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3D volume imaging has been regarded as a basic tool to explore the organization
and function of the neuronal system. Foreground estimation from neuronal image is
essential in the quantification and analysis of neuronal image such as soma counting,
neurite tracing and neuron reconstruction. However, the complexity of neuronal structure
itself and differences in the imaging procedure, including different optical systems and
biological labeling methods, result in various and complex neuronal images, which
greatly challenge foreground estimation from neuronal image. In this study, we propose a
robust sparse-smooth model (RSSM) to separate the foreground and the background of
neuronal image. The model combines the different smoothness levels of the foreground
and the background, and the sparsity of the foreground. These prior constraints together
contribute to the robustness of foreground estimation from a variety of neuronal images.
We demonstrate the proposed RSSM method could promote some best available tools
to trace neurites or locate somas from neuronal images with their default parameters,
and the quantified results are similar or superior to the results that generated from
the original images. The proposed method is proved to be robust in the foreground
estimation from different neuronal images, and helps to improve the usability of current
quantitative tools on various neuronal images with several applications.

Keywords: neuronal images, foreground estimation, sparse-smooth model, robust quantification, enhancement

INTRODUCTION

Advanced development of 3D volume imaging techniques have enabled the generation of large-
scale neuronal image at micron (Ragan et al., 2012; Chung et al., 2013; Chung and Deisseroth,
2013; Cai et al., 2019) and even submicron resolution (Li et al., 2010; Silvestri et al., 2012; Gong
et al., 2013; Osten and Margrie, 2013; Economo et al., 2016; Winnubst et al., 2019), which facilitate
the observation of complete neuron morphology of individual neuron in whole mammalian brain
at molecular resolution. These techniques have provided huge and valuable datasets, and promote
many fine studies in neuroscience research, including cell type identification, long range projection
neuron reconstruction, neural circuit mapping, and neural modeling (Helmstaedter and Mitra,
2012; Osten and Margrie, 2013; Peng et al., 2015; Zeng and Sanes, 2017). Due to the complexity
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of neuronal structure in large-scale, the differences in sample
preparation and imaging procedure, the neuronal images become
huge, diverse and complicated. A large number of software tools
(Rodriguez et al., 2009; Peng et al., 2010; Wang et al., 2011;
Quan et al., 2013; Gala et al., 2014; Feng et al., 2015; Fürth
et al., 2018) have been developed to quantify these challenging
datasets, including soma localization (Quan et al., 2013; Yan
et al., 2013; Frasconi et al., 2014; Ozcan et al., 2015; Kayasandik
and Labate, 2016; He et al., 2018) and neurite tracing (Peng
et al., 2010, 2011; Wang et al., 2011; Quan et al., 2013; Li R.
et al., 2019; Winnubst et al., 2019; Zhou et al., 2020). However,
most of these tools behave well on some specific datasets and
experience the difficulties to deal with various neuronal images
(Meijering et al., 2016; Fürth et al., 2018). Their performances
decline in some cases, and users have to tune and balance multiple
parameters carefully to obtain good quantified result. The main
reason behind the situation is the lack of robust foreground
estimation from neuronal images.

Foreground estimation from neuronal image is essential
in soma localization and neurite tracing. Current soma
segmentation methods and neurite tracing methods normally
locate the initial positions of soma and neurites by finding
the positions of local maximum intensity in the estimated
foreground. Therefore, many algorithms (Lobregt et al., 1980;
Yuan et al., 2009; Peng et al., 2011) need to set a series of
thresholds for foreground estimation. However, the foreground
intensities are usually inhomogeneous, and vary greatly across
different image stacks or sub-stacks of an image. In some cases,
the foreground intensities are lower than that of the background
(Li S. et al., 2019). It is challenging to apply these methods on
various neuronal image stacks or large neuronal datasets for the
difficulty of finding proper threshold for every different image
stack or sub-stack.

Machine-learning based methods are proposed to improve the
foreground estimation from uneven neuronal images (Frasconi
et al., 2014; Chen et al., 2015; Li R. et al., 2017; Mazzamuto et al.,
2018; Li and Shen, 2020). Support vector machine (SVM) based
methods use careful designed hand-crafted features to identify
foreground signals whose features are consistent with the training
set (Chen et al., 2015; Li S. et al., 2019), and improve the accuracy
in inhomogeneous neurite tracing. Considering the summarized
features are limited, the training set cannot cover the diversities
of neuronal images. These methods are also computational
complex and time-consuming, and they may need to construct
corresponding training set for every sub-stack in a large-scale
dataset. Deep-learning based methods (Frasconi et al., 2014; Li
R. et al., 2017; Mazzamuto et al., 2018; Li and Shen, 2020; Huang
et al., 2021) have been employed for cell identification and neuron
reconstruction. These methods use deep convolutional network
to extract deeper and more abundant features of neuronal images,
and some also take advantage of traditional methods, such as
mean-shift, Isomap algorithm (Frasconi et al., 2014), probabilistic
blob detection (Mazzamuto et al., 2018), and content-aware
adaptive voxel scooping (Huang et al., 2021), together to boost
the accuracy in the foreground estimation from various neuronal
images and even large-scale datasets significantly. While these
methods need large-amount of training samples with manual

annotations, which limits it usage in a biological laboratory and
damages its generalization (Huang et al., 2020).

In this study, we propose a robust sparse-smooth model
(RSSM) for foreground estimation from neuronal images. The
proposed method is built based on two prior constraint: (1)
Both the foreground and background are smooth, and the
background is smoother. (2) The foreground is sparse as the
foreground signals generally occupy a small rate compared to
the whole volume. We combine these two prior constraint and
build a convex optimization model to estimate the foreground.
We evaluate RSSM on the neuronal images collected by light-
sheet microscopy (Zhang et al., 2017; Yang et al., 2018)
and fluorescence micro-optical sectioning tomography (fMOST)
(Gong et al., 2013). The results suggested that RSSM estimated the
foreground in different experimental conditions accurately, and
was robust to various kinds of datasets with default parameters.
We demonstrated that RSSM promoted some best-available tools
to trace neurites successfully. Thus, RSSM boosted the robustness
of these quantitative tools in soma location and neurite tracing
from neuronal images.

MATERIALS AND METHODS

Robust Sparse-Smooth Model (RSSM)
An optical neuronal image is normally composed of the
foreground, the background and noise, which is given by:

Y =Is + B+ Inoise (1)

Where Y is the observed image. Is, B, and Inoise represent
the foreground, background and noise image, respectively. The
foreground is estimated based on two constraints: Is is sparse as
the foreground signals generally occupy a small proportion in the
volume; and the background is smoother than the foreground.
These constraints are considered into the convex optimization
problem for foreground estimation:

min
1
2
||Y − Is − B||22 + λ1||Is||1 +

1
2
λ2||∇

(k0)Is||22 +
1
2
λ3||∇

(k1)B||22 (2)

Where || ||22 is the square of L2 norm. || ||1 is L1 norm. λ1,
λ2, and λ3 are weighting parameters. ||∇(k0)Is||22 is given by:

||∇
(k0)Is||22 =

∑
(x,y) ||∇

(k0)Is(x, y)||22
= ||∇

(k0)
x Is(x, y)||22 + ||∇

(k0)
y Is(x, y)||22

=

(
k0Is(x, y)−

∑k0
i=1 Is(x− i, y)

)2
+(

k0Is(x, y)−
∑k0

i=1 Is(x, y− i)
)2

(3)

Where
(
x, y

)
is the coordinate of a pixel in Is. k0 and k1

are smooth parameters. ||∇(k1)B||22 has the same definition as
||∇

(k0)Is||22 . The constraint k0 < k1 indicates that the background
is smoother than the foreground. In (2), the sparse term (second
term) and the smooth term (third term) are combined to
describe the sparsity and smoothness of the foreground. The
smooth term estimates the foreground roughly without the
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sparse term. The noise couldn’t be removed well without the
smooth term. The cooperative operation of the sparse term and
the smooth term enhances the accuracy and robustness of the
foreground estimation.

Algorithms
We use proximal gradient descent (PGD) method (Xiao and
Zhang, 2013) to solve (2). For simplification, we modify (2) as
follows:

min F(Is,B)+ λ1||Is||L1 (4)

Where F(Is,B) is the sum of the first, third and forth terms in
(2). According to PGD, the iterative formulas are given by:

Ik+1
s = T

(
max(Iks −

1
Ls

∂F(Is,B)

∂Is
, 0), 3

)
(5)

Bk+1
= max(Bk −

1
LB

∂F(Is,B)

∂B
, 0) (6)

Where T (V, 3) (Beck and Teboulle, 2009) is a function that
process matrix V, and set to 0 if its element value is less than 3.
We iteratively update the foreground Is and the background B
according to (5) and (6) until convergence. The final results are
used as the estimated foreground and background.

Here, we briefly describe how to calculate the image gradient
descent. From (2) and (3), we have

∂||∇(k0)Is||22
∂Is

=
∂(||∇

(k0)
x Is||22+||∇

(k0)
y Is||22)

∂Is

= 2(∇(k0)
x )T∇(k0)

x Is + 2(∇(k0)
y )T∇(k0)

y Is (7)

And thus,
∂F(Is,B)

∂Is

= Is + B− Y + λ2(∇
(k0)
x )T · ∇(k0)

x Is + λ2(∇
(k0)
y )T∇(k0)

y Is (8)

∂F(Is,B)

∂B

= Is + B− Y + λ3(∇
(k1)
x )T · ∇(k1)

x B+ λ3(∇
(k1)
y )T∇(k1)

y B (9)

The calculation of (7) is key to the gradient descent calculation
in (8) and (9). Detailed steps are described as follows:

Step 1. Input image Is with m rows and n columns; Set a
template vector denoted by tem with the length k0+1; the
first k0 elements is set to−1 and the last one is k0.
Step 2. Calculate Is∇x=∇(k0)

x Is : Assign a zero matrix with
m+k0 rows and n columns into I∇xs , and update the element
values of Is∇x ranging from (k0+1) th row to mth row as
follows.

I∇xs (i+k0, j) =
l=k0+1∑
l=1

Is(i+ l− 1, j)tem(l)

(i = 1, 2, · · · ,m− k0; j = 1, 2, · · · , n) (10)

Step 3. Calculate (∇
(k0)
x )T∇

(k0)
x Is :

(∇x)
T(I∇xs (i, j)) =

l=k0+1∑
l=1

I∇xs (i+ l− 1, j)tem(k0 + 1− l)

(i = 1, 2, · · · ,m; j = 1, 2, · · · , n) (11)

(∇
(k0)
y )T∇

(k0)
y Is and the gradient image of B are also calculated

using the similar above procedure.
Then, the gradient descent steps 1/Ls and 1/LB are need to be

fixed. According to Cauchy-Lipschitz Theorem, the convenient
results are obtained if the following equations are satisfied:

Ls ≥ λmax(E+ λ2(∇
(k0)
x )T∇(k0)

x +λ2(∇
(k0)
y )T∇(k0)

y ) (12)

LB ≥ λmax(E+ λ3(∇
(k1)
x )T∇(k1)

x +λ3(∇
(k1)
y )T∇(k1)

y ) (13)

Where λmax (.) represents the largest eigenvalue of the
matrix induced by operation on images; E is the unit matrix;
(∇

(k0)
x )T∇

(k0)
x performs two convolution operations on an image

(Steps 2 and 3), and induces a matrix. The largest eigenvalue of
the induced matrix is less than (k0 × k0 + k0)

2 (Milinazzo et al.,
1987). So, we have

Ls ≥ 1+ 2λ2(k0 × k0 + k0)
2 (14)

LB ≥ 1+ 2λ3(k1 × k1 + k1)
2 (15)

Parameter λ1 is the weighting parameter of the foreground
sparse term, and set to a fixed value of 0.1. As the background
is usually smoother than that of the foreground, k0 should be
smaller than k1. k0 is set to 2 and k1 is 5. The smooth term
calculates the sum of the gradient values of the corresponding
foreground and background. For neuronal images, the smooth
term of the background is normally smaller than the smooth
term of the foreground, and the ratio of the two smooth terms
fluctuates between a certain range. To satisfy Eqs. 14 and 15 and
make the two terms work well for neuronal image, λ2 should be
smaller than λ3, we set λ2 to 0.1 and λ3 to 0.5 based on experience
and experiment. In all of our experiments, these parameters
are kept unchanged.

The initial iterative image of Is and B are determined by
our previous works (Quan et al., 2013). We roughly provide
a threshold value (the median value of all pixel values in the
observed image), let pixel value of the observed image less
than this threshold, and then convolute it with a Gaussian
kernel (convolution number: 20). The convoluted image and
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the difference of the observed image and the convoluted
image are regarded as the initial estimated background and
foreground, respectively.

Evaluation of Quantitative Methods
We quantified the estimated foreground and its corresponding
original images with some available tools (Wang et al., 2011;
Quan et al., 2013; Feng et al., 2015) on soma localization and
neurite tracing. The metrics of precision, recall and F1 score are
used for quantitative evaluation (Brown et al., 2011; Quan et al.,
2016; Li S. et al., 2019). Precision is defined as the ratio of true
positive (TP) number to all the searched object numbers via the
automatic methods. Recall is defined as the ratio of TP number
to all the object numbers searched by manual segmentation.
F1 score is the harmonic mean of the recall and precision.
In soma locating evaluation, the true positive position of the
located somas via automatic methods are manually checked. In
neurite tracing evaluation, for any skeleton point obtained via
automatic methods, if the closest distance between the point and
the gold standard is less than 6 µm, it is regarded as a TP point
(Quan et al., 2016; Li S. et al., 2019). In the paper, the manual
segmented result of soma or traced skeleton points are used as
the gold standard.

Experimental Setup
The proposed RSSM method was implemented using C++
language and packaged into a software named RSSM, which can
be accessed via https://github.com/LGBluesky/RSSM/releases.
All of the experiments were performed on a personal computer
with Intel(R) i7-6850K CPU, 3.60 GHz, 64 GB RAM, and
NVIDIA 1080Ti. In the computation, we transformed the
iterative calculation to convolution operation and also used cuda
to accelerate the foreground estimation.

RESULTS

We performed ablation study of the proposed RSSM method to
validate the importance of the sparse term and the smooth term
in the foreground description and estimation of neuronal image.
We compared the performances of the RSSM method, a sparsity
ablation model and a smooth ablation model on some simulated
images with image size 128 × 128. We deleted the smooth
term and the sparse term in Eq. 2 and regarded as the smooth
ablation model and sparsity ablation model, respectively. Other
configurations remained the same. To generate the simulated
images, we first used a thin rectangle as the foreground, and
the background value was set to 200. Then, the images were
convoluted by a mean filter of size 7 × 7. We finally added
uniform random noises ranging from [−2.5, 2.5] to the images.
Three groups of images (each group 50 images) with foreground
intensities that were 5, 10, 15, and 20 higher than that of the
background were generated. Figure 1 shows the foreground
estimation performances of the three models on the simulated
images, whose foreground intensities were only 5 and 15 higher
than that of the background. As we can see, the smooth ablation
model effectively suppressed background noises, while it lost

most of the foreground signals in both cases. It failed to
discern the foreground and the background when their intensity
differences were small (Figure 1A). The sparsity ablation model
could keep the foreground signals, while it was hard to remove
all the noises. The proposed RSSM method, which combined
the advantages of the two models, suppressed noisy background
meanwhile almost kept all the foreground signals. We also
calculated the image intensities in the original and estimated
foreground images via three models to for further illustration.
The intensities along the direction that labeled by a red arrow
in Figure 1A were shown in Figure 1B. The correlation of
the estimated foreground intensity distribution curves and that
of the original image are shown in Figure 1C. The proposed
RSSM model achieved similar foreground intensity distribution
to that of the original image, and suppressed background noises
interference. The correlation of RSSM were obviously higher than
that of using the sparsity ablation model and the smooth ablation
model alone. These results proved that the combination of the
sparsity and the smooth terms in the optimization problem were
effective to the accurate foreground estimation.

We also performed the proposed RSSM method on a 3D
optical neuronal image to validate the effectiveness of RSSM
on foreground estimation. The image stack contained multiple
neurons and many nearby neurites. It was collected using fMOST
system (Gong et al., 2013), its size was 428 × 500 × 287 and
spatial resolution was 0.3µm× 0.3µm× 1µm. Figures 2A,B
show the 2D view of a selected slice and 3D view of the neuronal
image and the estimated foreground image, respectively. In the
neuronal image, the background was high and the foreground
was fuzzy. Using RSSM, most of the background noises, including
the haze noise, were removed and nearly all the neuron signals
were kept. Figure 2C shows the intensity distribution of the
two images along the red line in Figure 2A. In the estimated
foreground image, the background intensities were almost close
to 0, and the foreground intensities were close to the original
image. As the noise inference was almost suppressed in the
estimated foreground image, the complexity of the image was
reduced. The image intensity distribution of some traced neurite
skeleton points via NeuroGPS-Tree (Quan et al., 2016) (green
curves in Figure 2A) of the original image and the estimated
foreground image were shown in Figure 2D. It can be seen,
the two curves had similar intensity distribution trends. As
the estimated foreground image only contained the foreground
signals and also some rounding errors caused during calculation,
the intensity distribution curve of the estimated foreground
image seemed rougher and sharper than that of the original
image. Considering the background intensities were close to
zeros, and the calculated foreground intensities were larger than
0, the proposed RSSM could simplify the foreground estimation
compared to the original image.

We performed the proposed RSSM method on a soma image
stack to validate the effectiveness of RSSM for soma estimation.
The image stack was collected using collected with light-sheet
microscopy (Yang et al., 2018), its size was 600 × 600 × 200
and its spatial resolution was 1µm× 1µm× 1µm. As seen
in Figure 3A, the intensity distributions of the soma and
the background were large, and intensities changed obviously
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FIGURE 1 | Ablation study of the proposed RSSM method to validate the role of the sparse and smooth terms in foreground estimation. (A) Shows simulated
neurite image (first column), estimated foreground via RSSM (second term), the smooth ablation model (third term), and the sparsity ablation model (fourth term).
(B) Shows the image intensity distribution of the original image and the estimated foreground via three models along the direction that pointed out by a red arrow in
(A). The real means the image that only contains the foreground. (C) Shows the correlation between the image intensity distribution curves in (B). The x-axis
represents different groups of images and each group has the same foreground intensity.

across different sub-stacks. We exhibited the original image
and the estimated foreground image of two sub-stacks that
contained sparsely and densely distributed somas (Figure 3A).
The proposed RSSM method suppressed the inhomogeneous
background noise with different intensity distribution range, and
estimated the somas with weak intensities from noisy background
(pointed out by arrows in Figures 3a1,a2) successfully. We
manually located the positions of all somas using NeuroGPS-
Tree software, and calculated their image intensity distributions
of the original image and the estimated foreground image (see
Figure 3B). These qualitative and quantitative results suggested
that RSSM could estimate the foreground of somas from
inhomogeneous background successfully.

We performed the proposed RSSM method on various
neuronal images to validate it could facilitate robust
quantification. Six varied optical neuronal images, which
contained different foreground contents (somas, neurites,
and complete neurons) and acquired using different imaging
systems, were selected for this validation and divided into
three groups. The first group contained neuronal images that
collected using fMOST system (Gong et al., 2013) and had axon

signals (Figure 4A). The second group contained neuronal
images that from the public BigNeuron (Peng et al., 2015) and
Diadem (Brown et al., 2011) datasets, and had complete neuronal
structures including somas, dendrites and axons (Figure 4B).
The third group contained neuronal images that collected using
light-sheet microscopy (Yang et al., 2018) and had soma signals
(Figure 4C). We applied a quantitative tool NeuroGPS-Tree
on the original images and their corresponding estimated
foreground images of the three groups. The NeuroGPS-Tree
obtains the initial foreground segmentation using local threshold
with a key threshold parameter (defined as Thre). Parameter
Thre is important to the quantitative analysis, as it determines
the initial soma positions in the soma localization, the initial seed
points and tracing termination conditions in neurite tracing. To
obtain good quantification results from the original images with
varied background, we tuned this parameter carefully for every
different original image and kept other parameters in default.
For the estimated foreground image by RSSM, Thre was set to
a fixed value 20 and other parameters were in default. Figure 4
shows the almost best available results of the original image
with Thre ranged from 2 to 18, and the results of the estimated
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FIGURE 2 | Foreground estimation via RSSM from 3D fMOST neuronal image. (A) A neuronal image (left) and its foreground estimation (right) in 3D view. (B) 2D view
of a selected slice in A (marked by green square) and its corresponding foreground estimation. (C,D) Show the image intensity distribution of the neuronal image and
the estimated foreground image along a red line in (B) and traced neurite skeleton points (green lines in A), respectively.

FIGURE 3 | Foreground estimation via RSSM from 3D soma image. (A) Shows a 3D soma image collected using light-sheet microscopy and its corresponding
estimated foreground image. Two sub-stacks that contained sparsely and densely distributed somas and inhomogeneous background were showed in the bottom.
Somas with weak intensities in a1-a2 are pointed by arrows. (B) Shows the image intensity distribution of all the manual located somas of the original image and the
estimated foreground image.

foreground with fixed Thre value. The quantitative evaluation
results on the original and estimated foreground images can
be seen in Table 1 (data 1–6 correspond to the six images in
Figure 4 from left to right in sequence). The F1 scores on the
original image using manual tuned parameter were between 0.84
and 0.95, with average value 0.90 for neurite tracing, and between
0.70 and 0.89 with average value 0.79 for soma localization.
The F1 scores on the estimated image using fixed parameter
were between 0.82 and 0.95 with average value 0.88 for neurite
tracing, and between 0.82 and 0.84 with average value 0.83
for soma localization. The processing time of RSSM on these
images were between 0.3 and 17.5 s. The quantitative results of
the estimated foreground achieved similar results of the best

available results on the original images. These performances
prove that the proposed RSSM method provides a way for robust
quantification of the quantitative tool of diverse neuronal image
without adjusting parameters.

To validate RSSM could facilitate and simplify the usage of
some typical quantitative software tools, including NeuroGPS-
Tree, neuTube, and Open-Snake (Rodriguez et al., 2009; Quan
et al., 2013; Feng et al., 2015), we compared the neurite tracing
results of these tools on original images and the estimated
foreground images. We selected two fMOST neuronal images
for testing. One had sparsely distributed neurites, and its size
was 301 × 301 × 138. The other had densely distributed
neurites, and its size was 428 × 500 × 148. Figure 5 shows the
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FIGURE 4 | RSSM facilitates robust quantification on the estimated foreground. (A) Neurites images collected using fMOST system and their corresponding tracing
results. (B) Neuronal images with a complete single neuron from the public BigNeuron (left) and Diadem (right) dataset and their tracing results. (C) Neuronal images
collected using light-sheet microscopy and their corresponding soma localization results. (D–F) Are the estimated foreground images by RSSM and their
corresponding quantitative results. The NeuroGPS-Tree software is used for neurite tracing and soma localization. Thre is a key threshold parameter in
NeuroGPS-Tree for neurite tracing and soma localization.

TABLE 1 | Evaluation of NeuroGPS-Tree on neuronal images for neurite tracing and soma localization.

Data id Volume Size [MB] F1 scores Precision Recall Time [s]

Original RSSM Original RSSM Original RSSM

1 301 × 301 × 86 7.61 0.95 0.93 0.98 0.90 0.93 0.97 1.3

2 301 × 301 × 172 14.89 0.84 0.84 0.79 0.95 0.90 0.75 2.6

3 1,024 × 1,024 × 113 113.01 0.86 0.82 0.94 0.75 0.80 0.85 17.5

4 512 × 512 × 67 16.71 0.94 0.95 0.92 0.96 0.97 0.93 2.6

5 120 × 120 × 120 1.67 0.70 0.84 0.81 0.85 0.62 0.83 0.4

6 120 × 120 × 120 1.67 0.89 0.82 0.93 0.77 0.85 0.88 0.3

comparative results of these tools on the original images and the
estimated foreground images. For original images, we selected
proper parameters for these tools to obtain good results. For
the estimated foreground images, we used default parameters
for neurite tracing. Table 2 showed the quantitative evaluation
results of these tools on the two kinds of images. The processing
time of RSSM on these images were between 2.1 and 4.9 s. The
F1 score of these tools on the original images with the selected
parameters were between 0.73 and 0.94, and the average scores of
NeuroGPS-Tree, neuTube and Open-Snake were 0.86, 0.87, and
0.76, respectively. The F1 score of these tools on the estimated
foreground images with default parameters were between 0.89
and 0.98, and the average scores of NeuroGPS-Tree, neuTube and
Open-Snake were 0.94, 0.90, and 0.94, respectively. These results
indicate that the proposed RSSM method boosts the availability
of these typical quantitative tools.

We further performed the proposed RSSM method on a large
fMOST neuronal dataset to validate that RSSM could be applied
to large-scale images. The dataset was about 6.4 gigabyte (GB),
and its size was 2,560 × 2,560 × 512. Limited by the hardware
configuration, the maximum image size that can be processed
was about 512 × 512 × 512. To process the large dataset, we
divided it into 25 sub-stacks of size 512 × 512 × 512, applied
RSSM on these sub-stacks, and then stitched the processed

sub-stacks in sequence to obtain the final result. Figure 6
shows the performance of RSSM on the large dataset with
inhomogeneous foreground and background intensities. RSSM
effectively suppressed the scatter noises and haze noises in every
different sub-stack, and kept almost all the neurite signals, even
for the weak neurites. As marked out by the yellow rectangles,
the neurite visualization of estimated foreground image was
clearer than the original image after eliminating most of the
noises. The average processing time for a sub-stack of size
512 × 512 × 512 was about 20 s, and the total processing time
for the large neuronal dataset was 506 s with average processing
speed 0.76 GB/minute. The performance on the large neuronal
dataset indicates that the proposed RSSM is a general foreground
estimation method, and can be applied on large-scale neuronal
images with default parameters.

DISCUSSION

In this study, we proposed a robust smooth-sparse model
(RSSM) for foreground estimation from various neuronal
images. The proposed method combined the sparsity term and
the smoothness term of the foreground and background for
foreground estimation, and accurately estimated the foreground
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FIGURE 5 | RSSM facilitates the usage of some typical quantitative software tools. (A) Two fMOST neuronal images and their corresponding tracing results by
software NeuroGPS-Tree, neuTube, and Open-Snake with selected parameters. (B) The estimated foreground images by RSSM and their corresponding tracing
results by these tools with default parameters.

TABLE 2 | Evaluations of NeuroGPS-Tree (NTree), neuTube, Open-Snake (Snake) for neurite tracing.

Data id Volume Size [MB] Time [s] Original RSSM

NTree neuTube Snake NTree neuTube Snake

1 301 × 301 × 138 11.95 2.1 0.78 0.90 0.78 0.89 0.90 0.92

2 428 × 500 × 148 30.22 4.9 0.94 0.84 0.73 0.98 0.89 0.95

Average – 21.09 3.5 0.86 0.87 0.76 0.94 0.90 0.94

FIGURE 6 | The performance of RSSM on a large neuronal dataset. (A) Shows a fMOST neuronal dataset with size 2,560 × 2,560 × 512 (∼6.4 GB). (B) Shows the
corresponding estimated foreground by RSSM. Some haze noises in the marked region (yellow) was suppressed by RSSM, and the visualization of the estimated
foreground was clearer.

signals from varied background. RSSM reduces the complexity
of the neuronal image by suppressing the high noises, and
nearly keeps all the foreground information as the original
images do in the neurite tracing or soma localization. Therefore,
the robust quantifications can be achieved from the estimated
foreground images.

Quantization of the neuronal image is regarded as the bridge
from imaging datasets to knowledge discovery. Many tools (Peng
et al., 2010; Wang et al., 2011; Quan et al., 2013; Feng et al., 2015;
Zhou et al., 2020) have been proposed for this purpose. Due to

the complexity and diversity of neuronal images, most of the
quantitative tools behave well on some specific datasets. To the
best of our knowledge, there is no tool that keeps competitive in
all cases. In general, these quantitative methods have their own
merits and deficiencies, which hinders the robust quantitative
results. They usually need complex parameters adjustment to
obtain good performances and avoid failure in some cases,
which is time-consuming and experience dependency. The
proposed RSSM method obtains the consistent results by
estimating the inhomogeneous foreground and suppressing
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various backgrounds, which reduces the complexity and diversity
of neuronal images. Thus, the estimated foreground can be easily
quantified with some tools including NeuroGPS-Tree (Quan
et al., 2016), neuTube (Feng et al., 2015), and NeuroStudio
(Rodriguez et al., 2009). The proposed RSSM method is proved
to be robust in the foreground estimation from various images
that had different contents and collected using different imaging
systems and methods (see Figures 2–6), and facilitate robust
quantitative results of current tools.

The proposed RSSM method decomposes image into different
items to build the model and estimates the foreground by solving
optimization problem, which might look similar to the method
of Robust Principal Component Analysis (RPCA) (Candès et al.,
2011; Bouwmans et al., 2018). While there are great differences
between the two methods. The model construction of the two
methods were different. RPCA decomposes an image into the
foreground and the background, and supposes one is low-rank
and the other is sparse. This assumption is suitable to some
cases such as video processing. While for neuronal images,
the background is not low-rank, and the foreground of most
neuronal images are usually irregular and high rank. The number,
shape, position, intensity distribution and structure of neuronal
signals varied greatly across different image stacks, which make
the foreground image complex and unordered. The proposed
RSSM method uses the prior sparsity and smooth constraints of
the morphology of neuronal images to build the model. As seen
in Figure 1, both the two terms contribute to the foreground
estimation and facilitate robust results.

We noted that many machine learning-based methods are
used for estimating foreground from neuronal images (Chen
et al., 2015; Li S. et al., 2019). For machine learning based
methods, the identification accuracy depends on the quality of
their training datasets. When the features of the testing datasets
are different from the training datasets, the predicted foreground
may be far deviated from the reality. For neuronal images
collected using different optical systems (Silvestri et al., 2012;
Yang et al., 2018), robust estimation of various foregrounds by
a machine learning-based model is difficult. Compared with
machine learning based methods, the sparse-smooth model may
not be competitive in some specific datasets, while it can provide
the relative accurate and robust estimation of the foreground
from various neuronal images collected using different systems.
RSSM balanced the robustness and accuracy of quantifications,
and can be used to simplify some following applications with
default parameters.

The robust foreground estimation has lots of potential
applications in quantifying neuronal images. Besides boosting
the availability of current quantitative tools (Rodriguez et al.,
2009; Peng et al., 2010; Quan et al., 2013; Feng et al., 2015),
the estimated foregrounds could also be used to help some
machine learning-based methods to construct their training
datasets. Considering the diversity of the neuronal images, the
training datasets of an image are usually obtained from the
initial predicted results of the image itself for better prediction.
This operation depends on the initial foreground identification,
as these methods use the initial foreground to construct the
positive samples and the others to construct the negative samples.

Obviously, inaccurate foreground estimation would lead to the
following inaccurate predictions. This case is unavoidable due to
the lack of robust foreground estimation. The proposed RSSM
method has the potential to solve the problem and help the
machine learning methods to build better training samples. The
performance and fast processing speed (0.76 GB/minute) of
RSSM on the large neuronal dataset (Figure 6) also indicate that
RSSM has the potential to be a general foreground estimation to
promote large-scale neuronal image tracing and reconstruction.
We will further optimize the engineering of our RSSM software
to reduce its calculation and accelerate the processing speed
for large images.

CONCLUSION

We proposed a robust sparse-smooth model to estimate the
foreground of neuronal images based on two prior constraints.
We verified the effectiveness of the prior constraints by
the ablation study. The proposed RSSM can perform robust
foreground estimation, eliminate the background from various
neuronal images, and reduce the complexity of neuron images.
We further demonstrated that RSSM can boost the availability
of typical quantitative tools to avoid complex parameters
adjustment in quantization. RSSM also has the potential to be
used in large-scale neuronal images and other tubular medical
images such as vessel images.
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