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Repressor element-1 silencing transcription factor (REST) is highly expressed in the
dorsal raphe where serotonin (5-hydroxytryptamine, 5-HT) neurons are located. REST
works as a transcription factor for the 5-HT receptor and tryptophan hydroxylase
two-gene expression. We hypothesized that REST is co-expressed in 5-HT neurons,
which, if demonstrated, would be useful to understand the mechanism of 5-HT
dysfunction-related disorders such as negative emotions and depression. Therefore,
the present study was designed to examine the expression of the REST gene in the
brain (forebrain, midbrain, and hindbrain) of adult male Nile tilapia (Oreochromis niloticus)
using rt-PCR. Besides, using immunocytochemistry, co-localization of the REST gene
was examined in 5-HT neurons and with neuronal-/glial-cell markers. We found a high
expression of the REST gene in the midbrain region of the dorsal raphe, an area of
5-HT neurons. Double-label immunocytochemistry showed neuron-specific expression
of REST co-localized in 5-HT neurons in the dorsal and ventral parts of the periventricular
pretectal nucleus, paraventricular organ, and dorsal and medial raphe nucleus. Since
midbrain 5-HT neurons express REST, we speculate that REST may control 5-HT
neuronal activity related to negative emotions, including depression.

Keywords: REST, neuron-retrictive silencer factor, serotonin neuron, hindbrain, midbrain area

INTRODUCTION

Repressor element 1 silencing transcription factor (REST), also known as neuron-restrictive
silencing factor (NRSF), shows gene silencing transcription activities of target genes, which contain
the repressor element-1 (RE-1) binding site (Calderone et al., 2003; Bruce et al., 2004; Schiffer
et al., 2014). In neurons, REST regulates the transcription of hundreds of neuronal genes, including
genes that encode for neurotransmitter receptors, transporters, neurotrophic receptors, and genes
that encode for proteins involved in vesicular function, axonal guidance, and ion channels (Bruce
et al., 2004). Studies have implicated changes in the expression of REST, as well as REST-dependent
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genes, in the specific brain regions and several brain diseases,
including Alzheimer’s disease, Huntington disease, Parkinson’s
disease, ischemia, epilepsy, and depression (Goswami et al., 2010;
Baldelli and Meldolesi, 2015).

Previous studies have indicated that REST affords
neuroprotective function in several cellular signaling pathways,
leading to neuronal cell survival (Song et al., 2017). On the
other hand, reduced nuclear REST gene expression in the
aging human brain and patients with Alzheimer’s disease (Lu
et al., 2014; Meyer et al., 2019) induces cell death-related genes
and loss of neurons, which leads to cognitive dysfunction and
neurodegenerative disease (Hwang and Zukin, 2018).

There is growing evidence that alteration of REST gene
expression is one of the key components of stress and the
pathophysiology of depression, aberrant REST, and REST-
associated genes (Otsuki et al., 2010; Soga et al., 2020).
Clinical study reports female depressed patients to show higher
expression of REST gene in the dorsal raphe neurons (Goswami
et al., 2010). In the serotonin (5-hydroxytryptamine, 5-HT)
system, REST inhibitory effect regulates 5-HT1A receptor gene
expression by binding to the RE-1 site in the 5-HT1A promoter
region (Lemonde et al., 2004). Thus, increased REST mRNA
levels suppress 5-HT1A expression in the dorsal raphe of
patients who suffer from depression (Goswami et al., 2010).
Besides, REST regulates the promoter activity of the tryptophan
hydroxylase-2 (TPH2) gene in raphe 5-HT biosynthesis (Patel
et al., 2007; Gentile et al., 2012; Nawa et al., 2017). Although the
cellular localization of REST in neurons and astrocytes has been
reported (Abrajano et al., 2009a,b; Prada et al., 2011; Pajarillo
et al., 2020), the expression of REST in 5-HT neurons and
their cellular function in 5-HT related mental disorders remain
poorly understood.

The Nile tilapia, Oreochromis niloticus, is an emerging model
for social neuroscience due to its well-characterized behaviors,
physiology, and neuroendocrine systems (Meek, 1998; Uchida
et al., 2005; Higuchi et al., 2018; Lim et al., 2020). In particular,
social behavior in the Nile tilapia is well studied; the change
in body color, relative to social rank, triggered by dynamic
social interactions is an excellent feature in understanding
brain chemistry changes in different social statuses (Ogawa
et al., 2006; Lim et al., 2020). In tilapia brain, there are three
5-HT neuronal populations: the paraventricular organ (PVO),
the dorsal and ventral periventricular pretectal nuclei (PPd
and PPv), and the superior and inferior raphe (SR and IR;
Cham et al., 2018; Higuchi et al., 2018).

In this study, we investigated the expression of the REST
gene in 5-HT neurons. We first determined the REST gene
expression pattern in micro-dissected brain regions (forebrain,
midbrain, and hindbrain) of the male Nile tilapia by rt-PCR.
Next, we studied whether the REST gene is expressed in neurons
or glial cells. Finally, REST-positive cells were localized in the
midbrain and co-localized with 5-HT neurons using double-label
in situ hybridization (ISH) and immunohistochemistry (ICC).
The identification of REST in 5-HT neurons will serve as an
initial step for our future study to understand the involvement of
serotonergic regulation of negative emotions such as depression
and fear.

MATERIALS AND METHODS

Animals
Sexually matured male Nile tilapia fish (Oreochromis niloticus)
were used in this experiment (n = 11). All animals were kept
in standard fish tanks (size: H90 × W25 × D25 cm) with
10–20 fish per tank under standard housing conditions: lighting
(14-h light: 10-h dark cycle), freshwater aquaria maintained at
28 ± 0.5◦C, equipped with circulating water system, and given
aeration regularly. Cichlid food pellets [Star feed TP-1, Star
Feedmis (M) Sdn Bhd] were given thrice a day. Samples were
used for histological studies such as ISH (n = 6) and double ISH
and ICC (n = 5). All experimental procedures were approved
and conducted according to the guidelines of Monash University
Animal Ethics Committee, AEC (approval: MARP/2015/109,
MARP/2015/180).

Gene Expression Study
Preparation of Brain Samples
Adult male fish were anesthetized with 0.02% benzocaine
(Sigma–Aldrich, St. Louis, MO, USA), and the brains were
collected and immediately frozen in Tissue-Tekr O.C.T.
Compound (Sakura Finetek USA, Inc., Torrance, CA, USA)
for brain microdissection, then stored at −80◦C until use.
Microdissected brain samples were prepared using a cryostat
(Cham et al., 2017). Briefly, frozen coronal sections (60 µm)
were taken from the cryostat (Leica CM1860) followed by
mounting onto microscope slides (Sail Boat Lab Company,
Zhejiang, China). Tissues were collected by a 200-µl pipette tip
and immersed into TRIzol (Thermo Fisher Scientific, Waltham,
MA, USA). Based on our previous studies, brain regions were
targeted and collected as follows: telencephalon (∼55 sections),
pre-optic area (∼20 sections), optic tectum (∼65 sections),
midbrain (∼10 sections), hypothalamus (∼50 sections),
cerebellum (∼80 sections), and hindbrain (∼85 sections;
Cham et al., 2017).

RNA Extraction and cDNA Synthesis
RNA extraction and cDNA preparation were performed
according to Higuchi et al. (2018). Briefly, each brain sample
was homogenized with 200 µl TRIzol to extract total RNA.
Forty microliter of chloroform was added at 1:5 of the original
volume of TRIzol. Then, the tube was incubated for 3 min
at room temperature (RT) followed by the centrifugation for
15 min at 12,000 g at 4◦C. To precipitate RNA, only the colorless
supernatant wasmoved to a new tube and admixed with 100µl of
isopropyl alcohol. After the incubation for 10 min at RT, the tube
was centrifuged for 15 min at 12,000 g at 4◦C. At the final step,
the RNA pellet washing step was done twice with 75% ethanol
and resolved in 20 µl Ultrapure Milli-Q water after drying. Each
RNA sample (1,000 ng/µl) was translated into cDNA with High
capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA), following the manufacturer’s protocol.
The PCR conditions for all reactions were as follows: for 10 min
at 25◦C; for 120 min at 37◦C, and for 5 min at 85◦C. The cDNA
was kept at −20◦C until use.
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Real-Time PCR
The quantification of REST and β-actin mRNA was performed
using forward and reverse primers according to the GenBank
sequence (Table 1). Both genes were cloned in the pGEM-T
Easy Vector plasmid (Promega, Madison, WI, USA). After
cloning, the sequencing of the cloned Nile tilapia REST (92 bp)
and β-actin (120 bp) fragment was conducted with BigDye
Terminator v3.1 Cycle Sequencing kit (Applied Biosystems,
Foster City, CA, USA) in 3310 Genetic Analyzer (Applied
Biosystems, Foster City, CA, USA). The PCR was carried out
using SensiFAST SYBR Hi-ROX Kit (Bioline, Taunton, MA,
USA), and the PCR mixture (10 µl) contained 0.2 µM primers
and 1 µl cDNA. The PCR conditions for all reactions were as
follows: for 2 min at 95◦C; 40 cycles for 5 s at 95◦C and 30 s
at 60◦C, and a final dissociation step for melting curve analysis.
The results were analyzed by the ∆∆Ct method using β-actin as
the reference gene. The absolute copy number of REST mRNA
was also determined. The plasmid comprising the REST gene
was diluted continuously to concentrations of 109, 108, 107,
106, 105, 104, and 103 copy/µl, which were used as standards
for quantification.

In situ Hybridization (ISH)
RNA Probe Synthesis
Primer design was conducted for RNA probe synthesis as
complementary to nucleotides 846-1327 of Nile tilapia REST
mRNA from whole-brain cDNA (Supplementary Table 1).
pGEM-T Easy Vector was used to clone the Nile tilapia
REST gene fragment (482 bp). The fragment sequence was
by 3310 Genetic Analyzer. Antisense and sense REST RNA
probes were prepared from SalI and NcoI linearized pGEM
T-Easy/REST plasmid by T7 and SP6 RNA polymerases,
respectively. DIG-RNA labeling mix (Roche Diagnostic,
Risch-Rotkreuz, Switzerland) was used for REST riboprobe
preparation. The transcription mixture (10 µl) consisted of
linearized plasmid (5 µl), T7 or SP6 polymerase (0.5 µl),
transcription-optimized 5× buffer (2 µl), 100 mM DTT (1 µl),
DIG RNA labeling mix (1 µl), and RNase inhibitor (0.5 µl)
which was incubated at 37◦C for 2 h. Labeled probes were
purified twice by adding 100% ethanol and was dissolved in
30 µl of ultrapure Milli-Q.

ISH Using DIG-Labeled RNA Probe
Adult male tilapia fish brain tissues were collected and fixed with
4% paraformaldehyde for 6 h at 4◦C, followed by cryoprotection
with 20% sucrose overnight. The brain samples were embedded
in a frozen section compound and coronally sectioned in
15-µm slices using a cryostat. Silane-coated slides (Muto Pure
Chemicals, Tokyo, Japan) were used for mounting sections.
Approximately 160–170 coronal sections (15 µm) were cut, and
alternate sections were collected onto a different slide from
−0.2 Bregma point (Soga et al., 2012), including the whole
midbrain area.

Collected sections were permeabilized with 0.2 M HCl
at RT for 10 min, followed by digestion with proteinase K
(1 µg/ml) at 37◦C for 15 min. Tissues were hybridized with
DIG-labeled probes (0.2 ng/1 ml of hybridization buffer) and

incubated in sealed humidity chambers overnight at 50◦C
in the dark for hybridization. Next, slides were washed for
20 min in 2× SSC at RT, two times of 2× SSC wash for
20 min at 55◦C, and two times of 0.1× SSC wash for 20 min
at 55◦C. A series of SSC washes were followed by blocking
with 2% normal sheep serum (NSS) before incubating slides
with alkaline phosphatase (AP)-conjugated anti-DIG antibody
(1:500 dilution; Roche Diagnostic, Risch-Rotkreuz, Switzerland)
to detect DIG-labeled RNA probes. Color change reaction
was performed using 4-nitro blue tetrazolium and 5-bromo-
4-chloro-3-indolyl-phosphate (NBT/BCIP; Roche Diagnostics,
Risch-Rotkreuz, Switzerland). Color formation was stopped in
tap water.

A Nikon Eclipse 50i light microscope (Nikon, Tokyo, Japan)
was used to confirm ISH signals. Magnified images from each
section were taken by a digital cool CCD camera (D5-F1; Nikon),
and the whole-view section images were taken using Zeiss
MIRAXMIDI Slide Scanner (Carl Zeiss, Oberkochen, Germany)
with a Panasonic scanner Nikon-30 Confocal microscope (C1si,
Nikon Instruments, Tokyo, Japan). The number of REST
mRNA-positive cells was subjectively determined as follows:
++++ (very high), +++ (high), ++ (moderate), + (low) in
each area.

Double ISH and Immunocytochemistry
(ICC)
Adult male tilapia fish was anesthetized with 0.02% benzocaine,
and the brain tissues were prepared according to the procedure
above. ICC was performed immediately, followed by the ISH
process. After SSC washing steps and blocking with 2%
NSS in the ISH process, brain sections were incubated with
horseradish peroxidase (HRP)-conjugated anti-DIG antibody
(1:500, Roche Diagnostic, Risch-Rotkreuz, Switzerland). The
primary antibody was detected with Alexa Fluor 594-Tyramide
conjugate (1:100 dilution, T20935, Life Technologies, CA, USA)
at RT for 30 min. Then, the brain sections were incubated
with three antibodies: primary monoclonal mouse anti-HuC/D
antibody (1:500, A21271, RRID: AB_221448, Thermo Fisher
Scientific, Waltham, MA, USA), primary polyclonal rabbit
anti-Glial Fibrillary Acidic Protein (GFAP) antibody (1:500,
Z0334, RRID: AB_10013382, Dako, Glostrup, Denmark), or
primary polyclonal rabbit anit-5-HT antibody (1:1,000, 20,080,
RRID: AB_572263, Immunostar, Hudson, WI, USA). The
solution was prepared in 0.01MPBS (pH 7.0) with 0.5%Triton-X
and 2% normal goat serum and incubated for 24 h (HuC/D,
GFAP antibody) or 48 h (anti-5-HT antibody) in sealed humidity
chambers at 4◦C. They were further incubated for 30 min at
RT with biotinylated anti-mouse IgG (1:200, PK-6102, RRID:
AB_2336821, Vectastain ABC Elite Kit, Vector Laboratories, CA,
USA), or anti-rabbit IgG (1:200, PK-6101, RRID: AB_2336820,
Vectastain ABC Elite Kit, Vector Laboratories, CA, USA)
and then incubated with avidin-biotin-HRP reagent (1:50,
Vectastain ABC Elite Kit, Vector Laboratories) for 45 min
at RT. Sections were visualized by streptavidin-conjugated
Alexa Fluor 488 (1:500, S32354, RRID: AB_2315383, Invitrogen
Corporation, CA, USA).
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FIGURE 1 | Repressor element-1 silencing transcription factor (REST ) gene expression in the brain of adult male Nile tilapia. REST gene expression levels were
examined in seven different brain areas, including the telencephalon, pre-optic area, optic tectum, midbrain, hypothalamus, cerebellum, and hindbrain in adult male
Nile tilapia. Brain areas collected during microdissection (telencephalon, n = 5; pre-optic area, n = 6; optic tectum, n = 8; midbrain, n = 7; hypothalamus, n = 6;
cerebellum, n = 5; and hindbrain, n = 5) for REST gene expression study. The number inside each column shows the sample size in the region. All data are shown as
mean ± SEM.

A fluorescence microscope (ECLIPS 90i, Nikon, Tokyo,
Japan) equipped with a NIS-Element 3.0 Software was used
to confirm double-ISH and ICC signals and take all images.
Co-localization was examined using a confocal microscope
(Nikon-30, ECRIPS C1si, Nikon, Tokyo, Japan). The images
were scanned with XYZ-directions, and 3D confocal data was
carefully observed to confirm fluorescence signals’ overlap. The
percentage of REST-positive 5-HT neurons in PVO, PPd, PPv,
DRN, and MRN was determined using scanned images by a
confocal microscope. The area of interest for each subject was
defined as the area contained at 5-HT-immunoreactive cells.
Cell counting of 5-HT neurons was performed manually based
on observation from the selected images, which have a maxima
5-HT-immunoreactive cell number per section. A 5-HT neuron
(green fluorescence) and REST staining (red fluorescence) in the
5-HT neuron were counted as positive if the cell bodies with
well-defined borders contained detectable fluorescence staining.
The total number of 5-HT neurons and the percentage of
REST-positive 5-HT neurons were calculated. Nomenclature
for the brain area was adopted from Ogawa et al. (2016) and
Cham et al. (2017, 2018).

Data Analysis
The variations in the expression levels of REST genes were
observed using the derived boxplot R-package1. Data analysis for

1http://boxplot.tyerslab.com

real-time PCR was done by IBM SPSS Statistic version 23 (IBM,
New York, NY, USA). One-way ANOVA was used to compare
differences between different brain areas. Data are presented as
means ± SEM. p< 0.05 was considered statistically different.

RESULTS

REST Gene Expression Levels in the Intact
Brain
REST gene expression was examined in seven brain
regions of the Nile tilapia: telencephalon, pre-optic
area, optic tectum, midbrain, hypothalamus, cerebellum,
and hindbrain. All the brain regions showed over
20,000 copy numbers of REST mRNA (telencephalon:
21,406.3 ± 5,436.4; optic tectum: 23,808.3 ± 5,726.4; pre-optic
area: 65,319.3 ± 8,680.0; hypothalamus: 31,413.2 ± 9,528.0;
cerebellum: 44,558.9 ± 18,721.1; hindbrain: 39,611.0 ± 7,514.4).
REST mRNA levels were the highest in the midbrain compared
to other brain regions (midbrain: 66,429.0 ± 11,028.2; Figure 1).

Localization of REST Positive Cells in the
Midbrain
The localization of REST-expressing cells was observed in the
midbrain by ISH (Figure 2). The tilapia-specific anti-sense
REST RNA probe showed clear cell staining in the midbrain,
whereas the sense probe did not show hybridization signals
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(Figures 2Bi,Ci). Furthermore, strong stainings were observed
in the optic tectum (OT) mainly located in the stratum
periventriculare (SPV), layer 2 of the semicircular torus (TS2),
layer 3 of the semicircular torus (TS3), and oculomotor nucleus
(NIII). REST-positive cells were also found in the dorsal (DTN)
and rostral tegmental nucleus (RT). Besides, REST signals were
seen in the perilemniscal nucleus (pL) and medial (MR) and
superior nuclei of the nervus oculomotorius (SR; Figure 3). The
size of REST-positive cells was 10–20 µm in diameter. Some very
dense bigger-size cells (more than 30 µm in diameter) may be
motor neurons judging from the morphological feature, at the
SPV area in the OT (Figure 3A) and in the NIII (Figure 3G) and
medial nucleus (Figure 3H). The distribution of REST-positive
cells and the staining density in the midbrain is summarized
in Table 1.

Double Labeling of REST With
Neuron–Astrocyte–Cell Markers
Double-ISH and ICC showed clear expression of REST
co-localized with neuronal marker HuC/D in the dorsal
and ventral periventricular pretectal nucleus (PPd and PPv),
paraventricular organ nucleus (PVO), and dorsal raphe nucleus
(DRN; Figure 4). The REST gene, although not all, was
expressed in neuronal cells in the PPd, PPv, PVO, and DRN
(Figures 4A,C,E,G). Correspondingly, double-ISH and ICC for
REST with astrocyte marker GFAP showed the absence of REST
mRNA in astroglial cells in the PPd, PPv, PVO, and DRN
(Figures 4B,D,F,H).

Double Labeling of REST and
5-HT-Positive Cells
Double staining with ISH and immunofluorescence showed
co-localization of REST mRNA in 5-HT cells in the
periventricular region (PPd and PPv), paraventricular organ
(PVO), and raphe nucleus (DRN and MRN; Figure 5). Not all
5-HT-positive neurons were REST positive in each nucleus.
Our preliminary data of cell counts showed that the highest
percentage of REST-positive 5-HT neurons in the raphe region
and the lowest percentage of REST-positive 5-HT neurons
were present in the PVO (24.8 ± 5.5% in PVO, 57.6 ± 3.3%

TABLE 1 | Distribution of repressor element-1 silencing transcription factor
(REST)-positive cells in the midbrain of Nile tilapia, Oreochromis niloticus.

Brain region Abbreviation REST-positive cells

Mesencephalon (midbrain)
Optic tectum OT ++++
Semicircular torus
Semicircular torus (layer 2) TS2 +++
Semicircular torus (layer 3) TS3 +
Tegmentum
Dorsal tegmental nucleus DTN +
Rostral tegmental nucleus RT ++
Perilemniscal nucleus pL +
Oculomotor nucleus NIII +++

Medial nucleus MR ++
Superior nucleus SR ++

++++Very high; +++high; ++moderate; + low.

in the PPd, 64.0 ± 8.2% in PPv, 67.4 ± 6.9% in the DRN, and
76.1 ± 6.9% in the MRN).

DISCUSSION

Distribution of REST-Positive Cells in the
Midbrain
Real-time quantitative analysis showed REST mRNA in all
brain regions of the Nile tilapia. In particular, the midbrain
expression level was high; therefore, we focused on REST
expression in the midbrain in this study. The REST-positive
cells were seen throughout the midbrain area. A large number
of REST-positive cells are specifically observed in the optic
tectum (TeO), layer 2 of the semicircular torus (TS2), and
oculomotor nucleus (NIII). These three brain areas are critical
processing centers for sensory information. In mammals, the
corresponding homologous structures of TeO and TS are known
as the superior colliculus and inferior colliculus, respectively
(Meek, 1998). The superior colliculus receives visual inputs in
the superficial layers, while the inferior colliculus is involved in
auditory–somatosensory interaction.

On the other hand, NIII regulates oculomotor nerve
innervation of eye muscles (Ruchalski and Hathout, 2012). In
fish, TeO is one of the largest brain structures with various
motor functions such as swimming and avoidance behavior
(Nevin et al., 2010; Mishra and Devi, 2014). It has been shown
that electrical stimulation given to superior colliculus or inferior
colliculus of rats induces fear- and anxiety-like behaviors (Melo
et al., 1992; Coimbra and Brandão, 1997). There is a contribution
of the tectal division of the midbrain (e.g., superior and inferior
colliculus) and the periaqueductal gray in anxiety-like behavior
(Brandão et al., 2003; Taylor et al., 2019). Furthermore, this
midbrain circuitry is related to defensive behavior (Tovote et al.,
2016) and locomotion speed (Caggiano et al., 2018). Thus, the
presence of REST mRNA and REST-positive cells throughout
the midbrain suggest that REST could be involved in the
modulation of various functions such as emotional-, anxiety-,
and depressive-like behaviors and sensory and motor activities
associated with some of the midbrain nuclei. The expression and
activities of REST have been shown to be different at specific
brain regions in normal and pathological conditions (Kaneko
et al., 2014; Lu et al., 2014; Hwang and Zukin, 2018). Besides,
the cellular function-regulated REST is neuronal-type-dependent
(Hwang and Zukin, 2018).

Besides, the midbrain and hindbrain raphe nuclei are
well-known 5-HT neuronal-containing regions in vertebrate
species (Adell et al., 2002; Prasad et al., 2015). In teleost, raphe
5-HT neurons project their fibers to TeO, TS2, and NIII brain
regions (Kaslin and Panula, 2001), which are highly dense
REST areas, suggesting that REST may regulate 5-HT system-
related responses.

Expression of REST in Glial Cells and
Neurons
REST expression has been reported in glial cells, including
astrocytes, microglia, oligodendrocytes (Abrajano et al., 2009a;
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FIGURE 2 | Specificity of tilapia REST RNA probe in the midbrain. (A) Schematic diagram of midbrain coronal section in Nile tilapia brain with approximate brain
regions. (B) In situ hybridization with anti-sense REST mRNA probe, showing a representative whole midbrain coronal section with approximate brain regions. (Bi)
The higher magnification of (B). Arrow indicates REST-positive cells, and arrowhead may show motor neuron from the morphological feature. (C) In situ hybridization
with a sense REST mRNA probe, showing a representative whole midbrain coronal section with approximate brain regions. (Ci) The higher magnification of panel
(C). OT, optic tectum; EP, epiphysis; TS2, layer 2 of semicircular torus; TS3, layer 3 of semicircular torus; DT, dorsal terminal nucleus of accessory optic tract; MR,
medial nucleus; SR, superior nucleus; Fu, nucleus of stria terminalis; RT, rostral tegmental nucleus; nPrGm, medial subdivision of the preglomerular nucleus; nDLL,
diffuse nucleus of the lateral lobe; nILL, intermediate nucleus of the lateral lobe. Scale bars: (Bi,Ci); 50 µm.

Prada et al., 2011), in glioma (Ren et al., 2015; Li et al., 2017).
The expression of REST in glial cells might depend on the
physiological or developmental stage or a pathological condition
of the animal, such as glioma in the brain. However, more studies
on the cellular functions of REST in glial cells are required.

In our study, REST was co-localized in cells expressing
HuC/D but not in cells expressing GFAP, which shows
that REST is exclusively expressed in neurons and not
in astrocytes in the brain of tilapia. In mammals, REST

expression has been reported in neurons in specific brain areas
(Lu et al., 2014; Schiffer et al., 2014).

Emerging evidence has linked REST expression in specific
neurons to cellular functions (Baldelli and Meldolesi, 2015)
Recent studies have shown dopaminergic neurons to express
REST, which activates the expression of dopamine-synthesizing
enzyme tyrosine hydroxylase and thereby protects neurons
against cell toxicity (Kawamura et al., 2019; Pajarillo et al., 2020).
Therefore, we speculate that the expression of REST in the
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FIGURE 3 | Localization of REST-positive cells in the midbrain of male Nile tilapia. (A–I) High-magnification photomicrographs of REST-positive cells in midbrain
regions. Arrow in panels (A–I) Indicates REST-positive cells. (A) The optic tectum. (B) Layer 2 of semicircular torus. (C) Layer 3 of semicircular torus. (D) Dorsal
tegmental nucleus. (E) Rostral tegmental nucleus. (F) Perilemniscal nucleus. (G) Oculomotor nucleus. (H) Medial nucleus in oculomotor nerve. (I) Supervisor nucleus
in the oculomotor nerve. Arrowhead in panel (A) shows very dense positive cells at the stratum periventriculare (SPV) in the optic tectum, and other arrowheads in
panel (G), panel (H) may show motor neuron judging from the morphological feature. Scale bars: (A–I) 50 µm.

midbrain, in our study, might be co-expressed in some
subpopulation of dopaminergic neurons. In addition to the
midbrain, REST expression in the pre-optic area might
be co-localized in gonadotropin hormone-releasing hormone
(GnRH)-synthesizing neurons.

Indeed, a recent study has shown REST co-expressed in
GnRH neurons, which increases the functional expression
of calcium channels and reduces their migratory potential
(Antoniotti et al., 2016). The chemical nature of REST-positive

neurons in the pre-optic and midbrain areas needs to be
identified. This would help to elucidate the cellular function of
REST in these neurons.

Interaction Between REST and 5-HT
Neurons
The expression of REST was seen in many nuclei throughout
the midbrain and hindbrain areas as well as co-expression in
5-HT neuronal populations (PPd, PPv, PVO, DRN, and MRN).
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FIGURE 4 | Double-in situ hybridization and immunocytochemistry of REST and neuronal marker HuC/D or astrocyte marker GFAP. Co-localization was observed
in the (A,B) dorsal periventricular pretectal nucleus, (C,D) ventral periventricular pretectal nucleus, (E,F) paraventricular organ nucleus, (G,H) dorsal raphe nucleus,
and (I,J) medial raphe nucleus. Neuronal marker HuC/D (Ai, Ci, Ei, Gi, Ii; green), REST-positive cell (Aii, Cii, Eii, Gii, Iii; red), and merged image (Aiii, Ciii, Eiii, Giii,
Iiii). Glial marker GFAP (Bi, Di, Fi, Hi, Ji; green), REST-positive cells (Bii, Dii, Eii, Hii, Jii; red), and merged image (Biii, Diii, Eiii, Hiii, Jiii). (Aiv–Jiv) The higher
magnification of (Ai–Ji). (Av–Jv) The higher magnification of (Aii–Jii). (Avi–Jvi) The higher magnification of (Aiii–Jiii). Scale bars: (Ai–iii)–(Di–iii), (Gi–iii)–(Ji–iii)
100 µm; (Ei–iii)–(Fi–iii) 50 µm; (Aiv–vi)–(Div–vi), (Giv–vi)–(Jiv–vi) 20 µm, (Eiv–vi)–(Fiv–vi) 10 µm.
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FIGURE 5 | Double-in situ hybridization and immunocytochemistry of REST and 5-HT immunoreactive cells. Co-localization was examined in the (A) dorsal
periventricular pretectal nucleus, (B) ventral periventricular pretectal nucleus, (C) paraventricular organ nucleus, (D) dorsal raphe nucleus, and (E) medial raphe
nucleus. 5-HT immunoreactive cell (green), REST-positive cell (red), and merged image (yellow). The scare in low-magnification images (higher panels) enlarges in
high magnification images (lower panels). REST-positive 5-HT neurons were indicated by arrows. Scale bars: low-magnification images (higher panels) in (A–D)
100 µm; (E) 50 µm, high-magnification images (lower panels) in (A–D) 20 µm; (E) 10 µm.

These 5-HT nuclei are widely interconnected with rostral and
caudal brain regions to control neuroendocrine and behavioral
activities. For instance, in the rainbow trout, the midbrain and
the hindbrain are important targets for antidepressant drugs,
shown by a region-specific drug impact on neurotransmitter
levels of 5-HT, dopamine, and norepinephrine (Melnyk-Lamont
et al., 2014). It implies that neuronal REST in these brain areas

could alter the neurotransmitter systems, including 5-HT in
response to stress.

Several 5-HT-related genes have transcriptional regulator
REST-binding RE1 sites. REST-dependent transcriptional
repression of molecules related to 5-HT synthesis and 5-HT
reuptake at the synapses suggest the role of REST in 5-HT
synthesis and release (Patel et al., 2007; Albert et al., 2011;
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Nawa et al., 2017). Numerous reports indicate a close link
between a change in molecules related to 5-HT and a reduction
of 5-HT in the brain (Gardner et al., 2009; Mineur et al.,
2015; Soga et al., 2020), which may be mediated by REST. A
previous report shows that approximately 2,000 putative REST
target genes (Mortazavi et al., 2006) suggest that novel REST
target genes could be involved in 5-HT neuronal functions
and regulation.

In the present study, a higher percentage of REST-positive
5-HT neurons were seen in the DRN and MRN and
a lower percentage in the PPd, PPv, and PVO areas.
In mammals, 5-HT neurons in DRN and MRN can be
differentiated by their location, morphology, and functional
properties (Abrams et al., 2004). These subnuclei possess
different electrophysiological characteristics and excitatory
responses to stressful stimuli (Abrams et al., 2004; Beck
et al., 2004). For instance, increased cFos expression, a
marker for neuronal activation, is found in 5-HT neurons
of the DRN, but not in MRN during stress (Cooper et al.,
2009). This suggests that different mechanisms might regulate
5-HT neurons of the DRN and MRN in response to
stress. TPH2 promoter activity and 5-HT 1A expression are
modulated by REST (Lemonde et al., 2004; Gentile et al.,
2012), which suggests that the expression of REST in different
subpopulations of 5-HT neurons may be involved in different
functions in each population such as 5-HT biosynthesis or
autoregulation. Furthermore, a recent in-silico screening study
showed that antidepressant and antipsychotic drugs interact
with the REST-binding site of the mSin3B PAH1 domain
(Kurita et al., 2018), raising the possibility of REST activity
in a different 5-HT neuronal population having different
pharmacological sensitivity.

Efferent neuronal connections projecting from the PPd/PPv
region to the optic tectum have been shown in zebrafish
(Yáñez et al., 2018). Activation of the superior colliculus,
a homologous structure of the optic tectum in mammals,
can induce fear- and anxiety-like behaviors (Melo et al.,
1992; Coimbra and Brandão, 1997), and REST is highly
expressed in the optic tectum. These indicate that REST
may be involved in stress-coping mechanisms via neuronal
connections between PPd/PPv 5-HT neurons and the optic
tectum. In mammals, the PVO region has not been formally
recognized but several studies suggest its presence in the
dorsomedial hypothalamus (DMH) of rodents (Lowry et al.,
1996). It has been shown that stress-induced CRH and
corticosterone, which is a glucocorticoid hormone, stimulate
5-HT and 5-HIAA accumulation in the DMH (Lowry et al.,
2001). Thus, REST expressed in 5-HT neurons of the PVO
might have an important role in HPA axis-related stress
response. In this study, the percentage of REST-positive
5-HT cells in each neuronal population is 25–75%. This
means that some 5-HT neurons are regulated by REST-related
signaling in each 5-HT neuronal population, but other 5-HT
neurons may be under a different control. REST expression
is regulated by several physiological factors such as age,
gender, stress, and the endocrine system in different brain
regions (Soga et al., 2020). Besides, the expression and

activities of REST have been shown to be different at
specific brain regions in normal and pathological conditions
(Kaneko et al., 2014; Lu et al., 2014; Hwang and Zukin,
2018). Furthermore, the cellular function regulated by REST
is neuronal-type-dependent (Hwang and Zukin, 2018). The
relationship between the difference of the REST expression
pattern in 5-HT neurons and the physiological function may be
needed for further study.

CONCLUSION

Our results show the expression of REST gene in many nuclei
throughout the midbrain and hindbrain and co-expression
in 5-HT neuronal populations (PPd, PPv, PVO, DRN, and
MRN). REST expression in different 5-HT neuronal populations
might have other functions in the regulation of 5-HT and
could be a potential new therapy against 5-HT dysfunction-
related disorders.
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