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Early life stress has profound effects on the development of the central nervous system.
We exposed 9-day-old rat pups to a 24 h maternal deprivation (MD) and sacrificed them
as young adults (60-day-old), with the aim to study the effects of early stress on forebrain
circuitry. We estimated numbers of various immunohistochemically defined interneuron
subpopulations in several neocortical regions and in the hippocampus. MD rats showed
reduced numbers of parvalbumin-expressing interneurons in the CA1 region of the
hippocampus and in the prefrontal cortex, compared with controls. Numbers of reelin-
expressing and calretinin-expressing interneurons were also reduced in the CA1 and
CA3 hippocampal areas, but unaltered in the neocortex of MD rats. The number of
calbinin-expressing interneurons in the neocortex was similar in the MD rats compared
with controls. We analyzed cell death in 15-day-old rats after MD and found no difference
compared to control rats. Thus, our results more likely reflect the downregulation of
markers than the actual loss of interneurons. To investigate synaptic activity in the
hippocampus we immunostained for glutamatergic and inhibitory vesicular transporters.
The number of inhibitory synapses was decreased in the CA1 and CA3 regions of the
hippocampus in MD rats, with the normal number of excitatory synapses. Our results
indicate complex, cell type-specific, and region-specific alterations in the inhibitory
circuitry induced by maternal deprivation. Such alterations may underlie symptoms of
MD at the behavioral level and possibly contribute to mechanisms by which early life
stress causes neuropsychiatric disorders, such as schizophrenia.
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INTRODUCTION

According to the neurodevelopmental theory of schizophrenia,
this mental illness represents the end stage of a process
that starts long before its clinical presentation and is caused
by the combination of early life stress and genetic factors
(Kinros et al., 2010; Rapoport et al., 2012; Bora, 2015). To
date, a growing body of evidence points out the relationship
between traumatic or highly stressful situations in early life
and vulnerability to mental illness (Brown and Derkits, 2010;
Brietzke et al., 2012). Animal models of early life stress are a
widely used research tool for investigating the linkage between
early life adversities and psychopathologies with the onset in
late adolescence or young adulthood such as schizophrenia
(Ellenbroek et al., 1998; Lim et al., 2011; Stamatakis et al.,
2014; Mhillaj et al., 2015). Maternal deprivation (MD) in
rats, performed at postnatal day (P) 9 for 24 h, leads to
the increase of circulating corticosterone during the ‘‘stress
hyporesponsive period’’ thus promoting the neurodegenarative
effects of glucocorticoids (Levine, 2001; Viveros et al., 2010).
Three types of stressors underlie extensive glucocorticoid release:
(1) the lack of maternal care during 24 h; (2) the lack of
nutrients and (3) hypothermia—following the immature thermal
regulatory system in neonate pups (Marco et al., 2015). Also, MD
has long–term consequences such as impairment in declarative
memory (Llorente et al., 2011), sensorimotor gating (Ellenbroek
et al., 1998, 2004; Husum et al., 2002), synapse formation and
stabilization (Choy et al., 2008; Marco et al., 2013), decreased
numbers of NeuN-expressing neurons in the retrosplenial and
prefrontal cortex, amygdala and nucleus accumbens (Aksić
et al., 2013; Aleksić et al., 2016). We used the P9 maternal
deprivation model, as it has shown the strongest effects on
behavior (Ellenbroek et al., 1998) when compared with earlier
stress (at days 3 or 6). Additionally, this model has shown a
strong impact on increasing oxidative stress in the brains of
affected animals (Marković et al., 2017). Taken together, this MD
protocol could be used to model some pathological features of
schizophrenia.

Although they represent a minority of the total neuron
population in the brain, gamma aminobutyric acid (GABA)-
ergic interneurons are crucial for the establishment of
excitatory/inhibitory balance and for the fine-tuning of neuronal
circuitry (Marín, 2012; Kepecs and Fishell, 2014). Multiple
attempts to classify cortical and hippocampal interneurons
have identified many morphologically, physiologically, and
molecularly distinct subclasses (Ascoli et al., 2008). During the
past decade, a growing amount of data indicates the presence
of abnormal inhibitory function in patients with schizophrenia
accompanied by altered synthesis and reuptake of GABA
(Uhlhaas and Singer, 2010; Chen et al., 2014). Postmortem
studies on schizophrenic patients reveal decreased glutamate
decarboxylase 67 gene expression and protein levels as well as
reduced GABA transporter 1 in the prefrontal cortex (Schleimer
et al., 2004; Hashimoto et al., 2008; Curley et al., 2011; Kimoto
et al., 2014). These changes seem to be predominantly present
in the parvalbumin-expressing (PV+) interneurons, thought to
be of major importance in suppressing pyramidal neuron firing

driven by inputs conveying irrelevant information (Hashimoto
et al., 2003; Uhlhaas and Singer, 2010). The numerical density
of PV+ interneurons and/or PV fluorescence intensity was
reported in the hippocampus and prefrontal cortex of the
schizophrenic patients (Reynolds et al., 2002; Zhang and
Reynolds, 2002; Konradi et al., 2011; Enwright et al., 2016).
Furthermore, PV-expressing fast-spiking interneurons are
of critical importance for the generation and maintenance
of gamma rhythms in the hippocampus (Allen and Monyer,
2015; Bocker et al., 2019). However, studies on calbindin
(CB)+ and calretinin (CR)+ interneurons in schizophrenic
patients have yielded conflicting results (Brisch et al., 2015).
Reelin, a protein implicated in neuronal migration and synapse
formation, is expressed in a subclass of GABAergic neurons
in the postnatal brain (Ishii et al., 2016). In schizophrenic
patients, reelin is found to be expressed to a lesser degree
in the hippocampus and prefrontal cortex compared to the
healthy controls (Eastwood and Harrison, 2006). Previous
studies that implemented chronic MD protocol (3–4 h/day)
reported the reduction in PV expression and cell densities
in the prefrontal cortex (Leussis et al., 2012; Do Prado et al.,
2016), as well as increased CB and CR immunoreactivity in
the hippocampus of the stressed animals (Giachino et al.,
2007).

The aim of our study was to determine the long–term effects
of early acute MD on numbers of parvalbumin, calbindin,
calretinin, and reelin expressing interneurons in the neocortex
and hippocampus. Additionally, to understand the impact
of alterations in interneuron populations on the synaptic
transmission, we examined the expression of inhibitory and
excitatory vesicular transporters in the hippocampus.

MATERIALS AND METHODS

Animal Care and Maternal Deprivation
Protocol
Four male and eight nulliparous female Wistar rats, 3-month-
old, were put together in the standard plexiglass cages with
sawdust (26 × 42 × 15 cm), in a temperature (23 ± 1◦C)
and humidity (40–70%) controlled facility. The animals were
maintained in a standard 12 h light/dark cycle (lights on at
07:00 am), with water and food available ad libitum. After 14 days
dams were isolated and checked twice a day for delivery. The
day of delivery was denoted as P0. On P9, half of the litters
were subjected to the MD procedure according to the previously
described protocol (Ellenbroek et al., 1998; Roceri et al., 2002).
In brief, for MD group dams were removed from the litter at
10:00 am, after which the pups were weighed and placed back
in their home cage where they remained undisturbed until the
next day when at 10:00 am the dams were returned to their
corresponding home cage. Control litters were only subjected to
a brief (3 min) separation at P9 when pups were weighed. All
litters were later left undisturbed except for the routine cleaning
of the cages. On P22, animals were weaned and housed in the
same sex, same group (MD, Control) of three to four animals per
cage. Animals were sacrificed at P60, as young adults. Overall,
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10 animals per group from four litters were used for this study: six
animals per group were used for histological and four animals per
group for biochemical experiments. Another group of two male
and four female adult rats was put together and the experimental
procedure repeated as described above, with one difference: at
15 days of age, 6 days after MD pups were sacrificed to check
for cell death. For this experiment, four animals per group were
used, out of two litters. All efforts were made to minimize animal
suffering and reduce the number of animals used in the study.
All experiments were carried out according to the NIH Guide for
Care and Use of Laboratory Animals and were approved by the
Ethics Committee of the University of Belgrade (permit number
2014-05/2).

Tissue Processing for Histology
For the immunohistochemistry, at P15 or P60, young adult
MD and control rats (n = 6/group) were anesthetized with
chloral hydrate (3 mg/kg, i.p.) and transcardially perfused with
fixative (4% formaldehyde in 0.1 M phosphate buffer) solution.
Following decapitation, brains were extracted, post-fixed for 24 h
at +4◦C and cryoprotected by infiltration with sucrose for 2 days
at 4◦C (20% sucrose in 0.1 M phosphate buffer). The brains
were frozen by immersion in 2-methylbutane (Sigma–Aldrich,
St. Louis, MO) precooled to −80◦C, and stored at −80◦C
until cutting. Serial coronal sections of 25 µm in thickness
were cut on a freezing cryostat (Leica Instruments, Nußloch,
Germany) at −25◦C, collected on SuperFrost Plus glass slides
(Menzel, Braunschweig, Germany) in a spaced serial sequence
(four sections 250 µm apart were present on each slide) and
stored at−20◦C until use.

Immunohistochemistry
For immunofluorescence staining, antigen retrieval procedure
was performed in 0.01 M sodium citrate solution, pH 9.0,
for 30 min at 80◦C in a water bath. Nonspecific binding was
blocked using 5% normal goat serum dissolved in phosphate-
buffered saline (PBS), pH 7.3 and supplemented with 0.2%
Triton X-100, 0.02% sodium azide for 1 h at room temperature.
Table 1 lists primary antibodies used for immunohistochemical
studies. The primary antibodies were diluted in PBS (pH
7.3) containing 0.5% lambda-carrageenan (Sigma) and 0.2%
sodium azide and applied to the sections for 2 days at 4
◦C. Following three washes for 15 min in PBS, the sections
were incubated for 2 h at room temperature with the
appropriate goat Alexa 488-conjugated secondary antibodies
diluted at 1:200 in PBS. After two subsequent washes in PBS,

nuclear counterstaining was performed using 4,6-diamidino-
2 phenylindole (DAPI, 1:4,000, Molecular Probes, Eugene, OR,
USA) for 10 min. Slices were again washed in PBS, mounted
in Vectashield anti-fade medium (Biozol, Echig, Germany),
and left to dry for 24 h before analysis. The specificity
of immunostaining was controlled by replacing the primary
antibody with the normal goat serum, which lead to the absence
of staining.

Fluorojade Staining for Cell Death
Sections were pre-warmed at 50 degrees for 30 min. They were
washed in 1% NaOH solution in 80% ethanol for 5 min., then in
70% ethanol for 2 min, and distilled water for 2 min. Sections
were then treated with 0.06% KMnO4 for 10 min, rinsed in
distilled water for 2 min and incubated for 20 min in 0.0004%
FluoroJade-B (Merck-Millipore) solution in 0.1% glacial acetic
acid. Afterward, sections were rinsed 3× 1 min in distilled water,
dried overnight, dehydrated with xylene, and coverslipped as
described above.

Image Acquisition and Cell Counting
Image acquisition of brain sections was performed on an optical
microscope (DM4000 Leica, Wetzlar, Germany) with a 40×
objective and analyzed in Photoshop 7.0 software (Adobe,
San Jose, CA), using a 1-cm rectangular grid. Previously, the
anatomical delineations of the cortical and dorsal hippocampal
regions (−2.40 to−3.72mmdistance from bregma) were defined
by the nuclear staining pattern using ×10 objective according
to the anatomical atlas (Paxinos and Watson, 2006). Pictures of
whole areas were taken and cells immunoreactive for various
interneuron markers were counted in spaced serial sections
of rat brains at the same distance from bregma (2.52 mm
for prefrontal cortex and −2.76 mm for retrosplenial and
motor cortices). The criterion for the neuron to be counted
was when the whole cell body was in focus on the image, as
indicated by arrows on Figures 1–4. The counted numbers
(density) of immunoreactive cells were expressed per unit
area (mm2). At least 200 random microscope fields at 40×
magnification oil immersion objective (area 53,056 µm2) out
of five sections, from each of six animals per group were
counted in the retrosplenial, motor cortex, and prefrontal
cortex of each section. Left and right hippocampal and cortical
areas were evaluated and, as no difference between the left
and right hemispheres was detected, results were shown as
averaged bilateral values. As the distribution of interneurons
within cortical layers is another important parameter that defines

TABLE 1 | Antibodies used in this study.

Antigen Host Dilution Manufacturer Catalog no.

Parvalbumin monoclonal mouse 1:1,000 Sigma–Aldrich PARV-19
Calbindin monoclonal rabbit 1:1,000 Sigma–Aldrich C9848
Calretinin polyclonal mouse 1:1,000 Sigma–Aldrich 269A-1
Reelin monoclonal rabbit 1:500 Merck Millipore MAB 5366
Activated caspase 3 polyclonal mouse 1:100 Santa Cruz SC-7148
VGAT monoclonal rabbit 1:1,000 Synaptic Systems 131011
VGLUT1 polyclonal mouse 1:1,000 Synaptic Systems 135303
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FIGURE 1 | Parvalbumin-expressing interneurons. (A) Representative images of immunofluorescence staining for parvalbumin in the CA1 region of the
hippocampus of a control (CON, left panel) and an maternal deprivation (MD; right panel) rat at P60. Pyr indicates a pyramidal cell layer. (B) Shown are mean values
+ standard error of the mean (SEM) for profile densities (number of immunopositive cells per area) of parvalbumin+ neurons in the hippocampus. (C) Representative
images of immunofluorescence staining for parvalbumin in the prefrontal cortex of a CON (left panel) and an MD (right panel) rat at P60. (D) Shown are mean values
+ standard error of the mean (SEM) for profile densities (number of immunopositive cells per area) of parvalbumin+ neurons in the neocortex (*p < 0.05, t-test,
n = 6 animals per group). Scale bars: 20 µm.

FIGURE 2 | Calbindin-expressing neurons. (A) Representative images of immunofluorescence staining for calbindin in the prefrontal cortex of a control (CON, left
panel) and MD (right panel) rat at P60. (B) Shown are mean values + standard error of the mean (SEM) for profile densities (number of immunopositive cells per area)
of calbindin+ neurons in the neocortex of MD and CON rats (p > 0.05, t-test, n = 6 animals per group). Scale bars: 20 µm.

interneuron subpopulations, we determined the percentage of
immunostained cells within hippocampal strata, as well as in the
cortex divided into upper (layers 2–3) and lower (layers 4–6)
layers. For none of the markers tested here did the distribution
significantly differ between control and maternally deprived rats,
either in the hippocampus or in the cortical areas (data not
shown).

Synaptic Coverage
For quantification of glutamatergic and inhibitory transmission
in the hippocampus, we used coronal sections of the dorsal
hippocampus. Estimation of perisomatic inhibitory terminals
around pyramidal/granular cell bodies was performed as
described (Schmalbach et al., 2015). Briefly, stacks of 1-µm-thick
images were obtained from sections stained for VGAT on an
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FIGURE 3 | Calretinin-expressing interneurons. (A) Representative images of immunofluorescence staining for calretinin in the CA3 region of the hippocampus a
control (CON, left panel) and an MD (right panel) rat at P60. Pyr indicates a pyramidal cell layer. (B) Shown are mean values + standard error of the mean (SEM) for
profile densities (number of immunopositive cells per area) of calretinin+ neurons in the hippocampus of MD and control rats (*p < 0.05, t-test, n = 6 animals per
group). (C) Representative images of immunofluorescence staining for calretinin in the retrosplenial cortex of a control (CON, left panel) and MD (right panel) rat at
P60. (D) Shown are mean values + standard error of the mean (SEM) for profile densities (number of immunopositive cells per area) of calretinin+ neurons in the
neocortex of MD and CON rats (p > 0.05, t-test, n = 6 animals per group). Scale bars: 20 µm.

LSM 510 confocal microscope (Zeiss) using a 63× oil immersion
objective with 1,024 × 1,024 pixel resolution. One image per
cell at the level of the largest cell body cross-sectional area was
used to measure the perimeter, as well as to count individually
discernible perisomatic puncta. Numbers of vesicular inhibitory
neurotransmitter transporter (VGAT)+ puncta were normalized
to the perimeter of the cell profile (linear density). To analyze
the intensity of vesicular glutamate transporter 1 (VGLUT1)
immunostainings, pictures were taken from the areas labeled
in Figure 6C using 20× objective at the same apertures and
exposition times, using the same digital gain. To obtain an overall
estimate of the mean pixel intensity (brightness range 55–255),
entire image frames were quantified in the different experimental
groups. The threshold was determined bymeasuring background
brightness in the non-stained parts of the images. For data
analysis, ImageJ freeware1 was used, as previously described
(Vulovic et al., 2018).

Statistical Analysis
All the data have been taken into the database and processed by
commercially available software. Besides standard measures of
homogeneity (mean values, standard error of the mean—SEM),
animal mean differences were compared using Student’s t-test, as

1https://imagej.nih.gov/ij/

our data had normal distribution and equal variance, as tested by
Shapiro-Wilk and equal variance tests, respectively. All tests have
been performed at 95% probability level.

RESULTS

Parvalbumin-Expressing Interneurons
Maternal deprivation caused a statistically significant 25%
reduction in density of PV+ cells in the CA1 (56.2± 5.2/mm2 vs.
75.29 ± 2.23/mm2 in MD vs. control rats, n = 6 animals/group,
t-test, p = 0.009) subregion of the hippocampus, with no changes
in the CA3 (49.9 ± 3.7/ mm2 vs. 52.16 ± 5.93/mm2 in MD
vs. control rats, n = 6 animals/group, t-test, p = 0.74) and DG
(29.01± 2.38/mm2 vs. 30.85± 2.38/mm2 in MD vs. control rats,
n = 6 animals/group, t-test, p = 0.61) subregions, compared to
control rats at P60 (Figures 1A,B). Furthermore, a small (10%),
but significant reduction in density of PV+ cells was observed in
the prefrontal cortex (49.8 ± 0.86/mm2 vs. 55.2 ± 1.62/mm2 in
MD vs. control rats, n = 6 animals/group, t-test, p = 0.018), while
no alterations were found in the retrosplenial (46.7 ± 2.06/mm2

vs. 51.8± 3.7/mm2 inMD vs. control rats, n = 6 animals/group, t-
test, p = 0.25) and motor (45.6± 2.29/mm2 vs. 47.2± 3.32/mm2

in MD vs. control rats, n = 6 animals/group, t-test, p = 0.7)
cortices (Figures 1C,D).
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FIGURE 4 | Reelin-expressing interneurons. (A) Representative images of immunofluorescence staining for reelin in the CA3 region of the hippocampus of a control
(CON, left panel) and an MD rat at P60. (B) Shown are mean values + standard error of the mean (SEM) for profile densities (number of immunopositive cells per
area) of reelin+ neurons in the hippocampus of MD and control rats (*p < 0.05, t-test, n = 6 animals per group). (C) Representative images of immunofluorescence
staining for reelin in the retrosplenial cortex of a control (CON, left panel) and MD (right panel) rat at P60. (D) Shown are mean values + standard error of the mean
(SEM) for profile densities (number of immunopositive cells per area) of reelin+ neurons in the neocortex of MD and CON rats (p > 0.05, t-test, n = 6 animals per
group). Scale bars: 20 µm.

Calbindin-Expressing Interneurons
Considering CB+ cells, none of the examined neocortical regions
showed statistically significant differences between MD and
control groups (Figure 2). The values for the prefrontal cortex
were 14.5 ± 2.25/mm2 vs. 16.5 ± 1.74/mm2 in MD vs. control
rats, n = 6 animals/group, t-test, p = 0.61, retrosplenial cortex
6.5± 0.56/mm2 vs. 8.5± 0.83/ mm2 in MD vs. control rats, n = 6
animals/group, t-test, p = 0.13, and motor cortex 42± 6.54/mm2

vs. 43± 5.62/mm2 inMD vs. control rats, n = 6 animals/group, t-
test, p = 0.92. We did not quantify CB+ cells in the hippocampus,
as it is expressed by both interneurons and principal cells in this
region (Celio, 1990).

Calretinin-Expressing Interneurons
The numbers of CR+ cells (Figure 3A) were significantly
decreased in the CA1 (14.28 ± 2.04/mm2 vs. 26.25 ± 0.73/mm2

in MD vs. control rats, n = 6 animals/group, t-test, p = 0.005)
and CA3 (24.05 ± 4.3/mm2 vs. 37.9 ± 3.1/mm2 in MD vs.
control rats, n = 6 animals/group, t-test, p = 0.01) subregions
of the hippocampus of MD rats when compared to the
controls (Figure 3B), while no significant differences between
the two groups were found in the DG (19.44 ± 2.38/mm2 vs.
28.75 ± 3.62/mm2 in MD vs. control rats, n = 6 animals/group,
t-test, p = 0.09), although the same tendency was present

(Figure 3B). Also, no significant differences in the number of
CR+ cells were found in examined neocortical regions in MD
group compared to the controls (Figures 3C,D). The values in
prefrontal cortex were 13.8 ± 1.43/mm2 vs. 14 ± 1.41/mm2

in MD vs. control rats, n = 6 animals/group, t-test, p = 0.92,
retrosplenial cortex 8.67± 0.23/ mm2 vs. 10± 1.08/mm2 in MD
vs. control rats, n = 6 animals/group, t-test, p = 0.44, and motor
cortex 8.67 ± 0.62/mm2 vs. 9.67 ± 0.85/mm2 in MD vs. control
rats, n = 6 animals/group, t-test, p = 0.54.

Reelin-Expressing Interneurons
Similar to calretinin, in the CA1 (60 ± 5.08/mm2 vs.
90.88± 5.19/mm2 in MD vs. control rats, n = 6 animals/group, t-
test, p = 0.004) and CA3 (72.5± 3.59/ mm2 vs. 89.47± 4.65/mm2

in MD vs. control rats, n = 6 animals/group, t-test, p = 0.028)
hippocampal subregions, a significant reduction in number
of reelin+ interneurons (Figure 4A) was detected in MD
group (Figure 4B). Congruently, no statistically significant
differences were found neither in the DG (71.11 ± 1.71/mm2 vs.
84.03 ± 9.98/mm2 in MD vs. control rats, n = 6 animals/group,
t-test, p = 0.29), nor in any of the examined neocortical areas
between MD and control groups (Figure 4C). The values in
prefrontal cortex were 24.65 ± 1.46/mm2 vs. 24.67 ± 2.97/mm2

in MD vs. control rats, n = 6 animals/group, t-test, p = 1,
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retrosplenial cortex 36 ± 3.94/mm2 vs. 46 ± 4.33/ mm2 in MD
vs. control rats, n = 6 animals/group, t-test, p = 0.13, and motor
cortex 34.2 ± 3.58/mm2 vs. 42.6 ± 6.07/mm2 in MD vs. control
rats, n = 6 animals/group, t-test, p = 0.27.

Cell Death in the Cortex at P15
To determine if our results reflect the actual loss of interneurons
or the loss of marker proteins, we examined cell death at P15,
6 days after the maternal deprivation, at the time of the peak in
physiological apoptotic cell death in the cortex (Schmid et al.,
2013). We stained control and MD brain sections for FlouroJade
(Figure 5A) and activated caspase 3 (Figure 5B), markers of
neurodegeneration and apoptotic cell death. Using bothmarkers,
many cell were stained in both conditions (Figure 5), however,
there was no difference in the number of stained cells between
MD and control rats (Figure 5C). We thus conclude that our
results are more likely to represent the decreased expression of
markers than the actual loss of interneurons.

Inhibitory and Excitatory Transmitters in
the Hippocampus
To determine if there is an impact of the loss of interneuron
markers on the circuitry, we immunostained rat brain sections
for inhibitory presynaptic marker VGAT (Figure 6A), and
excitatory presynaptic marker VGLUT1 (Figure 6C). The
number of VGAT+ terminals per unit area (linear density)
was lower in the CA1 pyramidal layer (313 ± 18.08/mm vs.
239.16± 15.03/mm in MD vs. control rats, n = 6 animals/group,
t-test, p < 0.0001) and CA3 pyramidal layer (275.7 ± 23.4/ mm
vs. 325.5± 18.8/mm inMD vs. control rats, n = 6 animals/group,
t-test, p = 0.0022) regions of the hippocampus in MD rats
compared to controls, whereas in the dentate gyrus granule cell
layer (320.6 ± 23/mm vs. 312.5 ± 21/mm in MD vs. control
rats, n = 6 animals/group, t-test, p = 0.54) values were similar
for MD and control rats (Figure 6B). VGLUT1+ terminals were
measured within the CA1 field, separately for stratum oriens,
radiatum and lacunosum-moleculare (Figure 6C). For all these
subregions, average values for the intensity of staining were
similar between MD and control rats (Figure 6D). The values
were in stratum oriens 63 ± 0.71 AU vs. 67.8 ± 3.25 AU in MD
vs. control rats, n = 6 animals/group, t-test, p = 0.18; stratum
radiatum 68.72 ± 0.72 AU vs. 63.8 ± 2.95 AU in MD vs. control
rats, n = 6 animals/group, t-test, p = 0.14; and lacunosum-
moleculare 47.9 ± 1.15 AU vs. 47.3 ± 2.25 AU in MD vs.
control rats, n = 6 animals/group, t-test, p = 0.78. Therefore,
maternal deprivation causes relative dominance of excitatory
over inhibitory synapses.

DISCUSSION

In this study, we demonstrate an effect of early maternal
deprivation on the decrease of marker expression by specific
interneuron subpopulations in the hippocampus and prefrontal
cortex. In addition, we show decreased VGAT expression in
the hippocampal CA1 and CA3 regions of MD rats, coupled
with normal VGLUT1 expression. In a previous study, we
had found decreased total neuron population in the cerebral

FIGURE 5 | Cell death in the cortex at P15. (A,B) Representative images of
the FlouroJade (A) and activated caspase 3 (B) stainings in the prefrontal
cortex of P15 rats. Left panels show control (CON) and right panels MD rats.
(C) Shown are mean values + standard error of the mean (SEM) for profile
densities of labeled cells (p > 0.05, t-test, n = 4 animals per group). Scale
bars: 20 µm.

cortex of the young adult rats subjected to MD (Aksić et al.,
2013). Because both, hippocampus and neocortex, abundantly
express the glucocorticoid receptors (Ahima and Harlan, 1990;
Van Eekelen and De Kloet, 1992; Ostrander et al., 2003), we
hypothesized that acute MD, performed at P9 for 24 h, would
cause harmful effects in examined interneuronal subclasses via
extensive glucocorticoid release (Viveros et al., 2010; Xu et al.,
2011).

During the neonatal period N-methyl-D-aspartate receptors
(NMDAR) are of crucial importance for adequate structural and
functional maturation of PV+ neurons and synaptic formation,
consequently resulting in the development of mature GABAergic
transmission (Matta et al., 2011). Early postnatal NMDAR
dysfunction/ablation correlates with decreased numbers
of PV+ interneurons, impairment of network synchrony,
and cognitive symptoms including working memory loss
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FIGURE 6 | Inhibitory and excitatory synapses. (A) Representative image of immunofluorescence staining for VGAT in the CA1 region of the hippocampus of a
control (CON, left panel) and maternally deprived (MD, right panel) rat at P60. (B) Shown are mean values + standard error of the mean (SEM) for linear densities
(number of immunopositive puncta per unit length) of VGAT+ puncta in the pyramidal layers (Pyr) of the CA1 and CA3, and granular layer of dentate gyrus (DG) of MD
and control rats (*p < 0.05, t-test, n = 6 animals per group). (C) Representative image of immunofluorescence staining for VGLUT1 in the hippocampus a control
(CON, left panel) and maternally deprived (MD, right panel) rat at P60. (D) Shown are mean values + standard error of the mean (SEM) for mean fluorescence
intensity of VGLUT1 in the stratum oriens (Or), radiatum (Rad) and lacunosum-moleculare (LM) of the CA1 hippocampal region of MD and CON rats (p > 0.05, t-test,
n = 6 animals per group). Scale bars: 50 µm.

(Belforte et al., 2010; Korotkova et al., 2010; Radonjić et al.,
2013). As early life stress seems to disturb the physiological
glutamate receptor subunits 2B/2A switch (Viviani et al., 2014)
and alters NMDAR levels in the hippocampus and cortex
(Roceri et al., 2002; Akillioglu et al., 2015; Manatos et al.,
2016), we can speculate that NMDAR dysfunction during
early postnatal development causes inadequate maturation
of PV+ interneurons. In addition, an important event in
development occurring between postnatal days 5 and 10 is
switch in GABA action from excitatory to inhibitory, due
to the switch in ion exchanger composition on the neuron
cell membrane (Ben-Ari et al., 2007; Marguet et al., 2015).
It is conceivable that stress during this vulnerable time in
cortical circuitry development increases apoptotic cell death of
supernumerous interneurons, which is also at its peak during
the second week of postnatal development (Blomgren et al.,
2007; Schmid et al., 2013). Furthermore, we cannot exclude the
possibility that PV immunoreactivity loss is caused by oxidative
stress or neuroinflammation (Francis and Stevenson, 2011;
Holland et al., 2014; Schmalbach et al., 2015; Marković et al.,
2017). Our finding of decreased parvalbumin expression is
consistent with the results of earlier studies showing reduced
PV expression and cell density in the prefrontal cortex of the
adolescent, but not adult (P100) rats (Francis and Stevenson,

2011; Wieck et al., 2013; Holland et al., 2014; Grassi-Oliveira
et al., 2016). However, in the hippocampus, Francis and
Stevenson (2011) reported no change in PV expression, while
in another study decreased PV+ neuron density was found
in the DG subregion at weaning (Seidel et al., 2008). In our
study, we demonstrated a reduction in the expression of
calretinin in the CA1 and CA3 subregions of the hippocampus
and no alterations in the examined cortical areas. Opposite
findings were reported by other investigators, i.e., increased
levels of calbindin and calretinin in the hippocampus of
neonatal, peripubertal, and adolescent rats (Lephart and
Watson, 1999; Giachino et al., 2007; Xu et al., 2011). We
believe that difference reported in various studies are due to
methodological difference in deprivation protocols and time
points of examination.

During cortical development, reelin is secreted from the
Cajal–Retzius cells in the marginal zone and plays a critical role
in controlling neuronal migration and layer formation in the
neocortex and hippocampus (D’Arcangelo et al., 1995). However,
in the postnatal brain, reelin is predominantly expressed in the
subpopulation of GABAergic interneurons and is involved in
NMDA-mediated synaptic function, learning, andmemory (Ishii
et al., 2016). In this study we observed decreased numbers of
reelin+ cells in the CA1 and CA3 subregions of the hippocampus,
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but not in the DG. Lower reelin mRNA and protein levels in the
hippocampus of the peripubertal and young adult rats exposed to
maternal deprivation procedures have been reported (Qin et al.,
2011; Zhang et al., 2013). As glucocorticoid receptor expression is
very high in the hippocampus, one possible explanation for these
findings could be the deleterious effect of corticosterone during
the early postnatal period (Fenton et al., 2015).

Our data show a reduction in several different interneuron
populations in the hippocampus, as well as a reduction in
parvalbumin-expressing neurons in the prefrontal cortex of MD
rats compared to controls. As we could not detect increased
cell death or signs of neurodegeneration in MD rats, the
most parsimonious explanation is that the immunoreactivity
to these markers is decreased in MD rats. This is particularly
pertinent to parvalbumin-expressing neurons, which are known
to downregulate parvalbumin expression upon oxidative stress
and in schizophrenia patients (Akbarian et al., 1995; Schmalbach
et al., 2015; Janickova and Schwaller, 2020). Our previous
work has shown that MD rats have indeed increased levels of
oxidative stress, as well as higher numbers of microglial cells
in the hippocampus (Marković et al., 2017). Another possible
interpretation of our results would be that degeneration and
loss of interneurons occur at the later stage, between 15 and
60 days of age. However, it is possible to speculate that, regardless
of whether the cells are lost or downregulate specific proteins,
their function is impaired, as suggested by a decrease in VGAT
immunoreactive synaptic terminals in MD rats.

In this manuscript, we have shown that perinatal MD
induces alterations in the inhibitory circuitry during early
adulthood, namely the loss of parvalbumin expression in the
hippocampus CA1 region and prefrontal cortex, as well as
reelin and calretinin expression and, importantly, VGAT+
synapses in the CA1 and CA3 hippocampus subfields. Hence,
impaired excitatory/inhibitory balance in the hippocampus and
neocortex may represent the underlying mechanism of cognitive
impairment and sensory gating deficits, previously observed
in this animal model (Ellenbroek et al., 2004; Marco et al.,
2013). One of the weaknesses of our study was that we used
only male rats, as we tried to avoid the possibility that change
in sex hormones might influence variability. It has, however,
been shown, using the same maternal deprivation model that
behavioral outcome was similar between male and female rats

(Ellenbroek et al., 1998). Further studies on maternally deprived
animals throughout distinct periods of neurodevelopment are
needed in order to examine the effects on the neural circuitry at
the electrophysiological level.
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