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Pheromone receptors (PRs) of moths are expressed on the dendritic membrane of
odorant receptor neurons (ORNs) housed in the long trichoid sensilla (TS) of antennae
and are essential to sex pheromone reception. The function of peripheral neurons
of Mythimna separata in recognizing sex pheromones is still unclear. In this study,
electroantennogram recordings were performed from male and female antennae of
M. separata, and showed that the major component of sex pheromones, (Z)-11-
hexadecenal (Z11–16:Ald), evoked the strongest response of male antennae with
significant differences between sexes. Single sensillum recording was used to record
responses of neurons housed in TS of male M. separata. The results revealed four
types of TS with three neurons housed in each type, based on profiles of responses
to sex pheromone components and pheromone analogs. ORN-B of type-I TS was
specifically tuned to the major sex pheromone component Z11–16:Ald; ORN-Bs in
type-III and type-IV TSs were, respectively, activated by minor components (Z)-11-
hexadecen-1-yl acetate (Z11–16:OAc) and hexadecenal (16:Ald); and ORNs in type-II
TS were mainly activated by the sex pheromone analogs. We further cloned full-length
sequences of six putative PR genes and an Orco gene. Functional characterization of
PRs in the Xenopus oocyte system demonstrated that male antennae-biased MsepPR1
responded strongly to (Z)-9-tetradecenal (Z9-14:Ald), suggesting that MsepPR1 may
be expressed in type-II TS. MsepPR6 was exclusively tuned to (Z)-9-tetradecen-1-yl
acetate (Z9–14:OAc). MsepPR2 and MsepPR4 showed no responses to any tested
components. Female antennae-biased MespPR5 was broadly tuned to Z9–14:Ald,
Z9–14:OAc, Z11–16:Ald, and (Z)-11-hexadecen-1-ol (Z11–16:OH). Our results further
enriched the sex pheromone recognition mechanism in the peripheral nervous system
of moth M. separata.
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INTRODUCTION

Pheromone-based sexual communication in moths has become
an excellent model system for investigating the molecular
mechanism of sensory perception because of the surprisingly
high specificity in insect olfaction (Gould et al., 2010; Leal,
2013; Liu et al., 2013). Peripheral reception of pheromones in
moths involves multiple proteins in male antennae, including
pheromone binding proteins (PBPs), pheromone receptors
(PRs), pheromone degrading enzymes, and sensory neuron
membrane proteins (SNMPs; Leal, 2005; Rutzler and Zwiebel,
2005; Touhara and Vosshall, 2009).

In Lepidoptera, females release pheromone molecules that
are specific and attractive to conspecific males at incredibly
low concentrations over long distances (Ando et al., 2004). The
species-specificity of pheromone production and recognition
limits hetero-specific mating behaviors (Linn and Roelofs, 1995).
Moth sex pheromones are generally a blend of pheromone
components detected by odorant receptor neurons (ORNs)
housed in trichoid sensilla (TS) of male antennae (Kaissling, 1986;
Heinbockel and Kaissling, 1996; Hallem et al., 2004; Hansson
and Stensmyr, 2011). In general, PRs expressed on the dendrite
membrane of ORNs in the peripheral olfactory system of male
antennae play a significant role in detecting conspecific sex
pheromones (Vogt, 2005; Tanaka et al., 2009).

In early studies, two PRs of Bombyx mori, BmorOR1,
and BmorOR3, were deorphanized (Sakurai et al., 2004;
Nakagawa et al., 2005). Later, many PRs from moth species
were characterized by homologous cloning technology,
including Heliothis virescens, Manduca sexta, Helicoverpa
armigera, Spodoptera exigua, Sesamia inferens, Spodoptera litura,
Helicoverpa assulta, Grapholita molesta, Operophtera brumata,
Cydia pomonella, Ostrinia furnacalis, Lampronia capitella,
Athetis lepigone, and Spodoptera frugiperda (Zhang and Löfstedt,
2015). A phylogenetic analysis showed that PR clades were highly
conserved and divided into different groups in Lepidoptera
species (Zhang et al., 2017). In a recent study, a novel lineage
of PRs clade that was part of a distinct early diverging lineage
for detecting sex pheromones was characterized in Spodoptera
littoralis and Dendrolimus punctatus, providing new insights
into sex communication in moths (Bastin-Héline et al., 2019;
Shen et al., 2020). These receptors have a potentially critical
function in maintaining the integrity of species as well as in
adaptation and evolution.

The oriental armyworm, Mythimna separata (Lepidoptera:
Noctuidae) is a serious pest in many parts of the world. It
distributed widely in eastern Asia and Australia, and there have
been recent outbreaks in north China (Jiang et al., 2014a). The
gluttonous and omnivorous characteristics of M. separata larvae
cause huge damage to cereal crops annually, including maize,
cotton, wheat, and corn (Jiang et al., 2014b). In addition, it is
a migratory pest that can migrate about 1,000 km per season
(Liu et al., 2017). In general, sex pheromones can be used
as an efficient and environmentally friendly way of studying
behavioral regulation and monitoring populations in pest control
(Witzgall et al., 2010; Jiang et al., 2011). Different geographical
populations of M. separata have different compositions and

proportions in the sex pheromone gland (Takahashi et al.,
1979; Zhu et al., 1987; Kou et al., 1992; Wang and Liu, 1997;
Lebedeva et al., 2000; Fónagy et al., 2011; Song et al., 2017).
The sex pheromone component of female M. separata in north
China is a blend of (Z)-11-hexadecen-1-ol (Z11–16:Ald), (Z)-11-
hexadecen-1-ol (Z11–16:OH), (Z)-11-hexadecenyl acetate (Z11–
16:OAc), and hexadecenal (16:Ald; Jiang et al., 2019). Field
trapping experiments showed that Z11–16:Ald alone resulted
in high male moth captures (Wei and Pan, 1985; Zhu et al.,
1987; Jung et al., 2013; Chen et al., 2018). A subsequent
wind tunnel experiment indicated that single component Z11–
16:Ald could sufficiently induce male sexual behaviors and
elicit electrophysiological activity of male antennae in the
gas chromatography-electroantennographic detection analyses
(Jiang et al., 2019). This result revealed that Z11–16:Ald
was the major component while the other three were minor
components of sex pheromones in geographical populations of
M. separata in north China.

Sex pheromone components are usually detected in TS of
male moth (Kaissling, 2004). The ultrastructure of antennal
sensilla of M. separata has been studied by scanning electron
microscopy (SEM). And three dendrites were observed in the
TS by the transmission electron microscopy (TEM), indicated
three neurons housed in TS (Chang X. Q. et al., 2015). Recently,
several studies have identified multiple chemosensory genes in
the M. separata antennal transcriptome (Chang et al., 2017; He
et al., 2017; Du et al., 2018; Jiang et al., 2019). In the geographic
population of Kyoto, two PRs were deorphanized and one of
them, MsOR1, was mainly tuned to sex pheromone component
Z11–16:OAc (Mitsuno et al., 2008). In the geographic population
of northern China, a previous analysis of antennae transcriptome
identified Orco and six putative PR genes according to tissue
expression and phylogenetic relationships. These genes were
named MsepPRs, of which MsepPR1, MsepPR3, and MsepPR4
appear to be specifically expressed in male antennae, while
MsepPR5 was highly expressed in female antennae (Du et al.,
2018). Recent work published by Jiang et al. (2019) indicated
that the major sex pheromone component Z11–16:Ald activated
MsepOR3 and the cumulus of the macroglomerular complex
(MGC) in the central nervous system, also studied olfactory
coding of sex pheromones in the males M. separata. However,
the function of peripheral neurons in discriminating minor sex
pheromone components and pheromone analogs is still unclear.

In this study, we selected four sex pheromone components
Z11–16:Ald, Z11–16:OAc, Z11–16:OH, and 16:Ald, consistent
with the sex pheromone blend of M. separata identified by Jiang
et al. (2019) and four pheromone analogs Z9–14:OAc, Z9–16:Ald,
Z9–14:Ald, and Z9–14:OH, to focus on the sex pheromone
recognition mechanism in the peripheral neuron system of
M. separata. Firstly, we measured electroantennography (EAG)
responses of male and female M. separata antennae to sex
pheromone components. Secondly, we recorded multiple ORNs
housed in TS of male moth using single sensillum recording
(SSR). Different types of TS were sorted according to functional
profiles. Thirdly, we cloned six full-length PR genes and an
Orco gene identified from published antennae transcriptomes
using rapid amplification of cDNA ends (RACE) technology.
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Finally, we identified the functions of MsepPRs using theXenopus
oocyte heterologous expression system and two-electrode voltage
clamp. Our results enriched the mechanism of sex pheromone
recognition in the peripheral nervous system of M. separata.

MATERIALS AND METHODS

Insects
Mythimna separata adults were caught in the field in Xinxiang,
Henan Province, China (35◦18′ N, 113◦55′ E). The larvae were
reared on an artificial diet at a temperature of 25± 1◦C, humidity
of 75 ± 10% and photoperiod of 14:10 h (light:dark) in the
Institute of Plant Protection, Chinese Academy of Agricultural
Sciences. Pupae were distinguished based on sex and placed in
separate cages before eclosion. The adults were fed with fresh
10% glucose water.

Chemical Compounds
Four sex pheromone components Z11–16:Ald (CAS:53939-
28-9), Z11–16:OH (CAS:56683-54-6), Z11–16:OAc
(CAS:34010-21-4), 16:Ald (CAS:629-80-1), and four pheromone
analogs (Z)-9-hexadecenal (Z9-16:Ald; CAS:56219-04-6), Z9–
14:Ald (CAS:53939-27-8), (Z)-9-tetradecen-1-ol (Z9-14:OH;
CAS:35153-15-2), Z9–14:OAc (CAS:16725-53-4) used in this
study were purchased from Nimrod Inc. (Changzhou, China;
purity ≥ 96%).

Electroantennogram Recordings
The electrophysiological recordings of whole male and female
antennae in response to four sex pheromone components and
pheromone analogs were performed according to the standard
technique (Cao et al., 2016). The components used in the EAG
assay were dissolved in paraffin oil and diluted to 10 µg/µL.
A piece of filter paper (0.5 × 5 cm) loaded with 10 µL
pheromones was used as a stimulus, and paraffin oil was used as a
control. 3-day-old moths were tested and signals from antennae
were amplified with a 10 × AC/DC headstage preamplifier
(Syntech, Kirchzarten, Germany) and further acquired with an
Intelligent Data Acquisition Controller (IDAC-4-USB; Syntech,
Kirchzarten, Germany). Signals were recorded with Syntech
EAG-software (EAGPro 2.0). After subtracting the responses
of the control, data were analyzed using the Student’s t-test
(El-Sayed et al., 2009).

Single Sensillum Recordings
Trichoid sensilla of antennae of 3-day-old male adults were
used for recordings. TS in the basal, middle, and proximal parts
of the antennae were recorded for each antenna. Individuals
were restrained in a remodeled 1 mL plastic pipette tip with
an exposed head fixed by dental wax, and the antenna from
one side was attached to a coverslip with double-sided tape.
A tungsten wire was inserted into one compound eye of the
moth as a reference electrode, and a recording electrode was
inserted into the base of each TS after sharpening the tip with
40% KNO2 solution. The recording electrode was attached to an
olfactory probe (Syntech) under a Leica Z16 APO microscope at

920 × magnification, and action potentials were amplified by a
10× AC/DC preamplifier (Syntech).

The sex pheromone components were dissolved in paraffin oil
at a concentration of 100 µg/µL and were stored at −20◦C. The
working concentrations were prepared by a serial dilution from
200 to 0.01 µg/µL (200, 100, 10, 1, 0.1, 0.01 µg/µL). Paraffin oil
was used as a negative control. The chemicals were dripped on
a filter paper strip (0.5 × 5 cm) inserted into a pasteur pipette
(15 cm long). Purified and humidified air flow set at 1.2 L/min
continuously blew toward the antenna through a 14 cm-long
metal tube controller (Syntech, Kirchzarten, Germany). The
fixed antennae were exposed to a 300 ms stimulus air pulse
controlled by a Syntech stimulus controller (CS-55, Syntech,
Kirchzarten, Germany). AC signals were recorded for 10 s using
a data acquisition controller (IDAC-4, Syntech, Kirchzarten,
Germany). Action potentials were digitized and displayed on a
computer screen using Autospike software (Syntech). Responses
were calculated as the difference of spike-number between
the 1 s before the stimulus delivery point and 1 s after
(Chang et al., 2016).

RNA Extraction and cDNA Synthesis
Total RNAs were extracted using Trizol reagent (Invitrogen,
Carlsbad, CA, United States) following the manufacturer’s
instructions from male’ and female’ antennae. The quantity and
quality of RNA were, respectively, detected using a Nanodrop
ND-1000 spectrophotometer (NanoDrop Products, Wilmington,
DE, United States) and gel electrophoresis. Single first strand
cDNAs were synthesized using RevertAid First Strand cDNA
Synthesis Kit (Thermo Scientific, United States).

Phylogenetic Analysis and Cloning of
Pheromone Receptors
The sequences of MsepOrco and six MsepPR genes were
identified by antennal transcriptomic analysis in our previous
study (Du et al., 2018). For the phylogeny, we aligned
six MsepPRs with previously identified PRs in M. separata
(Mitsuno et al., 2008; Jiang et al., 2019) and four other
closely related species in Lepidoptera, including H. virescens
(Wang et al., 2010), H. armigera (Liu et al., 2013), H. assulta
(Jiang et al., 2014c), and S. litura (Zhang and Löfstedt, 2015).
Sequences were aligned using DNAMAN 7.0 (Lynnon Bioisoft,
United States). Phylogenetic and molecular evolutionary analyses
were conducted using MEGA 6.0 (Tamura et al., 2013).

To get the full-length open reading frame sequences of the
candidate MsepPRs, 3’ and 5’ RACE were performed using a
SMARTer RACE cDNA Amplification kit (Clontech, Mountain
View, CA, United States). Specific primers were designed using
Primer Premier 5.0 software (PREMIER Biosoft International,
CA, United States) and were listed in Supplementary Table 1.
The polymerase chain reactions were carried out under the
following conditions: 95◦C for 3 min; 35 cycles of 98◦C for
10 s, 55◦C for 30 s, 72◦C for 1.5 min; 72◦C for 10 min. PCR
products were run on a 1.0% agarose gel, and sequences were
verified by DNA sequencing after ligation into the cloning vector
pEASY-Blunt (TransGen Biotech, China).
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PR Expression in Xenopus Oocytes and
Two-Electrode Voltage-Clamp
Recordings
Open reading frames of PR genes were subcloned into the
pT7Ts vector based on the specific restriction enzyme digestion
sites (Supplementary Table 1). Plasmids were fully linearized
with corresponding restriction enzymes. cRNAs were synthesized
using mMESSAGE mMACHINE SP6 kit (Thermo Scientific,
United States). Purified cRNAs were diluted at a concentration
of 2 µg/µL and stored at −80◦C. Mature healthy oocytes were
treated with 2 mg/mL collagenase type I in washing buffer for 1-
2 h at room temperature (Liu et al., 2013). A mixture of 27.6 ng
of MsepPR cRNA and MsepOrco cRNA was microinjected into
oocytes. After 3–5 days of incubation at 18◦C in 1 × Ringer’s
buffer (96 mM NaCl, 2 mM KCl, 5 mM MgCl2, 0.8 mM GaCl2,
and 5 mM HEPES; pH 7.6 adjusted by NaOH) supplemented
with 5% dialyzed horse serum, 50 µg/mL tetracycline, 100 µg/mL
streptomycin, and 550 µg/mL sodium pyruvate, the injected
oocytes were recorded with a two-electrode voltage clamp.

Four sex pheromone components and four pheromone
analogs were dissolved in dimethyl sulfoxide (DMSO) to form
the stock solutions (1 M) and stored at −20◦C. Stock solutions
were diluted in 1 × Ringer’s buffer up to work concentration of
10−4 M. The negative control was 1 × Ringer’s buffer. Currents
induced by sex pheromone components were recorded using
an OC-725C oocyte clamp (Warner Instruments, Hamden, CT,
United States) at a holding potential of −80 mV. Between each
stimulus, the oocytes were washed with 1 × Ringer’s buffer to
return to a stable baseline (Wang et al., 2010). Data were acquired
and analyzed with Digidata 1440A and pCLAMP 10.0 software
(Axon Instruments Inc., Union City, CA, United States).

Statistics and Data Analysis
Statistics were mainly analyzed using SPSS 22.0 (IBM Inc.,
Chicago, IL, United States) and bar-graphs were created with
GraphPad Prism 5 (GraphPad Software, Inc., CA, United States).
Data of EAG responses were analyzed using Student’s t-test
(P < 0.05 or P < 0.01). Odor responses were normalized
using linear model for each neuron and clustered using
the agglomerative hierarchical clustering method with HemI
1.0 (Deng et al., 2014). Data of two-electrode voltage-clamp
recordings were analyzed using one-way ANOVA followed
by LSD test (P < 0.05). Dose-response data were analyzed
using GraphPad Prism 5 (GraphPad Software, Inc., CA,
United States). Amino acid sequence alignment was performed
using DNAMAN 7.0 (Lynnon Bioisoft, United States) and the
phylogenetic tree was constructed using MEGA 6.0 (Tamura
et al., 2013) and visualized and modified using FigTree 1.4.4
(Institute of Evolutionary Biology, University of Edinburgh,
United Kingdom).

RESULTS

Electroantennogram Responses
In this study, four sex pheromone components and four
pheromone analogs were chosen to evaluate the antennal
EAG responses of male and female M. separata. The results
showed that all tested compounds elicited EAG responses of
male antennae at the dose of 100 µg (Figure 1). Major sex
pheromone component Z11–16:Ald evoked the strongest EAG
responses from antennae of male moths and showed highly
significant differences between sexes (P < 0.01). The responses

FIGURE 1 | Electroantennography (EAG) responses from antennae of male and female M. separata to four sex pheromone components (red) and four pheromone
analogs (black). The EAG response values marked with asterisks represent significant differences between sexes (∗, ∗∗, respectively, indicate significant differences
under 0.05 and 0.01 levels, determined by a Student’s t-test). Error bars indicate SEM (n = 13).
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of male antennae were also significantly evoked by analog
Z9–14:Ald. Minor pheromone components Z11–16:OH, Z11–
16:OAc, 16:Ald and other analogs induced weak EAG responses.
The EAG responses showed significant differences between male
and female antennae for all tested compounds (∗P < 0.05 or
∗∗P < 0.01; Figure 1).

Responses of ORNs to Sex Pheromones
Single sensillum recordings were extensively performed on the TS
of male moths to test neuronal responses to four sex pheromone
components and four pheromone analogs at the dose of 1 mg.
In total, ORNs housed in 466 TS at different positions from
all segments of male antennae were recorded. The functional
patterns were clustered into four distinct types (named I, II,
III, and IV) of TS (Figure 2), and each of them housed three
neurons, named A, B and C based on the amplitude size of
the spike (Figures 3-A1, -B1, -C1, -D1). Neuron A had the
smallest action potential, followed by neuron B, while neuron
C had the largest amplitude. We found that neurons housed in
403 TS were activated (Figure 2), and a great majority of those
were type-I (n = 293), followed by type-II (n = 70), and type-
IV (n = 27). Much less abundant responses were recorded with
type-III (n = 13).

The activities of ORNs housed in different sensilla types
revealed peripheral coding of sex pheromone components of
male M. separata. ORN-B of type-I TS exhibited highly specific
responses to the major component Z11–16:Ald and slight
responses to analog Z9–14:Ald, while no responses of ORN-
A and -C were activated to tested pheromone components
(Figure 3-A2 and Supplementary Figure 1-A1). We next
measured dose-response curves of neurons housed in type-I TS
to their active compounds across a dose range from 10−7 g
to 2 × 10−3 g, showing that ORN-B in type-I TS are more
sensitive to the major component Z11-16:Ald with an EC50 value
of 2.58 × 10−4 g and low sensitivity to analog Z9-14:Ald with an
EC50 value of 1.04 × 10−3 g (Figure 3-A3 and Supplementary
Figures 1-A2, -A3).

Type-II TS were divided into two sub-groups based on
responses of ORN-B to analog Z9–14:OAc. In sub-group 1,
there was no response of ORN activated by Z9–14:OAc, showing
that ORN-A and -B of type-II TS mainly responded to minor
pheromone components and their analogs. ORN-A in type-II
TS were strongly activated by analog Z9–14:Ald, followed by
minor components Z11–16:OAc and Z11–16:OH. ORN-B were
activated by analog Z9–16:Ald (Figure 3-B2 and Supplementary
Figure 1-B1). The dose-response curves of ORN-A and -B are,
respectively, shown in Figures 3-B3,-B4. ORN-A was more
sensitive to analog Z9–14:Ald (EC50 = 1.25 × 10−4 g) than
minor components Z11–16:OH (EC50 = 3.23 × 10−4 g) and
Z11–16:OAc (EC50 = 3.45 × 10−4 g; Supplementary Figures 1-
B2, -B3, -B4, 3-B3), while ORN-B was less sensitive to analog
Z9–16:Ald with an EC50 value of 1.55× 10−3 g (Supplementary
Figures 1-B5, 3-B4). The sub-group 2 (in a few cases) showed
that ORN-A was activated by Z9–14:Ald, Z11–16:OH, Z9–
14:OAc and Z9–14:OH (Figure 2 and Supplementary
Figure 2); ORN-B was also activated by analog Z9–16:Ald
(Supplementary Figures 2-A, -B). Dose-response curves of

ORN-A showed sensitivity to analog Z9–14:OAc with an EC50
value of 1.31× 10−3 g (Supplementary Figures 2-C, -D).

ORN-B of type-III TS responded to minor component
Z11–16:OAc and analog Z9–14:OAc (Figure 3-C2 and
Supplementary Figure 1-C1). ORN-B of type-IV TS mainly
responded to minor component 16:Ald and had a small
response to the major component Z11–16:Ald (Figure 3-D2
and Supplementary Figure 1-D1). In type-III and -IV TS,
there were neuronal responses to several concentrations of
minor components Z11–16:OAc (EC50 = 1.71 × 10−4 g;
Figure 3-C3 and Supplementary Figure 1-C2) and 16:Ald
(EC50 = 2.76 × 10−4 g; Figure 3-D3 and Supplementary
Figure 1-D2), respectively, suggesting increasing firing rate in a
dose-related manner.

Gene Cloning and Sequence Analysis of
M. separata PRs
We cloned the full-length of MsepOrco and six MsepPR genes
(MsepPR1, MsepPR2, MsepPR3, MsepPR4, MsepPR5, MsepPR6)
from published M. separata antennal transcriptome, which
separately encode 473, 432, 435, 424, 445, 431, and 434 amino
acids (Du et al., 2018). The amino acid sequences of MsepOrco
and six MsepPRs from this study were used to construct
a phylogenetic tree with two previously identified PRs from
M. separata of the Kyoto geographic population (Mitsuno et al.,
2008), seven PRs from H. armigera, six PRs from H. assulta, four
PRs from S. litura and six PRs from H. virescens, and their Orco
sequences, clearly showing a highly conserved Orco group and
another PR clade (Figure 4). The PRs in this study clustered in
different clades as follows: MsepPR1 and OR16; MsepPR2 and
OR11; MsepPR3 and OR13; MsepPR4 and OR15; in addition to
MsepPR5 and MsepPR6 (Figure 4). The identities of amino acid
sequences in OR11, OR13, OR15, and OR16 clades were quite
different (Supplementary Figure 3). The OR11 sequences from
five closely related species were conserved with 80.59–81.96%
similarity (Supplementary Figure 3-B), while other clades were
relatively divergent (Supplementary Figures 3-A, -C, -D). We
also compared the identities of amino acid sequence of MsepPR3
with two geographic populations in north China (MespOR3,
Jiang et al., 2019), which showed 99.76% similarity with only one
amino acid varying (Supplementary Figure 4). The amino acid
sequences of MsepOrco between the two geographic populations
were exactly the same (Supplementary Figure 4). All of the
PR genes identified from M. separata in different geographic
populations are listed in Supplementary Table 2.

Functional Characterization of
M. separata PRs in the Xenopus Oocyte
Expression System
In this study, responses of five PRs to sex pheromone components
were recorded using a two-electrode voltage clamp. In total,
four sex pheromone components and four pheromone analogs
at the concentration of 10−4 M were tested. The responses of
MsepPR1 with a high expression level in male antenna were
mainly tuned to analog Z9–14:Ald (787 ± 71 nA), followed
by minor sex pheromone component Z11–16:OH and analog
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FIGURE 2 | Response profiles of functional ORNs housed in 403 TS in the antennae of male M. separata (y-axis) in response to four sex pheromone components
and four pheromone analogs (x-axis). The classification dendrogram was generated using the agglomerative hierarchical clustering method, leading to four functional
TS types (I, II, III, and IV). Responses are normalized using linear model and color coded for each neuron. Magenta indicates a strong response of ORNs to odorants;
blue, weak excitation; light blue, no response; white indicates that spontaneous spiking activity was reduced compared to baseline.

Z9–14:OAc with current values of 460 ± 56 and 151 ± 47 nA,
respectively, (Figure 5A and Supplementary Figure 5-A1). In
a dose-response experiment, MsepPR1/MsepOrco was sensitive
to Z9–14:Ald at concentrations as low as 10−6 M with an EC50
value of 4.90× 10−5 M (Figure 5B and Supplementary Figure 5-
A2). MsepPR5 had a high expression level in female antennae and
was tuned to analogs Z9–14:Ald (254 ± 26 nA) and Z9–14:OAc
(268 ± 18 nA), and was also slightly activated by the major sex
pheromone component Z11–16:Ald and minor component Z11–
16:OH with the current values of 125 ± 32 and 54 ± 11 nA,
respectively, (Figure 5C and Supplementary Figure 5-B1). Dose-
response study showed MsepPR5/MsepOrco was sensitive to
Z9–14:Ald at concentrations as low as 10−6 M with an EC50 value
of 3.04× 10−5 M (Figure 5D and Supplementary Figure 5-B2).
MsepPR6 expressed in male antenna was specifically tuned to

analog Z9–14:OAc with a large current value of 2764 ± 285 nA
(Figure 5E and Supplementary Figure 5-C1). Dose-response
study showed MsepPR6/MsepOrco was sensitive to Z9–14:OAc
at concentrations as low as 10−7 M with an EC50 value of
7.46 × 10−7 M (Figure 5F and Supplementary Figure 5-C2).
MsepPR2 and MsepPR4 showed no response to any tested
compounds (Supplementary Figure 6).

DISCUSSION

Courtship and mating behaviors in moths largely rely on
sex pheromones released from females, which are artificially
applied to lure males and for population monitoring in pest
control. Male moths could recognize intra- and inter-specific sex
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FIGURE 3 | Response profiles of three distinct ORNs (-A, -B, -C) and dose-response curves of functional ORNs housed in four types of TS (type I, II, III, and IV) on
the antennae of male M. separata in response to four sex pheromone components and four pheromone analogues. (A1,B1,C1,D1) Distinct ORNs housed in four
types of TS. (A2,B2,C2,D2) Response profiles of distinct ORNs housed in four types of TS. The amount of each stimulus was 1 mg. The responses of ORN-B of
type-I TS were 101 ± 2 spikes/s (n = 286) for Z11–16:Ald and 27 ± 1 spikes/s (n = 286) for Z9–14:Ald. The ORN-A of type-II TS was activated by Z9–14:Ald,
Z11–16:OAc, Z11–16:OH, with responses of 110 ± 6 spikes/s (n = 40), 39 ± 3 spikes/s (n = 40), and 23 ± 2 spikes/s (n = 40), respectively. Responses of ORN-B
were 26 ± 4 spikes/s (n = 40) for Z9–16:Ald. The ORN-B of type-III TS was activated by Z11–16:OAc and Z9–14:OAc with responses of 63 ± 7 spikes/s (n = 11)
and 41 ± 8 spikes/s (n = 3), respectively. The ORN-B of type-IV TS was activated by 16:Ald and Z11–16:Ald with responses of 60 ± 7 spikes/s (n = 12) and
24 ± 4 spikes/s (n = 12). (A3,B3,B4,C3,D3) Dose-response curves of functional ORNs. The order of the neurons among sensilla types and color code were
random. Error bars indicate mean ± SEM.

pheromones to multiply and keep species isolation. In this study,
four functional types of TS were characterized. Type-I TS was
responsible for the major pheromone component Z11–16:Ald,
type-II TS was responsible for the minor pheromone component
Z11–16:OH, behavioral antagonist Z9–14:Ald and some inter-
specific pheromones. Type-III and -IV TS recognized minor
pheromone components Z11–16:OAc and 16:Ald, respectively.
Subsequently, putative PRs were functionally characterized. Our
results help to improve the olfactory coding of sex pheromones
and inter-specific pheromones in the peripheral neuron system.

Functions of ORNs housed in each type of TS were
characterized using the SSR technique. Unlike the results of two
types of TS identified by Jiang et al. (2020), we characterized four
functional types of TS housed 12 ORNs in M. separata, implying

that peripheral coding in olfaction of M. separata was more
complicated than in other Lepidoptera moths such as H. armigera
and closely related species (Wu et al., 2013; Zhang et al., 2013;
Sakurai et al., 2014; Chang et al., 2016; Liu et al., 2018). Our
results show that five ORNs are separately activated by major and
minor sex pheromone components and their analogs (Figure 3).
Of those, ORN-B housed in type-I TS is considered the neuron
type detecting the major pheromone component and represents
the most frequently occuring neuron type in our recordings. This
result is consistent with a recent study by Jiang et al. (2020).
Otherwise, their previous work indicated that MsepOR3 (equal to
MsepPR3 in this study, see Supplementary Figure 4) was tuned
to the major component Z11–16:Ald and analog Z9–14:Ald from
M. separata, inferring that an MsepOR3-expressing neuron may
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FIGURE 4 | Phylogenetic tree of PRs from M. separata and four other Lepidoptera species. Msep: M. separata (red), Msep: M. separata (black, Jiang et al., 2019,
2020), Ms: M. separata (black, Mitsuno et al., 2008), Harm: Helicoverpa armigera, Hass: H. assulta, Hvir: Heliothis virescens, and Slitu: Spodoptera litura. The Orco
clade is marked with yellow. This tree was inferred using the neighbor-joining method. Node support was assessed with 1,000 bootstrap replicates.
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FIGURE 5 | Response profiles of MsepPR1/Orco, MsepPR5/Orco, and MsepPR6/Orco to four sex pheromone components and four pheromone analogs in
Xenopus oocyte system. (A,C,E) Response profiles of MsepPR1/Orco, MsepPR5/Orco, and MsepPR6/Orco in response to 10−4 M solution of stimuli. Error bars
indicate mean ± SEM (n = 6). Comparisons between groups were made using ANOVA followed by LSD’s test. Different letters above the error bars indicated
significant difference at the 0.05 level. (B) Dose-response curves of MsepPR1/Orco expressed in Xenopus oocyte to Z9–14:Ald. EC50 = 4.90 × 10−5 M. Error bars
indicate mean ± SEM (n = 10). (D) Dose-response curves of MsepPR5/Orco to Z9–14:Ald. EC50 = 3.04 × 10−5 M. Error bars indicate mean ± SEM (n = 5).
(F) Dose-response curves of MsepPR6/Orco to Z9–14:OAc. EC50 = 7.46 × 10−7 M. Error bars indicate mean ± SEM (n = 8). Responses are normalized by defining
the average response as 100.

be ORN-B of type-I TS based on identical function and the axons
from this neuron projects to the cumulus (CU) of the MGC in
male antennal lobes (ALs; Figure 6). Moreover, since a majority
of ORN-B of type-I TS are recorded in response to the major
component Z11–16:Ald, it might explain why the largest EAG
activities are observed from male antennae (Figure 1).

In our study, the response profiles of neurons of type-II TS
are quite similar with those in B type sensilla reported by Jiang
et al. (2020). However, the number of active neurons between
these two studies is different. The results by Jiang et al. (2020)
showed that three neurons and three different subunits of MGC
were activated by Z9–16:Ald, Z11–16:OAc, Z9–14:Ald and Z11–
16:OH, respectively, according to the evidence provided by SSR
technology and in vivo optical imaging methods, while our
study had its limitation for characterizations of active neurons
at peripheral neuron system based on the amplitude size of
the spike. We preliminarily identified two active neurons, one
(ORN-A) was activated by Z9–14:Ald, Z11–16:OH and Z11–
16:OAc, another (ORN-B) was activated by Z9–16:Ald. In fact,
neurons activated by Z11–16:OAc and Z11–16:OH in our study
were hard to distinguish according to the shape and size of the
spike. Therefore, we integrated the results in our studies and in
reported studies by Jiang et al. (2019, 2020), and divided neurons
of type-II TS into four ORNs. We drew a schematic diagram in
Figure 6, showing that Z11–16:OAc activated ORN-A, Z9–14:Ald
and Z11–16:OH activated ORN-B, Z9–16:Ald activated ORN-C
of type-II TS, respectively.

In H. armigera, Z9–14:Ald is an agonist at low concentrations
and becomes an antagonist at high concentrations when in

combination with other compounds (Gothilf et al., 1978; Kehat
and Dunkelblum, 1990; Zhang et al., 2012; Wu et al., 2015).
Further functional characterization showed that Z9–14:Ald
was recognized by HarmOR14b, HarmOR16, and HarmOR6
expressed in Type B or Type C TS (Liu et al., 2013; Chang
et al., 2016; Wang et al., 2018). In this study, we found that
analog Z9–14:Ald could strongly elicit the ORN-B of type-II
TS of M. separata, and also ORN-B of type-I TS with mild
sensitivity (Figure 6), corresponding to a recent study that Z9–
14:Ald activated the CU and the dorso-anterior (DA) of the
MGC in ALs of male M. separata (Jiang et al., 2020). Wind
tunnel assay further indicated that addition of Z9–14:Ald at the
ratio of 1:1, 1:10, and 1:100 greatly reduced the attractiveness of
M. separata to Z11–16:Ald (Jiang et al., 2020), suggesting that Z9–
14:Ald plays vital roles in species isolation of M. separata and its
function as antagonist within noctuid moths is conserved in the
evolution. We also found that MsepPR1 was homologous with
OR16 from H. virescens, H. armigera, H. assulta, and S. litura,
and shared 70.02–73.61% identities of conserved amino acid
sequences (Wang et al., 2011; Liu et al., 2013; Jiang et al., 2014c;
Zhang and Löfstedt, 2015), indicating that they may have the
same function. The Xenopus oocyte in vitro study showed that
MsepPR1 was a PR for detecting Z9–14:Ald, Z11–16:OH and
Z9–14:OAc, which was consistent with the SSR recording from
the ORN-B of type-II TS, especially in sub-group 2, suggesting
that MsepPR1 may be expressed in this neuron with its axon
projecting to the DA of MGC (Figure 6).

In our experiments, MsepPR6-expressing oocytes responded
highly to analog Z9–14:OAc, also known as the interspecific
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FIGURE 6 | A schematic diagram of olfactory coding of sex pheromones and analogs in male M. separata at the peripheral and central nervous system. Four
functional types of TS were characterized. The classification of neurons housed in type-II TS is modified by our SSR recording and the reported results by Jiang et al.
(2020). Neuron of type-II TS activated by Z11–16:OAc is divided as a active one. In total, six ORNs are separately activated by major and minor sex pheromone
components and their analogs. “–” indicates the largest spontaneous action potential without ligands identified. “Lig. Unkn” indicates no ligand has been
characterized for a specific neuron by SSR recording. The curves with solid lines indicate candidate project pathways. The curves with dotted lines indicate unknown
project pathways. MGC, macroglomerular complex; CU, cumulus; DA, dorso-anterior; DP, dorso-posterior; and OG1, ordinary glomerulus 1.

pheromones of S. frugiperda (Groot et al., 2008), Agrotis segetum
(Zhang and Löfstedt, 2013), S. exigua (Liu et al., 2013), S. litura
(Zhang and Löfstedt, 2015), and A. lepigone (Zhang et al.,
2019). Thus, MsepPR6 may be involved in reproductive isolation
of M. separata. However, we did not find potential neurons
elicited by Z9–14:OAc alone. In addition, the expression level
of MsepPR6 gene was low in male antennae (Du et al., 2018).
We therefore speculate that the MsepPR6-expressing neuron
is not characterized in our experiments. However, identifying
more functions needs support from experiments such as in situ
hybridization and CRISPR-Cas9 technology.

In a previous study, Z11–16:OAc and Z11–16:OH were
isolated at a ratio of 8:1 from female abdominal tips of Leucania
separata Walker, a geographic population of Japan (Takahashi
et al., 1979). Later, MsOR1 was identified and characterized as
a major PR responding to Z11–16:OAc (Mitsuno et al., 2008).
The phylogenetic analysis in this study revealed that MsOR1
(geographic population of Kyoto) and MsepPR4 (geographic
population of north China) were homologous to HvirOR15 and

HarmOR15 in the PR15 clade, which had no ligands based on
previous studies (Wang et al., 2011; Liu et al., 2013). In our
experiments, MsepPR4 did not respond to any sex pheromone
components or their analogs but shared 91.24% identity of amino
acid sequences with MsOR1. The functional differentiation of
PRs in different geographic populations could be explained by
variation of key sites of amino acid sequences. Besides, responses
in ORN-A of type-II TS, ORN-B of type-III TS and ORN-B of
type-IV TS were elicited by the minor sex pheromones Z11–
16:OAc and 16:Ald, respectively. However, the PRs expressed
in these types of TS and subunits of the MGC in ALs are still
unknown (Figure 6). This phenomenon may be explained by
limiting conditions such as the lack of other co-factor PBPs and
SNMPs in the Xenopus oocyte system or unidentified PRs in a
novel lineage of the PR clade (Große-Wilde et al., 2006; Benton
et al., 2007; Sun et al., 2013; Chang H. et al., 2015; Wang et al.,
2016; Bastin-Héline et al., 2019; Shen et al., 2020).

In this study, we found that the number of ORNs, which had
the largest spontaneous action potential recorded by a tungsten
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wire electrode (ORN-C of type-I, -III, -IV TS, and ORN-D of
type-II TS, see Figure 6), housed in each type of TS is quite
low. Similar action potentials were also recorded in coeloconic
sensilla of M. separata (Tang et al., 2020), Manduca sexta (Zhang
et al., 2019), and Drosophila melanogaster (Benton et al., 2009).
We speculate that non-responding neurons in TS to express
for example IRs and to respond to other odor classed than
pheromones. Further study is needed to confirm it.

It is worth mentioning that female moths could also detect
sex pheromones emitted from inter- and intra-specific females.
Several behavioral assays revealed that female moths detected
such sex pheromones to repel conspecific females, reduce mating,
increase movements and flight activity to a significant degree,
and improve chances of progeny survival (Ellis et al., 1980; Saad
and Scott, 1981; Stelinski et al., 2014; Holdcraft et al., 2016).
In this study, we tested the function of MsepPR5, which was
specifically highly expressed in female antennae (Du et al., 2018),
showing that it could be activated by the major sex pheromone
component Z11–16:Ald, antagonist Z9–14:Ald and interspecific
pheromone component Z9–14:OAc, espeacially from the genus
Spodoptera (Tamaki et al., 1973; Teal et al., 1985; Fumiaki et al.,
1993). MsepPR5 is hypothesized to play an important role in
sex pheromone detection of female moths, and to be involved in
repellent behavior through perception of high population density
in order to reduce resource competition among progeny (Pearson
et al., 2004). However, the molecular mechanism of olfactory
recognition of sex pheromones in female M. separata, is still
unknown and requires follow-up experiments.
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