool placed
spines (procedurally built or from a specified folder) in a
random orientation—determining their position following a
given distribution function. As previously mentioned, the
current NL ASC format contains spine information. Thus,
spines are represented by a single point, corresponding to
the end of the spine, and the insertion point of each spine
is considered to be the previous point within the tracing
(where a spine is found). Note that this may be slightly less
accurate than adding the insertion point of the spine to the
tracing but doing this would involve including new tracing
points, which is rather unnecessary given that the deviations
are minimal.

How to Export Files to be Used for Tracing
Generation
Finally, we briefly explain how users should export the files
from Imaris Filament Tracer. If there is an apical neurite,
users should export the whole apical neurite with all of
its branches (and spines, if any) in the same file. The rest
of the neurites including the axon can be exported to a
single file or, if desired, to different files, as long as each file
contains a complete dendritic branch or axon that departs
from the soma. For our method to work properly, the

first point of each neurite should be as close to the soma
as possible. If the user wants to automatically generate
several neuronal tracings at once, more detailed
instructions can be found in the user manual attached as
Supplementary Material.

Regarding spines, the new information available in the NL
ASC tracing files refers to their position and orientation. Hence,
spines are exported as a small line that connects the tracing to a
point representing the end of the spine.

New Placement of Spines
In the first version of Neuronize (Brito et al., 2013), there was
no information regarding the geometry of the spines, so spine
geometry was obtained from a series of spines that were included
in Neuronize by default. The spine placement process consisted
of placing it in the corresponding tracing point (calculated
following a distribution function) with a random orientation.

In the version presented here, in addition to a more detailed
soma, the NL ASC files contain spine information, where each
spine is represented by a small line that defines the spine
placement and its orientation. Note that some neuroscientists
could mark the end of the spine inaccurately causing the
small line representing the spine to also be inaccurate. A spine
geometry from a small local database will be randomly selected
to be placed according to the small line defining the spine within
the NL ASC tracing. These spines are centered on the origin
and aligned with the Y-axis and are transformed to match the
small lines.

Furthermore, if the input file is an Imaris Filament Tracer file
rather than a NL ASC file, the actual geometry of the spine is
already in its position and orientation. Hence, we process the
file to: (i) extract the tracing; (ii) create its corresponding 3D
mesh; (iii) store the spines in a database (transforming them to
be centered on the origin and aligned along the Y-axis); and
(iv) place the geometry of these spines in their real position
and orientation.

In addition, the user can provide the real geometry of spines
generated with Imaris isosurfaces, and add either the original or
the repaired spines to the visualization. Note that, in this case,
the spines are also added to the database without applying any
transformation, so they cannot be added to other neurons.

Geometry Unification and Repair
As mentioned, the meshes provided by Imaris may contain
certain errors, such as faces that intersect and/or holes, which
can cause errors in the metrics obtained from these meshes—for
example, errors in the area and the volume of a mesh.

To deal with this problem, a geometry corrector is provided
to repair geometries and to recalculate the metrics from these
repaired geometries. The geometry corrector also allows the
meshes (both the original ones and the repaired ones) to be
exported to widely used 3D formats, thereby facilitating the
sharing of data with other neuroscientist laboratories.

To repair the meshes, the first step involves reading them.
The tool accepts both VRML and IMX formats. The VRML
files provided by Imaris contain a lot of useless information
and inaccurately-formed structures that make it impossible

Frontiers in Neuroanatomy | www.frontiersin.org 7 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

to open the file with some standard programs. Therefore,
an algorithm has been developed that builds a new ‘‘clean’’
VRML file which contains only the relevant sections from
the original VRML file, that is, the geometry of spines and
neurite branches.

In addition, the IMX files contain a lot of information that
is not related to the geometry of the neuron. However, the
format does not include unique tags indicating which element
a given geometry is representing. For example, there is no
tag to define a spine, so the importing algorithm will assume
that the geometry represents a spine by inferring it from the
number of vertices. When a geometry that has between 10 and
10,000 vertices is found in the file, the algorithm assumes
that it is a spine. Once all relevant geometries of the file
have been obtained and tagged, they are included in a clean
VRML file (so the following steps are common regardless of
whether the clean VRML comes from a processed VRML or a
processed and transformed IMX). Next, each mesh contained
in the processed VRML file is repaired separately. The repair
process is based on the one proposed in Eyal et al. (2016),
but it has been extended to repair not only spine meshes,
but also neurite fragment meshes and soma meshes. First, the
mesh is voxelized, thus moving from a surface representation
to a volumetric representation. A dilation-erosion process is
then carried out on this volumetric representation to join
disconnected geometry (such as a spine and its neck if they
were separated). Next, a Gaussian smoothing is performed
and, finally, the three-dimensional representation is converted
back to a surface representation using the Marching Cubes
technique (Lorensen and Cline, 1987). Since the repair of
neurite fragments presented memory problems, a method that
calculates the Object Oriented Bounding Boxes of the mesh using
Principal Component Analysis (Dimitrov et al., 2006) has been
implemented, thus significantly reducing the number of voxels
to be dealt with by the algorithm. Additionally, some options
are available to customize the repair process that, by default, is
configured for spines.

Upon completion of the repair process, new metrics are
calculated on that mesh (such as area, volume, and mass center)
and stored in a .csv file that contains these metrics for each mesh
contained in the input file. The user can then store both the
original meshes and the repaired meshes in separate files with
standard formats.

A Tool to Compare Meshes With Hausdorff
Distance
A comparison functionality has been added to the tool (see
Figure 4). As a result, structures obtained with different methods
(like a soma based on a sphere or based on a set of 2D contours)
or unrepaired and repaired meshes can be compared.

The first option allows different meshes to be visualized side
by side. Using this option, both meshes will be single-colored.
However, the comparison tool also offers the interesting option
of showing the differences between two objectmeshes in different
colors. More specifically, it displays two visualizations side by
side in which the meshes are colored using a transfer function
based on the Hausdorff distance (Cignoni et al., 1998) between

the meshes. This transfer function is visible on the interface,
together with the associated distance values, to allow the user to
estimate the magnitude of the difference.

To facilitate navigation, both visualizations are coordinated,
so that any camera movement in one of them is also reflected
in the other. The tool also provides a series of metrics based
on this distance, such as the average error, maximum error, and
minimum error.

Improving Data Sharing
The use of proprietary tools hinders data sharing between
teams since the data is linked to specific proprietary software.
To overcome this limitation, the new version of the tool
includes a small local database that stores all the processed and
extracted information of the neuron in widely used standard
formats. In this way, the generated soma, the extracted spines
and the reconstructed meshes can be stored, together with
some description metrics (such as area, volume, and mass
center). This database will facilitate the storing and sharing
of models, and the tool also includes the option to reuse
spine models from the database in the event that no spines
are available.

To store the models in the database in a generic way, the
geometry of the spines are stored centered on the origin and
aligned with the Y-axis, while the position and orientation of each
spine in a particular neuron are independently stored.

Since the spines present in the archives of Imaris Filament
Tracer are located in their real positions, after processing the file,
it is necessary to transform them. First, a series of rotations are
applied to a spine to align it with the Y-axis. These rotations
are calculated taking into account that all the spines from the
input file have a flat base. Thus, the normal vector to this
base determines the actual orientation of the spine, which is
transformed to coincide with the Y-axis. Once the spine is
correctly oriented, it is moved to the origin, so that the midpoint
of the base is at the origin. These transformations are stored
within the database as a rotation (through a quaternion) and a
translation (through a vector).

To reuse spines from the database, the application takes the
geometry and applies the corresponding transformations (based,
for example, on the small lines describing spines contained in a
NL ASC tracing file, or placing the spines following a distribution
function). Thus, to facilitate the sharing of data between
different neuroscientist laboratories, a database is included in
this new version, to store information from all the neuronal
data processed by Neuronize in open standard formats. This
eliminates the dependence of the proprietary formats that lead
to the data only being compatible with a specific tool. Using this
database, Neuronize v2 can help to create a local spine repository
that is built up from the processed spines (the repaired spines
from traditional Imaris or the spines with necks from Imaris
Filament Tracer) for future reuse.

USE CASES

This section includes three examples of how to use the tool.

Frontiers in Neuroanatomy | www.frontiersin.org 8 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

FIGURE 4 | Differences between the spine meshes of the same spine before (left) and after being repaired (right).

FIGURE 5 | (A) Confocal microscopy image of an intracellularly injected human layer III pyramidal neuron. (B) Three-dimensional reconstruction of the morphology
of the cell shown in (A), using Imaris. (C) The building of the soma, dendrites, and spines from the neuron shown in (B), using Neuronize. (D) Neurolucida
visualization of the neuron shown in (C). Scale bar (in D): 20 µm in (A–D).

Use Case 1
Here we present an example to obtain a tracing file usable in NL
from a neuron extracted using Imaris Filament Tracer (Figure 5).
The proposed workflow would be as follows: (a) reconstruct
dendrites and spines using Imaris Filament Tracer; (b) go to
Neuronize v2/create a neuron and import VRML files to obtain
a tracing (ASC file) from the 3D representation imported from
Imaris Filament Tracer, which was semi-automatically created.

The steps the tool performs to obtain the ASC file are automatic.
In this stage, there is also the option to create a soma via the
software if desired; and (c) The created ASC file can be directly
opened by NL and a variety of analyses can be performed,
including, for example, branch order analysis or Sholl analysis
(which analyses the branching structure of dendrites and spines).
These steps are completely automatic, avoiding long, tedious and
error-prone processes.

Frontiers in Neuroanatomy | www.frontiersin.org 9 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

FIGURE 6 | High magnification image of a human basal dendritic segment
from an intracellularly injected layer III pyramidal neuron. (B,C)
Three-dimensional reconstruction of the morphology of each dendritic spine
shown in (A), using Imaris isosurfaces (B) and Imaris filament tracer (C). (D)
The building of the spines from the reconstruction is shown in (B), using
Neuronize after the unification and repair process. Scale bar (in D): 2 µm in
(A–D).

Use Case 2
Here we present an example to obtain a continuous unified spine
mesh extracted from several disconnected Imaris isosurfaces
(Figure 6). The proposed workflow would be as follows: (a)
reconstruct spines using the Imaris Isosurface tool, which
captures great morphological detail, although it is often necessary
to use several surfaces of different intensity thresholds to capture
the complete morphology of a dendritic spine. As a result,
one particular spine may be composed of several disconnected
meshes; (b) go to Neuronize v2/unify and/or correct meshes
to directly obtain the 3D unified meshes (OBJ files). This
step provides the surface area calculation of the unified mesh
(XLS file).

Use Case 3
Here we present an example to visually compare meshes
(Figure 7). As a next step following on from the steps outlined
in use case 2, it is possible to go to Neuronize v2/compare meshes
and obtain the 3D visualization of the original spines (OBJ files)
and the unified spines (OBJ files).

DISCUSSION

This article presents Neuronize v2, a tool designed to bridge
the gap between different existing proprietary tools, in order
to modify and optimize neuroscientific workflows. This has
been achieved by processing the output data from proprietary
tools, extracting the relevant information, transforming it, and
offering functionalities to correct, store and share the data in
standard formats, making it available to all users. The tool was
developed in C++ and python and has been released for Linux,
Mac OSX andWindows operating systems. It is publicly available
at https://vg-lab.es/neuronizev2/.

This tool introduces modifications in the current workflows
that allow users to optimize the use of commercially available
tools by sharing the extracted data of one tool with other tools.
Specifically, users will be able to directly generate a complete
tracing compatible with Neurolucida from the data obtained with
Imaris Filament Tracer, thus avoiding the need to extract data
from neurons with both tools to obtain the metrics and analyses
that each tool provides. VRML files exported from Imaris
Filament Tracer can be read and deciphered to automatically
extract the meshes and the relevant information.

Also, the tool processes the meshes to obtain the position and
orientation of spines if they are present in the file. If the spines
are not present in the file, this information can be taken from
Imaris files that contain measurements representing the length
of the spines.

Another new feature of this version of the tool is its capacity to
process themeshes provided by Imaris. Although Imaris is highly
accurate, it is often necessary to use several surfaces of different
intensity thresholds to capture the complete morphology of
a particular structure (i.e., spine). Thanks to this repair and
unifying process, it is possible to calculate more precise metrics
of the structure. The tool also allows the meshes—both unified
and original—to be stored in standard 3D formats, allowing the
sharing of data and new metric calculations.

Frontiers in Neuroanatomy | www.frontiersin.org 10 October 2020 | Volume 14 | Article 585793

https://vg-lab.es/neuronizev2/
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

FIGURE 7 | Graphical user interface of Neuronize showing a high magnification image of a human dendritic spine before (left) and after (right) the unification and
repair process. The larger variations in the meshes are represented in warm colors (reds, oranges, and yellows).

The usage of software tools for the reconstruction of neurons
is widespread today although pioneer systems for 3D dendritic
tracing were developed decades ago, before the appearance of
NL system (e.g., Overdijk et al., 1978). These early methods have
been very useful to improve the analysis of neuron morphology
(e.g., Mrzljak et al., 1992; Koenderink et al., 1994; Petanjek
et al., 2008). According to the literature focusing on new 3D
meshes generated from existing tracings, regarding the soma,
some tools are based on the deformation approach proposed in
Neuronize (Brito et al., 2013). For instance, NeuroMorphoVis
(Abdellah et al., 2018) uses the same approach as the first
version of Neuronize to generate a soma from incomplete
information, whereas NeuroTessMesh (Garcia-Cantero et al.,
2017) uses a similar method, but replaces the mass-spring
deformation with a Finite Element Method deformation, which
is easier to parametrize and generates a smoother membrane
surface. However, none of these tools can make use of the new
information about the soma present in Neurolucida files, which
contain a set of 2D contours that Neuronize v2 uses to generate a
more accurate soma.

Regarding the generation of the mesh, NeuroTessMesh
(Garcia-Cantero et al., 2017) allows the visualization of complex
scenarios with several neurons, reducing the resolution of the
distant neurons, by using a GPU-based approach that allows
dynamically-adaptive multiple levels of details (LOD) when
visualizing the mesh. NeuroMorphoVis (Abdellah et al., 2018)
first applies multiple processes to the input tracing to remove

artifacts that can negatively affect the generated mesh. It then
uses a new meshing algorithm that allows the generation of a
unique neuron mesh from a set of watertight meshes with the
advantage being that the mesh vertexes are related to the original
tracing points. However, none of the studied tools that generate
3D meshes from tracings have the capacity to add spines to
the visualization.

Regarding spines, Neuronize v2 uses the available spine
information contained in the input files to add the spines to the
representation. If there is spine information in the NL ASC files,
this information is used to place the spines in their real position
and orientation. However, if the spine information comes from
Imaris Filament Tracer files, the application will place the real
spine geometries in their position and orientation. If the Imaris
Filament Tracer file does not contain spine information, the
spine position and orientation could be taken from an Imaris
default file if provided. Alternatively, the geometry of the spines,
as well as their position and orientation, can also be obtained
from an Imaris isosurfaces file and the spines can then be
placed in position in their appropriate orientation. Note that the
spine meshes created with Imaris isosurfaces could be previously
unified and/or repaired with the tool if required.

Besides the improvements made to include the spines, the
main contribution of Neuronize v2 is that, to our knowledge, it
is the first tool that allows the gap to be closed between Imaris
and NL, making it possible to benefit from the data extracted
from Imaris. Neuronize v2 obtains a tracing (ASC file) from the

Frontiers in Neuroanatomy | www.frontiersin.org 11 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

3D representation imported from Imaris Filament Tracer, which
was semi-automatically created. The steps the tool performs to
obtain the ASC file are automatic. This tracing can then be
opened directly to make use of all of the analyses available
in Neurolucida.

As a result, branch order analysis or Sholl analysis can then
be extracted. The detailed segmental and topological analysis of
different compartments within the dendritic tree is crucial to
find subtle morphological differences, which cannot be obtained
by analyzing general data about neuron morphology (e.g., Groc
et al., 2003; Benavides-Piccione et al., 2020).

Finally, being able to save the models in a generic
database using standard 3D formats greatly facilitates data
sharing between different research groups within the scientific
community, since the limitation of owning commercial tool
licenses is eliminated.

In the future, we plan to continue exploring new
functionalities that serve as a link between existing tools, to
make the most of the benefits of each of the software programs,
overcoming software dependencies and limitations—to propose
new, more efficient workflows and make the tools open
access. We are also working on an integrated framework
in which different tools can interact with coordinated
views and be connected, exchanging information and data
between them.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

RB-P, IF-E, and JD conceptualized the idea of bridging the gap
between existing proprietary tools, acquired the data, tested the
tool, and validated the correctness of the obtained results. IV
designed and implemented the new features of this new version.

PT implemented the first functional proof of concept of the
Skeleton Generator algorithm. JB developed the first version of
the tool and proposed to use the new information about the
soma in Neurolucida to achieve more accurate shapes. SM, LP,
and SB proposed and designed some of the new features. RB-
P, IF-E, SB, and IV made the illustration of the manuscript. SB
directed the entire process of implementation and design of the
new functionalities in this publication. SB and IV made a first
draft of the article. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by grants from the following entities:
the Spanish ‘‘Ministerio de Ciencia, Innovación y Universidades’’
regarding grant TIN2017-83132-C2 (corresponding to the
project ‘‘Analytical Applied Visualization,’’ VIANA), grant
PGC2018-094307-B-I00, the Cajal Blue Brain Project [the
Spanish partner of the Blue Brain Project initiative from L’Ecole
Polytechnique Fédérale de Lausanne (EPFL), Switzerland]; and
the European Union’s Horizon 2020 Framework Programme
for Research and Innovation under the specific grant agreement
No. 785907 (Human Brain Project SGA2) and the specific grant
agreement No. 945539 (Human Brain Project SGA3).

ACKNOWLEDGMENTS

We would like to thank Juan Morales for his contribution to
the mesh repair algorithms, Gonzalo Bayo for his contribution
in processing the .IMX files, and Nick Guthrie for his excellent
text editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnana.
2020.585793/full#supplementary-material.

REFERENCES

Abdellah, M., Hernando, J., Eilemann, S., Lapere, S., Antille, N.,
Markram, H., et al. (2018). NeuroMorphoVis: a collaborative framework
for analysis and visualization of neuronal morphology skeletons
reconstructed from microscopy stacks. Bioinformatics 34, i574–i582.
doi: 10.1093/bioinformatics/bty231

Benavides-Piccione, R., Regalado-Reyes, M., Fernaud-Espinosa, I.,
Kastanauskaite, A., Tapia-González, S., León-Espinosa, G., et al. (2020).
Differential structure of hippocampal CA1 pyramidal neurons in the human
and mouse. Cereb. Cortex 30, 730–752. doi: 10.1093/cercor/bhz122

Brito, J. P., Mata, S., Bayona, S., Pastor, L., DeFelipe, J., and Benavides-Piccione, R.
(2013). Neuronize: a tool for building realistic neuronal cell morphologies.
Front. Neuroanat. 7:15. doi: 10.3389/fnana.2013.00015

Chen, H., Xiao, H., Liu, T., and Peng, H. (2015). Smarttracing: self-learning-based
neuron reconstruction. Brain Inform. 2, 135–144. doi: 10.1007/s40708-015-
0018-y

Cignoni, P., Rocchini, C., and Scopigno, R. (1998). Metro: measuring error on
simplified surfaces. Comput. Graph. Forum 17, 167–174. doi: 10.1111/1467-
8659.00236

Cline, H. (1999). ‘‘Development of dendrites,’’ in Dendrites, eds G. Stuart,
N. Spruston and M. Häusser (New York, NY: Oxford University Press), 35–67.

Dercksen, V. J., Hege, H. C., and Oberlaender, M. (2014). The filament editor: an
interactive software environment for visualization, proof-editing and analysis
of 3D neuronmorphology.Neuroinformatics 12, 325–339. doi: 10.1007/s12021-
013-9213-2

Dimitrov, D., Knauer, C., Kriegel, K., and Rote, G. (2006). On the bounding
boxes obtained by principal component analysis. Eur. Work. Comput. Geom.
193–196.

Elston, G. N. (2003). Cortex, cognition and the cell: new insights into the
pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138.
doi: 10.1093/cercor/bhg093

Elston, G. N., and DeFelipe, J. (2002). ‘‘Spine distribution in cortical pyramidal
cells: a common organizational principle across species,’’ in Progress in Brain
Research. eds E. C. Azmitia, J. DeFelipe, E. G. Jones, P. Rakic, and C. E. Ribak
(San Diego CA: Elsevier), 109–133.

Eyal, G., Verhoog, M. B., Testa-Silva, G., Deitcher, Y., Lodder, J. C., Benavides-
Piccione, R., et al. (2016). Unique membrane properties and enhanced signal
processing in human neocortical neurons. eLife 5:e16553. doi: 10.7554/eLife.
16553

Frontiers in Neuroanatomy | www.frontiersin.org 12 October 2020 | Volume 14 | Article 585793

https://www.frontiersin.org/articles/10.3389/fnana.2020.585793/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnana.2020.585793/full#supplementary-material
https://doi.org/10.1093/bioinformatics/bty231
https://doi.org/10.1093/cercor/bhz122
https://doi.org/10.3389/fnana.2013.00015
https://doi.org/10.1007/s40708-015-0018-y
https://doi.org/10.1007/s40708-015-0018-y
https://doi.org/10.1111/1467-8659.00236
https://doi.org/10.1111/1467-8659.00236
https://doi.org/10.1007/s12021-013-9213-2
https://doi.org/10.1007/s12021-013-9213-2
https://doi.org/10.1093/cercor/bhg093
https://doi.org/10.7554/eLife.16553
https://doi.org/10.7554/eLife.16553
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

Velasco et al. Neuronize v2: Optimizing Neuroscientific Workflows

Feng, L., Zhao, T., and Kim, J. (2015). Neutube 1.0: a new design for
efficient neuron reconstruction software based on the swc format. eNeuro
2:ENEURO.0049-14.2014. doi: 10.1523/ENEURO.0049-14.2014

Garcia-Cantero, J. J., Brito, J. P., Mata, S., Bayona, S., and Pastor, L. (2017).
Neurotessmesh: a tool for the generation and visualization of neuron
meshes and adaptive on-the-fly refinement. Front. Neuroinform. 11:38.
doi: 10.3389/fninf.2017.00038

Groc, L., Petanjek, Z., Gustafsson, B., Ben-Ari, Y., Khazipov, R., and Hanse, E.
(2003). Compensatory dendritic growth of CA1 pyramidal cells following
growth impairment in the neonatal period. Eur. J. Neurosci. 18, 1332–1336.
doi: 10.1046/j.1460-9568.2003.02839.x

Heck, N., and Benavides-Piccione, R. (2015). Editorial: dendritic spines: From
shape to function. Front. Neuroanat. 9:101. doi: 10.3389/fnana.2015.00101

Huttenlocher, P. R., and Dabholkar, A. S. (1997). Regional differences in
synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178.
doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z

Jacobs, B., and Scheibel, A. B. (2002). ‘‘Regional dendritic variation in primate
cortical pyramidal cells,’’ in Cortical Areas: Unity and Diversity, eds A. Schüz
and R. Miller (Abingdon, UK: Taylor and; Francis), 111–131.

Jin, D. Z., Zhao, T., Hunt, D. L., Tillage, R. P., Hsu, C.-L., and Spruston, N.
(2019). ShuTu: open-source software for efficient and accurate reconstruction
of dendritic morphology. Front. Neuroinform. 13:68. doi: 10.3389/fninf.2019.
00068

Koenderink, M. J. T., Uylings, H. B., and Mrzljak, L. (1994). Postnatal maturation
of the layer III pyramidal neurons in the human prefrontal cortex: a
quantitative Golgi analysis. Brain Res. 653, 173–182. doi: 10.1016/0006-
8993(94)90387-5

Lasserre, S., Hernando, J., Hill, S., Schüermann, F., De Miguel Anasagasti, P.,
Jaoudé, G. A., et al. (2012). A neuron membrane mesh representation for
visualization of electrophysiological simulations. IEEE Trans. Vis. Comput.
Graph. 18, 214–227. doi: 10.1109/TVCG.2011.55

Liu, S., Zhang, D., Liu, S., Feng, D., Peng, H., and Cai, W. (2016). Rivulet: 3D
neuron morphology tracing with iterative back-tracking. Neuroinformatics 14,
387–401. doi: 10.1007/s12021-016-9302-0

Lorensen, W. E., and Cline, H. E. (1987). Marching cubes: a high resolution 3D
surface construction algorithm. Comput. Graph. 21, 163–169.

Luebke, J. I. (2017). Pyramidal neurons are not generalizable building blocks of
cortical networks. Front. Neuroanat. 11:11. doi: 10.3389/fnana.2017.00011

Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., et al. (2013). Rapid
reconstruction of 3D neuronal morphology from light microscopy images with
augmented rayburst sampling. PLoS One 8:e84557. doi: 10.1371/journal.pone.
0084557

Mrzljak, L., Uylings, H. B., Kostovic, I., and van Eden, C. G. (1992). Prenatal
development of neurons in the human prefrontal cortex. II. A quantitative golgi
study. J. Comp. Neurol. 316, 485–496. doi: 10.1002/cne.903160408

NLMorphologyConverter: Format Status. Available online at: http://neuronland.
org/NLMorphologyConverter/FormatStatus.html. Accessed May 5, 2020.

Overdijk, J., Uylings, H. B., Kuypers, K., and Kamstra, A. W. (1978). An
economical, semi-automatic system for measuring cellular tree structures
in three dimensions, with special emphasis on Golgi-impregnated
neurons. J. Microsc. 114, 271–284. doi: 10.1111/j.1365-2818.1978.tb
00137.x

Petanjek, Z., Judas, M., Kostović, I., and Uylings, H. B. M. (2008). Lifespan
alterations of basal dendritic trees of pyramidal neurons in the human
prefrontal cortex: a layer-specific pattern. Cereb. Cortex 18, 915–929.
doi: 10.1093/cercor/bhm124

Preuss, T. (2001). ‘‘The discovery of cerebral diversity: an unwelcome scientific
revolution,’’ in Evolutionary Anatomy of the Primate Cerebral Cortex, eds
D. Falk and K. R. Gibson (Cambridge, UK: Cambridge University Press),
138–164.

Quan, T., Zhou, H., Li, J., Li, S., Li, A., Li, Y., et al. (2016). NeuroGPS-
Tree: automatic reconstruction of large-scale neuronal populations with dense
neurites. Nat. Methods 13, 51–54. doi: 10.1038/nmeth.3662

Segev, I., and Rall, W. (1998). Excitable dendrites and spines: earlier theoretical
insights elucidate recent direct observations. Trends Neurosci. 21, 453–460.
doi: 10.1016/S0166-2236(98)01327-7

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic
integration. Nat. Rev. Neurosci. 9, 206–221. doi: 10.1038/nrn2286

Wang, C.-W., Lee, Y.-C., Pradana, H., Zhou, Z., and Peng, H. (2017). Ensemble
neuron tracer for 3D neuron reconstruction. Neuroinformatics 15, 185–198.
doi: 10.1007/s12021-017-9325-1

Wang, Y., Narayanaswamy, A., Tsai, C.-L., and Roysam, B. (2011).
A broadly applicable 3-D neuron tracing method based on open-curve
snake. Neuroinformatics 9, 193–217. doi: 10.1007/s12021-011-9110-5

Xiao, H., and Peng, H. (2013). APP2: Automatic tracing of 3D neuron
morphology based on hierarchical pruning of a gray-weighted image distance-
tree. Bioinformatics 29, 1448–1454. doi: 10.1093/bioinformatics/btt170

Yuste, R. (2010). Dendritic Spines. Cambridge, MA: The MIT Press.
Zhou, Z., Liu, X., Long, B., and Peng, H. (2016). TReMAP: automatic 3D

neuron reconstruction based on tracing, reverse mapping and assembling
of 2D projections. Neuroinformatics 14, 41–50. doi: 10.1007/s12021-015-
9278-1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Velasco, Toharia, Benavides-Piccione, Fernaud-Espinosa, Brito,
Mata, DeFelipe, Pastor and Bayona. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroanatomy | www.frontiersin.org 13 October 2020 | Volume 14 | Article 585793

https://doi.org/10.1523/ENEURO.0049-14.2014
https://doi.org/10.3389/fninf.2017.00038
https://doi.org/10.1046/j.1460-9568.2003.02839.x
https://doi.org/10.3389/fnana.2015.00101
https://doi.org/10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
https://doi.org/10.3389/fninf.2019.00068
https://doi.org/10.3389/fninf.2019.00068
https://doi.org/10.1016/0006-8993(94)90387-5
https://doi.org/10.1016/0006-8993(94)90387-5
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.1007/s12021-016-9302-0
https://doi.org/10.3389/fnana.2017.00011
https://doi.org/10.1371/journal.pone.0084557
https://doi.org/10.1371/journal.pone.0084557
https://doi.org/10.1002/cne.903160408
http://neuronland.org/NLMorphologyConverter/FormatStatus.html
http://neuronland.org/NLMorphologyConverter/FormatStatus.html
https://doi.org/10.1111/j.1365-2818.1978.tb00137.x
https://doi.org/10.1111/j.1365-2818.1978.tb00137.x
https://doi.org/10.1093/cercor/bhm124
https://doi.org/10.1038/nmeth.3662
https://doi.org/10.1016/S0166-2236(98)01327-7
https://doi.org/10.1038/nrn2286
https://doi.org/10.1007/s12021-017-9325-1
https://doi.org/10.1007/s12021-011-9110-5
https://doi.org/10.1093/bioinformatics/btt170
https://doi.org/10.1007/s12021-015-9278-1
https://doi.org/10.1007/s12021-015-9278-1
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles

	Neuronize v2: Bridging the Gap Between Existing Proprietary Tools to Optimize Neuroscientific Workflows
	INTRODUCTION
	METHODS AND RESULTS
	New Soma Generation Method
	Skeleton Generator
	Description of a Tracing
	Imaris Filament Tracer VRML Format
	Tracing Hierarchy Construction
	Connection Threshold
	Soma Generation for the Tracing
	Adding Spines to the Tracing
	How to Export Files to be Used for Tracing Generation

	New Placement of Spines
	Geometry Unification and Repair
	A Tool to Compare Meshes With Hausdorff Distance
	Improving Data Sharing

	USE CASES
	Use Case 1
	Use Case 2
	Use Case 3

	DISCUSSION
	DATA AVAILABILITY STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES

