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Unraveling the inner workings of neural circuits entails understanding the cellular origin
and axonal pathfinding of various neuronal groups during development. In the embryonic
hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral
(DV) axis of rhombomeres and are imperative for the assembly of central brainstem
circuits. dINs are divided into two classes, class A and class B, each containing four
neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While
all interneurons belonging to class A express the transcription factor Olig3 and become
excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse
in their excitatory or inhibitory fate. Moreover, within every class, each interneuron
subtype displays its own specification genes and axonal projection patterns which are
required to govern the stage-by-stage assembly of their connectivity toward their target
sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along
the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB
neuronal subtypes uncovered their contribution to different nuclei centers in relation to
their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated
in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over
the span of several decades, different axonal routes have been well-documented to
dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the
genetic link between these distinct axonal bundles and their neuronal origin is not fully
clear. In this study, we reviewed the available data regarding the association between
the specification of early-born dorsal interneuron subpopulations in the hindbrain and
their axonal circuitry development and fate, as well as the present existing knowledge
on molecular effectors underlying the process of axonal growth.
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INTRODUCTION

The vertebrate central nervous system (CNS) is composed of a vast array of neuronal circuits that
are assembled in a stepwise manner to give rise to the enormous diversity of cells and functions.
Cell fate acquisition, neural cell migration, and axonal projections are all initiated in the developing
neural tube and give rise to the neuronal networks of genetically defined neurons that are
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interconnected within the CNS, as well as with afferent/efferent
connections with peripheral targets. It is only with the advent
of molecular techniques of lineage tracing, designated gene
mutations, and enhanced developmental analyses that have
allowed the emerging understanding of the details of neural
connectivity assembly. Although many studies uncovered genes
that regulate different aspects of the multi-event process that
spans from neural specification to circuit formation, there is still
missing knowledge regarding how these complex mechanisms
are orchestrated to give rise to functional networks, and what goes
wrong in neurodevelopmental disorders.

The early development of the CNS starts with a series of
swellings followed by elementary division into the forebrain,
midbrain, and hindbrain. The hindbrain, which is a highly
conserved region across vertebrates, has been traditionally
subdivided into the pons, medulla oblongata, and cerebellum,
which together compose the brainstem. Notably, a more
accurate subdivision of the hindbrain into the prepontine,
pontine, retropontine, and medullary sub-domains has been
recommended based on cell fate mapping and gene expression
analyses (Watson et al., 2019). Positioned between the spinal
cord and upper brain, the hindbrain serves as a key relay-
hub linking the lower and upper parts of the CNS as well
as the cranial peripheral nervous system (PNS) via multiple
circuits that regulate vital functions such as breathing, fine-tuning
movement, blood pressure adjustment, auditory and vestibular
sensations and facial movement (Joyner and Zervas, 2006; Stiles
and Jernigan, 2010; Champagnat et al., 2011; Nothwang et al.,
2015; Hernandez-Miranda et al., 2017; Glover, 2020).

A landmark in hindbrain ontogeny is its segmentation into
7/8 overt units, termed rhombomeres (identified as r1–r8, from
anterior to posterior), along the anterior-posterior (AP) extent
of the hindbrain anlage (Figure 1A) (Lumsden and Krumlauf,
1996; Moens and Prince, 2002). A more updated classification
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atonal homolog 1; Ascl1, achaete-scute family bHLH transcription factor 1;
AVCN, anteroventral cochlear nucleus; CAM, cell adhesion molecules; cC-VC-
caudal vestibular neurons; Cdh, cadherins; CF, climbing fiber; CN, cochlear
nuclei; CNS, central nervous system; cVRG, caudal ventral respiratory group;
DCC, receptor Deleted in Colorectal Cancer; DCN, dorsal cochlear nuclei; g,
dorsal funiculi; dINs, dorsal interneurons; DMRT3, double sex/male abnormal
3; DV, dorsoventral; DVN, descending vestibular nuclei; EW, Edinger–Westphal;
FMRP, fragile X mental retardation protein; FoxB, forkhead box protein B;
FP, floor plate; HD, homeodomain; INs, interneurons; ION, inferior olivary
nucleus; ITR, intertrigeminal region; KF, Kölliker-Fuse; Lbx1, ladybird homeobox
transcription factor; LF, lateral funiculi; LMX1a/b, LIM homeobox transcription
factor 1 alpha/beta; LVN, lateral vestibular nuclei; LVST, lateral vestibulospinal
tract; MF, mossy fiber; MLD, nucleus mesencephalicus lateralis pars dorsalis; MLF,
medial longitudinal fascicle; MNTB, medial nucleus of trapezoid body; MPV,
ventral posterior medial; MSO, medial superior olivary; MVN, medial vestibular
nuclei; NA, nucleus angularis; Necl, nectin-like proteins; Neurog, neurogenin;
NL, nucleus laminaris; NM, nucleus magnocellularis; Npn, neuropilin; NTS,
nucleus tractus solitarius; PBN, parabrachial nucleus; PCN, precerebellar nuclei;
pFRG, parafacial respiratory group; PGN, pontine gray nucleus; Phox2b, paired-
like homeobox 2b; pLC, pre-locus coeruleus; PNS, peripheral nervous system;
Pou4f1, POU domain class 4 transcription factor 1; Pou4f1, POU domain class
4 transcription factor 1; Pr5, principal trigeminal nucleus; preBötC, preBötzinger
Complex; Ptf1a, pancreas-specific transcription factor 1a; r, rhombomere; RL,
rhombic lip-; Robo, roundabout; RTN, retrotrapezoid nucleus; Sema, semaphorin;
SOC, superior olivary complex; SON, superior olivary nuclei; Sp5, spinal
trigeminal nuclei; Tlx, T cell leukemia homeobox; VCN, ventral cochlear nuclei;
Wt1-Wilms tumor protein 1; Zic, zinc-finger of the cerebellum.

lists 12 rhombomeres (r0–r11), some of which (r1–r7) are
anatomically delimited by constrictive transverse boundaries,
while others (r0, r8–r11), are delimited by molecular and cell
lineage parameters and are known as crypto-rhombomeres (also
called pseudo-rhombomeres) (Figure 1D). The anterior and
posterior-most crypto-rhombomeres define the borders between
the hindbrain and the midbrain and spinal-cord (Marin et al.,
1995; Cambronero and Puelles, 2000; Marín et al., 2008; Puelles
et al., 2013; Soares et al., 2013; Tomás-Roca et al., 2016;
Watson et al., 2017).

In all vertebrates, hindbrain compartmentalization is
controlled by combinatorial expression and activity of multiple
families of transcription and signaling factors across each
rhombomere, leading to the generation of distinct cell lineage
compartments (Kiecker and Lumsden, 2005; Weisinger et al.,
2008, 2010; Chambers et al., 2009; Kayam et al., 2013; Frank and
Sela-Donenfeld, 2018; Parker and Krumlauf, 2020). The identity
of individual rhombomeres instructs the neuronal differentiation
plan in the hindbrain which is manifested in the migration of
neurons, axons, and neural crest cells and the generation of
different motor or sensory nuclei along defined dorsoventral
(DV) and AP positions (Lumsden and Keynes, 1989; Marín
and Puelles, 1995; Cambronero and Puelles, 2000; Trainor and
Krumlauf, 2001; Briscoe and Wilkinson, 2004; Guthrie, 2007;
Marín et al., 2008; Narita and Rijli, 2009; Puelles et al., 2013;
Tomás-Roca et al., 2016; Di Bonito and Studer, 2017). Based
on the pioneer insights of Wilhelm His from the 19th century,
the dorsolateral margin of the longitudinal hindbrain has been
defined as the rhombic lip (RL), which has been found to serve as
a source of a number of hindbrain neuron populations that are
generated through tangential migrations of neuroblasts which
delaminate from the RL (Glover et al., 2018). These different
neuronal subtypes were found to depend on their rhombomeric
origin; in r1, the most dorsal part of the RL contributes a large
migratory cell population that forms the external and internal
granular layers of the cerebellum (Ben-Arie et al., 1997; Wingate
and Hatten, 1999; Köster and Fraser, 2001; Machold and Fishell,
2005). In r2–r6, the same RL domain generates auditory and
vestibular nuclei, through which information is processed and
relayed to the upper brain and spinal cord, whereas, in r6–r8,
it will give rise to multiple pre-cerebellar nuclei which relay
peripheral sensation to the cerebellum through mossy fiber
neurons (Altman and Bayer, 1980, 1987a,b,c,d; Rubel and Parks,
1988; Cambronero and Puelles, 2000; Rodriguez and Dymecki,
2000; Bermingham et al., 2001; Díaz et al., 2003; Ryugo and Parks,
2003; Pasqualetti et al., 2007; Hoshino et al., 2013; Kratochwil
et al., 2017; Díaz and Puelles, 2019; Elliott et al., 2021). Similarly,
different types of respiratory and viscerosensory nuclei are
suggested to be born from more ventral positions of the RL
at distinct axial levels, such as the parabrachial and Kölliker-
Fuse nuclei that derive from r1, the A5 and intertrigeminal
region that derives from r4–r6, the PreBötzinger complex and
retrotrapezoid nucleus (RTN) that derive from r3/r5, and the
nucleus tractus solitaries that is thought to derive from more
posterior rhombomeres (Qian et al., 2001; Gray, 2008). The
hindbrain is also divided along its DV axis into a basal and alar
plate, at which discrete neuronal progenitors become specified
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FIGURE 1 | (A) Summary of the anterior-posterior distribution of dA and dB subclasses along the overt hindbrain rhombomeres (as classified in Lumsden and
Krumlauf, 1996). (B,C) Schematic transverse sections taken from rhombomere 4 (B) or rhombomere 8 (C) levels of E3 chick embryo to show the dorsal-ventral
distribution of dA and dB subclasses and the combination of transcription factors expressed in each subclass. (D) A schematic sagittal section representing the
classification of hindbrain segments into 12 rhombomeres based on fate map analyses (as classified in Marín et al., 2008; Tomás-Roca et al., 2016). Cb, cerebellum;
D, dorsal; V, ventral; Mb, midbrain; r, rhombomere; Sc, spinal cord.

and differentiate in distinct longitudinal DV locations that are
uniform along with the hindbrain (Figures 1A–C) (Marin et al.,
1995; Shoji et al., 1996; Cambronero and Puelles, 2000; Schubert
et al., 2001; Wang et al., 2005; Zijing et al., 2008; Storm et al.,
2009; Hernandez-Miranda et al., 2017). The neural diversity
along the AP and DV axes is critical for the correct elaboration
of functional circuits that shape the adult brainstem.

Investigation of the neuronal patterns along the dorsal
hindbrain has identified 6–8 progenitor domains that are born
in designated positions in some or all rhombomeres (Figure 1A).
In contrast, it is not yet clear whether the same set of progenitor
domains exist at the rostral-most hindbrain levels (r0 and r1),
which are largely patterned by the isthmic organizer. Notably,
their precise DV distributions continue further caudally to
the spinal cord. Altogether, these progenitors will give rise to
second-order interneurons that act as first central relay stations
for sensory-motor connections, which intervene in reflex arcs
or are largely conveyed from the spinal cord and PNS to
upper brain centers or to the spinal cord (Logan et al., 1998;
Maklad and Fritzsch, 2003; Ryugo and Parks, 2003; Landsberg
et al., 2005; Sieber et al., 2007; Rose et al., 2009a,b; Storm
et al., 2009). These hindbrain dorsal interneurons (termed here
dINs) are divided into class A (dA) and B (dB) neurons
based on their DV positions; those who arise in the dorsal
microzones of the hindbrain are classified as class A and express
the bHLH transcription factor Olig3, while those born more
ventrally in the alar plate and express the Ladybird Homeobox
transcription factor Lbx1 are referred as class B (Figure 1A)
(Gross et al., 2002; Müller et al., 2002, 2005; Zijing et al.,
2008; Hoshino, 2012; Puelles, 2013). Each of the two groups is
further subdivided along the DV axis based on the expression
of unique sets of specification and differentiation genes in
various neuroepithelial microzones, that also differ along the
ventricular/mantle zone, reflecting the differential progenitor
origin and molecular profile of each neuron (Figures 1B,C)

(Wang et al., 2005; Fujiyama et al., 2009; Kohl et al., 2012; Gray,
2013; Hernandez-Miranda et al., 2017).

The specification of the different dA/dB subclasses requires
coordinated signaling cues that arise from the roof and floor
plate (FP) (i.e., BMP, Wnt, and SHH), and provide positional
information which leads to the birth of individual neuronal
fates (Liem et al., 1997; Lee et al., 1998, 2000; Briscoe et al.,
1999; Gaufo et al., 2000; Vogel-Höpker and Rohrer, 2002; Müller
et al., 2005; Storm et al., 2009; Tilleman et al., 2010; Moreno-
Bravo et al., 2014; Lihua et al., 2019). The mechanisms by which
these morphogens act to pattern hindbrain dINs are not fully
understood and will not be discussed further in this review.

Following the differentiation of neurons, they start migrating
to their final destinations in the mantle layer as well as to project
axons that extend toward their target sites in a stepwise manner,
under the control of guidance cues along their pathways (Tessier-
Lavigne and Goodman, 1996; Chédotal and Richards, 2010). In
the developing hindbrain, axonal growth initiates at particular
DV positions within each rhombomere and projects into defined
commissural and ipsilateral tracts. Upon the completion of
the axonal circuit, these tracts will project sensory information
from the periphery, spinal cord, and brainstem to higher brain
centers, as well as transmit motor commands from the brain
to the spinal cord (Rubel and Parks, 1975, 1988; Díaz et al.,
1998; Howell et al., 2007; Renier et al., 2010; Kalinovsky et al.,
2011; Di Bonito et al., 2017). Over the past 50 years, classical
labeling techniques have thoroughly mapped multiple axonal
tracts in the hindbrain. Yet, their association to specific dA/dB
sub-populations was missing, as most of these studies preceded
the development of genetic tools to fate map individual cell
groups. Subsequently, the contribution of different dA/dB neural
precursors into neuronal populations of different brainstem
nuclei has begun to be recognized, as well as the identification
of genetically identified tracts that emerge from these centers.
Nevertheless, the fate and axonal routes of some of these
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subgroups are not fully revealed, nor was the delineation of
the entire axonogenesis of individual dA/dB subpopulations,
from soon after their differentiation until their axons terminate
at their targets.

This review aims to cover the gap between the vast knowledge
on hindbrain nuclei projections and their association to specific
dA/dB INs along the hindbrain AP axis. We will not discuss r0,
r1, and their contribution to the isthmus and cerebellum, and
mainly concentrate on r2–r7/8, the rhombomeric units which are
morphologically evident and coincide in the two rhombomere-
classification systems in use (Lumsden and Krumlauf, 1996;
Tomás-Roca et al., 2016). Moreover, past and current knowledge
regarding molecular cues that govern the axonal growth of dA/dB
neurons will also be presented.

Class A: dA1 Neurons
Specification and Fate
This neuronal subpopulation is positioned in the dorsal most
portion of the hindbrain RL, bordering the expanded roof plate
of the fourth ventricle (Figure 1A). The specification of this
excitatory/glutamatergic neuronal population is dependent on
the co-expression of Olig3 and the basic helix-loop-helix (bHLH)
transcription factor Atonal homolog 1 (Atoh1) in the ventricular
zone. A combinatorial expression of the LIM-homeodomain
(LIM-HD) transcription factors Lhx2 and Lhx9, the Barh
like homeobox transcription factor Barhl1/2, and the POU
domain class 4 transcription factor 1 Pou4f1 accompanies dA1
neural differentiation and migration (Figures 1B,C) (Helms and
Johnson, 2003; Wang et al., 2005; Kohl et al., 2012; Hernandez-
Miranda et al., 2017). Moreover, the two Lim homeobox
transcription factors, Lmx1a and Lmx1b, which are expressed
in the roof-plate dorsal to dA1 group, are necessary for their
specification (Elliott et al., 2021). Extensive fate map studies
in mouse and chick hindbrains, together with the generation
of knock-in and knock-out mice lines revealed a wealth of
derivatives that originate from dA1 INs, depending upon their
rhombomeric origin and time of birth; At r1, dA1 neurons give
rise to cerebellar granule cells whereas at r2–r8 they give rise
to excitatory neurons that assemble various sorts of brainstem
nuclei, with some divergence in their rhombomeric origin in
avian and mammalians (Farago et al., 2006; Nothwang, 2016;
Lipovsek and Wingate, 2018). These include Atoh1+ neurons
in several nuclei subtypes in the auditory system, such as in
the ventral and dorsal cochlear nuclei (VCN, DCN) and the
superior olivary nuclei (SON), Atoh1+ neurons in the spinal,
medial, and lateral vestibular nuclei (Sp5, MVN, and LVN)
and in the vestibular nucleus X, Atoh1+ neurons in the main
and descending sensory spinal trigeminal nuclei and Atoh1+
neurons which establish the various precerebellar nuclei (PCNs),
which include the pontine gray nuclei (PGN), reticulotegmental
nucleus, lateral reticular nucleus (LRN), and external cuneate
nucleus (ECN) (Ben-Arie et al., 1997; Bermingham et al., 2001;
Landsberg et al., 2005; Machold and Fishell, 2005; Wang et al.,
2005, 2020; Farago et al., 2006; Kawauchi et al., 2006; Zijing et al.,
2008; Maricich et al., 2009; Ray and Dymecki, 2009; Rose et al.,
2009a,b; Machold et al., 2011; Fu et al., 2013; Hoshino et al., 2013;

Lipovsek and Wingate, 2018; Elliott et al., 2021). Interestingly,
the specification of the choroid plexus is also dependent on the
presence of the adjacent dA1 neurons (Elliott et al., 2021). All of
the above-mentioned nuclei centers fail to be generated normally
in Atoh1-null mice, as well as in mice lacking the roof-plate Lim-
HD proteins Lmx1A/B, which show various neurodevelopmental
defects and die at birth (Mishima et al., 2009; Rose et al., 2009a,b;
van der Heijden and Zoghbi, 2018; Chizhikov et al., 2021).
Despite this extensive knowledge, the mechanisms that drive
dA1/Atoh1+ dINs to give rise to such a remarkable wealth of
neuronal fates are only partially clear.

dA1 Axonal Projections
Classical axonal labeling approaches in the chick embryonic
hindbrain uncovered multiple ascending and descending tracts
that arose from ipsilateral or contralateral neurons (Lumsden
and Keynes, 1989; Marín and Puelles, 1995; Díaz et al., 2003;
Guthrie, 2007). For example, DiI labeling of caudal dorsal
hindbrain commissures identified them as formed by second-
order vestibular neurons (cC-VC), that project axons which
turn into the Dorsal Funiculus (DF) (Díaz et al., 1998; Zhu
et al., 2006). Tracing the projections of the cochlear nuclei
(CN) showed that the mammalian VCN, or its avian homolog
nucleus magnocellularis (NM), project ipsi and contralateral
axons to the mammalian SON/avian nucleus laminaris (NL).
This symmetrical connectivity results in bilateral excitatory input
to the Medial Superior Olivary (MSO) center in the SON in
mammalians, or to the NL in avians, that in turn project through
ipsi and contralateral lateral lemniscus to midbrain auditory
centers (Rubel and Parks, 1988; Kil et al., 1995; Moore, 2000;
Carr and Soares, 2002; Seidl et al., 2013). Moreover, labeling
of the caudal rodent brainstem revealed ipsi and contralateral
projections from different PCN to the cerebellum via Mossy Fiber
(MF) tracts (Gerrits et al., 1984; Altman and Bayer, 1987a,c,d;
Bourrat and Sotelo, 1990; Cicirata et al., 2005; Okada et al.,
2007). Furthermore, labeling of excitatory axons of the MVN
demonstrated their projections to other brainstem vestibular
nuclei together with their projections to the cerebellum as mossy
fibers (Ando et al., 2020). Based on the neuronal cell body
positions of these axons, it is likely that most of those tracts
originate from dA1 neurons at the dorsal RL (excluding Atoh1+
neurons in various VN as their axonal projections and later fates
are still vague). However, only with the development of genetic
tools that utilized Atho1-enhancer elements to label neuronal
precursors in the dorsal RL, these trajectories could be attributed
to the dA1 subpopulation (Helms and Johnson, 1998; Wang et al.,
2005; Farago et al., 2006; Okada et al., 2007; DiPietrantonio and
Dymecki, 2009; Rose et al., 2009a,b; Kohl et al., 2012). Subtractive
fate map approaches that combined targeting of Atho1+ neurons
under rhombomere-specific regulatory elements further enabled
to reveal the rhombomeric origin of various dA1-derived nuclei
(Farago et al., 2006; Maricich et al., 2009; Lipovsek and Wingate,
2018). As such, dA1/Atoh1+ neurons that emerge from r2–
r5 in mammalians or r5–r8 in avian, and contribute excitatory
neurons to the mammalian VCN/avian NM were found to
extend ipsilateral and contralateral projections to the mammalian
MSO/avian NL (Figure 2C), while those arising from r6–r8 give
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FIGURE 2 | dA1 axonal projections. (A) A summary of dA1 axonal projections as seen in a flat-mount view of E6.5 chick embryonic hindbrain. dA1 cell bodies are
shown in blue dots. Each axonal tract is shown in a different color and refers to a distinct funiculus. (B) A schematic sagittal section of the main pre-cerebellar axonal
circuits of the dA1 subclass. Different dA1-derived pre-cerebellar nuclei (purple circles) are shown to project axons (green lines) to the cerebellar granular layer or the
thalamus (green circles). (C) A schematic sagittal section of the main auditory axonal circuit of the dA1 subclass in the chick hindbrain. dA1-derived NM and NL
centers (purple circles) are shown to project axons (green lines) to local auditory nuclei (green circles). FP, floor plate; iDF, ipsi dorsal funiculus; iLF, ipsilateral funiculus;
cLF, contralateral lateral funiculus; cDF, contralateral dorsal funiculus; PGN, pontine gray nucleus; RTN, reticulotegmental nucleus; LRN, lateral reticular nucleus;
ECN, external cuneate nucleus; Cu, cuneate; Gr, gracile; vpmNT, the ventral posteromedial nucleus of the thalamus; NM, nucleus magnocellularis; NL, nucleus
laminaris; MNTB, medial nucleus of the trapezoid body.

rise to multiple PCN and extend ipsi and contralateral axons to
the granular layer of the cerebellum as MFs (Figure 2B).

Despite this extensive knowledge, data regarding the precise
en-route axonal patterns of individual dA1-neuronal subgroups
was limited, mostly since dA1-derived axons were largely traced
at stages when their soma have already settled at their final
nuclear destination. Moreover, since germ-line transgenesis
resulted in the labeling of all Atoh1+ lineages on both sides
of the hindbrain, the ability to trace unilateral projections at
subsequent stages was compromised. In a series of studies in the
chick hindbrain, we aimed at tracing the sequential axonal growth
of dA1 INs at multiple stages, using unilateral electroporation
of plasmids encoding dA1-specific enhancers upstream of Cre
recombinase together with nuclear, cytoplasmic, or synaptic
GFP reporters. Hindbrains were electroporated at stages when
dA1/Atoh1+ cells are specified and their axons were traced for
2–16 days (Figure 2A) (Kohl et al., 2012, 2013; Hadas et al.,
2014). Axons were found to project into the ipsi and contralateral
DF and lateral funiculus (LF). Yet, axons that originated from
r6–r7 were found to project along with the DF toward the
cerebellum and midbrain, whereas those originating from r3–r5
ascended in the LF in a less-tight bundle toward the midbrain
(Figure 2A). Pre-synaptic connections of axons from r6–r7 levels
terminated in the cerebellar outer and inner granular layers
(Figure 2B) (Kohl et al., 2012). These results expanded previous
studies performed on post-natal pre-cerebellar-cerebellar mossy
fiber circuitry (Marín and Puelles, 1995; Díaz et al., 2003;

Wang et al., 2005; Fujiyama et al., 2009; Rose et al., 2009a,b;
Kohl et al., 2012, 2013, 2015), by tracing the gradual assembly
of these circuits (Figure 2). Using this approach, we have
also recently decoded the gradual axonal circuit formation of
the binaural auditory system. In this system, dA1 neurons
from the avian NM/mammalian anteroventral cochlear nucleus
(AVCN) receive temporally locked excitation from the auditory
nerve, and in turn, send bilaterally segregated signals to the
avian NL/mammalian medial superior olive (MSO), (Cramer
et al., 2000; Ryugo and Parks, 2003). The bipolar neurons
in the NL/MSO are specialized to compute interaural time
differences which is critical for sound localization and segregation
(Overholt et al., 1992; Nothwang, 2016). Although the anatomy
and physiology of this circuitry are well known, its stage-by-
stage assembly was obscure. dA1-specific reporter plasmids were
introduced into dA1/NM precursors at r5 and their axons could
be traced to gradually exhibit the characterized pattern of NM-
NL projection (Figure 2C). This selective dissection allowed us
to demonstrate a dA1 subtype-specific, longitudinal assessment
of axonal events throughout hindbrain development, from E2.5
to E19 (Wang et al., 2020).

Class A: dA2 Neurons
Specification and Fate
dA2 subpopulation, which appears ventral to dA1 group, exists
only from r7 and caudally (Figure 1A). This excitatory subgroup
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is derived of Olig3+/Neurogenin1/2+ (Neurog1/2+) progenitors
that upon maturation express the transcription factors Lhx1/5,
Forkhead box protein 2 (Foxp2), and Pou4f1 (Figure 1C)
(Landsberg et al., 2005; Storm et al., 2009). Notably, although
this subgroup extends along the spinal cord as dI2, their express
Foxd3 instead of FoxP2 (Storm et al., 2009). The mechanisms
underlying this molecular difference as well as the appearance
of dA2 INs only in the posterior RL, are currently unknown.
Utilization of Wnt1-reporter mouse to lineage-trace RL-cell
populations demonstrated a small contribution of r7-derived
Neurog1+ neurons to the inferior olivary nucleus (ION), a major
pre-cerebellar center that connects to the cerebellar Purkinje layer
via climbing fiber (CF) axons (Landsberg et al., 2005). Yet, further
fate map analyses are required to fully confirm dA2 fate as part of
the ION, as dA4 subgroups were also suggested to assemble the
ION, as will be described below.

dA2-Axonal Projections
The axonal projection patterns of dA2 neurons have not yet been
delineated. This is in contrast to the spinal cord, where genetic
labeling of dI2 INs in the chick spinal cord uncovered their
contralateral ascending or descending projections, according to
the thoracic/sacral level, before turning laterally in the white
matter toward the LF (Avraham et al., 2009). Genetic lineage
tracing of dA2 INs is needed to trace their axons and decipher
whether they join the CF tract as well as possible other tracts in
the developing brainstem.

Class A: dA3 Interneurons
Specification and Fate
The dA3 subpopulation originates ventrally to the dA1 subgroup
in r4–r7 (Figure 1A). Similar to other excitatory class A dINs,
dA3 progenitors express Olig3 and Pou4f1, in addition to the
Paired-like homeobox 2b (Phox2b), T-Cell Leukemia Homeobox
3 (Tlx3), and LIM homeobox protein 1-beta (Lmx1b). Moreover,
they are the most dorsal subgroup that expresses the mammalian
achaete-scute family bHLH transcription factor 1 (Ascl1+)
(Figures 1B,C) (Qian et al., 2001; Sieber et al., 2007; Kim et al.,
2008; Storm et al., 2009). Previous studies have suggested the
role of Tlx3 in regulating the dA3-glutamatergic cell fate (Cheng
et al., 2005; Chen et al., 2012). However, Tlx activity cannot be
attributed to all excitatory dA/dB, as it is not expressed in other
glutamatergic subgroups.

dA3 INs were found to contribute to various viscerosensory
autonomic components in the hindbrain (Brunet and Pattyn,
2002; Qian et al., 2002; Dauger et al., 2003; D’Autréaux
et al., 2011; Gray, 2013). dA3 (Phox2b+/Tlx3+/Ascl1+) neurons
that emerge from r4–r7 contribute to the nucleus of the
solitary tract (NTS), a major relay station for visceral sensory
information regulating the activity of the cardiovascular,
respiratory, vocalization, and digestive systems (Qian et al., 2001;
Dauger et al., 2003; Pattyn et al., 2006; Sieber et al., 2007; Storm
et al., 2009; Hernandez-Miranda et al., 2017; Gasparini et al.,
2020). In addition, dA3 neurons deriving from r7–r8 contribute
to the area postrema (AP) nucleus, a chemoreceptive center in the
dorsal hindbrain that responds to toxins via chemically induced
vomiting, as well as to A5/A7 noradrenergic clusters of the lateral

tegmental area of the pons, which are suggested to be involved
in vasomotor and respiratory activities, as well as in transmitting
noradrenergic inputs to the spinal cord. Finally, dA3 INs were
also suggested to give rise to the non-tyrosine hydroxylase
expressing neurons of the intermediate reticular formation at the
rostral medullary levels, implicating their additional involvement
in secondary viscerosensory processing (Anderson et al., 1997;
Qian et al., 2001; Kang et al., 2007; Gray, 2013). Interestingly,
Phox2b is indispensable for the viscerosensory fate of dA3, since
in its absence visceral sensory neurons resemble dB3 somatic
sensory neurons, which express Tlx3 and Ascl1 (like dA3) but are
devoid of Phox2b (D’Autréaux et al., 2011).

dA3 Axonal Projections
In concordance with their homing at different autonomic centers,
dA3-INs extend multiple axonal trajectories (Figure 3). Most
studies traced projections of mature nuclei in adult brains. For
example, projections from the NTS were examined in adult
rodent brains by multiple antero/retrograde labeling approaches,
revealing complex projections that ascend in ipsi/contralateral
ventral/dorsal paths to innervate different sub-nuclear sites in the
parabrachial nucleus (PBN), RTN, rostral ventrolateral medullary
nucleus as well as within the respiratory compartments of
the rostroventral respiratory group, preBötC and BötC nuclei
(Herbert et al., 1990; Williams et al., 1996; Cunningham and
Sawchenko, 2000; Karimnamazi et al., 2002; Alheid et al., 2011; Fu
et al., 2019). Recently, a subpopulation of aldosterone-sensitive
neurons, which express the dA3 markers Phox2B/Lmx1b, were
also found to localize in the NTS and to control sodium
appetite by projecting anteriorly to the PBN and pre-locus
coeruleus (pLC) complex in the prepontine hindbrain (r1)
as well as to the bed nucleus of the stria terminalis in the
forebrain (Gasparini et al., 2018). Other NTS axons project
ventrally and caudally to converge into the anterolateral funiculus
toward different segments of the cervical and thoracic spinal
cord, where axonal processes diverge and enter the ventral
horn to innervate pre-motor neurons (Norgren, 1978; Mtui
et al., 1993). Another ipsilateral projection elongates from
the NTS through the reticular formation to terminate at the
facial motor nucleus (Norgren, 1978). Finally, the NTS projects
bilaterally to the hypoglossal nucleus, by crossing the midline
and extending over the dorsomedial reticular formation toward
the hypoglossal nucleus (Norgren, 1978). Notably, although
advanced combinations of axonal labeling in knockout or
reporter mice lines enabled to link Phox2b+ neurons in the
NTS with these circuits (Qian et al., 2001; Dauger et al., 2003;
Pattyn et al., 2006; Sieber et al., 2007; Smith et al., 2009; Storm
et al., 2009; Hernandez-Miranda et al., 2017), tracking the gradual
axonal growth of distinct dA3 INs before and after populating
different subdomains along the NTS is missing. Unraveling this
issue is particularly important since the NTS contains diverse
intermingled subpopulations of neurons that modulate distinct
functions by their extensive projections.

Anterograde axonal and retrograde cell body tract-tracing
methods in the AP nucleus of the adult rat demonstrated its
connectivity to a variety of different nuclei in both the medulla
and upper brain regions. AP projections target the adjacent
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FIGURE 3 | dA3 axonal projections. A schematic sagittal section of a main viscerosensory autonomic axonal circuit of the dA3 subclass. dA3-derived NTS nuclei
(purple circle) are shown to project multiple axonal trajectories (green broken lines) to various target sites in the hindbrain or spinal cord (green circles). NTS, nucleus
tractus solitaries; Pfrg/RTN, parafacial respiratory group/reticulotegmental nucleus; Ambc, ambiguous nucleus, compact part; cVRG, caudal ventral respiratory
group; NRA, nucleus retro ambiguous; PBC, parabrachial.

NTS and the PBN, as well as the ambiguous (AMB) nucleus,
the dorsal motor nucleus of the vagus, dorsal regions of the
tegmental nucleus, the cerebellar vermis, the paratrigeminal
nucleus, the ventrolateral catecholaminergic column in the
medulla, and the spinal trigeminal tract (van der Kooy and
Koda, 1983; Shapiro and Miselis, 1985; Price et al., 2008; Stein
and Loewy, 2010). Complex axonal trajectories extend from
the AP to target these nuclei sites. For instance, ipsilateral AP
axons extend either caudally or rostrally to target the NTS, or
project in a rostroventral direction around the solitary tract
and turn ventrolaterally via the reticular formation to either
target the AMB or to further bifurcate and extend dorsorostrally
toward the PBN and the pLC. Another AP tract joins the
ventral spinocerebellar tract to enter the cerebellum, or projects
dorsorostromedially and divides further to either terminate at
the PBN or elongate further and terminate at the mesencephalic
trigeminal nucleus (Shapiro and Miselis, 1985). Notably, no data
exist regarding the development of these tracts in the embryo.

Retrograde and anterograde axonal tracing of the
noradrenergic A5/A7 clusters in the adult rodent brain has
demonstrated innervations to multiple midbrain regions of
dopamine neurons (i.e., retrorubral field, ventral tegmental
area, substantia nigra, interfascicular nucleus, ipsilateral
rostral/central linear, and nuclei) (Mejías-Aponte et al., 2009).
The A5 cell group was also found to project to the central
nucleus of the amygdala, perifornical and dorsal areas of the
hypothalamus, paraventricular nucleus of the thalamus, and the
bed nucleus of the stria terminalis. This cluster also projects
to PBN, the NTS, and the ventrolateral reticular formation of
the medulla (Byrum and Guyenet, 1987). Further traditional or
genetic axonal-labeling approaches had enabled the tracing of
spinal projections of A5/A7 nuclei in adult rodent or cat brains,
revealing descending projections via the ipsi/contralateral
ventral and lateral funiculi. These projections further branch in a
complementary fashion to reach the dorsal/ventral horns of the
spinal cord at different axial levels (Fritschy and Grzanna, 1990;
Clark and Proudfit, 1993; Bruinstroop et al., 2012). Finally, the

non-tyrosine hydroxylase expressing neurons of the intermediate
reticular formation in the medulla were suggested to relay
cortical input to gustatory centers at the NTS and the PBN (Kang
et al., 2007; Gray, 2013).

Altogether, dA3 INs exhibit complex fates and display multiple
ascending and descending axonal routes (Figure 3), emphasizing
their important contribution to various autonomic circuits in the
CNS. Yet, knowledge is still missing regarding the developmental
mechanisms that drive the different fates of dA3 subpopulations
in individual rhombomeres. Further genetic-lineage tracing
experiments of dA3 INs are also in need to fully determine the
precise contribution of dA3 INs to the extensive axonal tracts
described above Notably, one of the dA3 markers, Lmx1b, was
recently shown to be necessary for controlling axonal growth of
serotonergic 5-HT neurons in the hindbrain and dopaminergic
circuits in the midbrain (Chabrat et al., 2017; Donovan et al.,
2019), raising the possibility that Lmx1b may also affect dA3
axonal growth decisions.

Class A: dA4 Interneurons
Specification and Fate
The dA4 population is the most ventral one amongst class
A dINs (Figure 1A). Fate mapping experiments in chick and
mice revealed that they derive from Pou4f1+/Olig3+/Mash+
progenitors that also express the bHLH factor Pancreas Specific
Transcription factor 1a (Ptf1a) (Figures 1B,C) (Fedtsova and
Turner, 1995; Sieber et al., 2007; Yamada et al., 2007; Storm
et al., 2009; Hidalgo-Sánchez et al., 2012). dA4 neuronal group
is the only excitatory subgroup that expresses Ptf1a (Yamada
et al., 2007; Storm et al., 2009; Gray, 2013), like all other
Ptf1+ dINs in the hindbrain or spinal cord are inhibitory
(GABAergic/Glycinergic) and were suggested to depend on
Ptf1a for their inhibitory neuronal fate (Glasgow et al., 2005;
Hoshino et al., 2005). While the molecular profile of dA4 cells
is uniform from r2 to r6, in r7 this subgroup also expresses
Foxd3 (Sieber et al., 2007; Yamada et al., 2007; Storm et al., 2009;
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Iskusnykh et al., 2016). So far, the fate of dA4 neurons from
r2–r6 is not clear. At variance, dA4 precursors originating from
r7 to r11 were suggested to contribute to the ION, which
is positioned in the caudal-ventral brainstem and coordinates
signals to and from the cerebellar Purkinje cell layer to regulate
motor coordination and learning (Sieber et al., 2007; Yamada
et al., 2007; Zijing et al., 2008; Storm et al., 2009; Iskusnykh
et al., 2016; Watson et al., 2019). Formation of ION is missing
in Ptf1a-null zebrafish or mouse embryos, where Ptf1a−/− cells
shifted their fate to become MF neurons (Yamada et al., 2007;
Itoh et al., 2020). Intriguingly, as Ptf1a or Ascl1 proteins are
not only expressed in dA4 neurons but also their flanking
dB1/dA3 subpopulations, further enhancer-intersection based
approaches are required to distinctly map dA4 precursors at
different AP levels, rather than their co-labeling with neighboring
neuronal groups.

Axonal Projection Patterns
Climbing fiber axons were traced by traditional
retrograde/anterograde approaches in all vertebrates and
found to originate from the caudal and rostral ION (Altman and
Bayer, 1987b; Paradies and Eisenman, 1993; Sawada et al., 2008;

Reeber et al., 2013). While all ION axons cross the FP and
grow in the dorsomedial inferior cerebellar peduncle toward
the contralateral cerebellum, those originating from the caudal
ION, which lies in crypto-rhombomeres r10, r11, project
to the posterior cerebellum whereas those deriving from
more rostral ION position (r8 and r9) enter the cerebellum
through the lateral inferior cerebellar peduncle, also termed
the restiform body, turn to a dorsolateral route and innervate
the lower strata of the embryonic Purkinje cell multilayer.
Fate map studies of Ptf1a+ neurons in wild type and mutated
zebrafish/mouse embryos confirmed that Ptf1a+ ION neurons
extend excitatory commissural projections that innervate
Purkinje cells (Figure 4A) (Yamada et al., 2007; Bae et al.,
2009; Hashimoto and Hibi, 2012; Itoh et al., 2020). However, a
direct link between projections of lineage-traced dA4 neurons
from different ION subdomains to different cerebellar lobules
is still missing. Moreover, as most studies traced this circuit
at stages following ION formation, the gradual growth of
dB4/Ptf1a+ axons from soon after their differentiation in the
RL remained elusive. Using an enhancer-based conditional
expression system in the chick embryo combined with the
Ptf1a enhancer element, we have targeted PTF1a+ precursors

FIGURE 4 | dA4 axonal projections. (A) A schematic sagittal section of the climbing fiber (CF) circuit of the dA4 subclass. dA4-derived ION (purple circle) is shown to
project axonal trajectory (green line) to the Purkinje cell layer of the cerebellum (green circles). (B,C) Sagital sections from E9.5 (B) or E13.5 (C) chick embryos that
were electroporated at E2.5 with a Ptf1a enhancer:Cre based plasmid together with lox-membranal GFP-lox plasmid (ptf1a:mGFP) to specifically label dA4 neurons
at r7. The section in (B) shows dA4-derived axonal trajectories ascending from the caudal hindbrain toward the developing cerebellum. The section in (C) shows
dA4-derived axonal trajectories that terminate in the cerebellum. An outer granular layer of the cerebellum is marked by Axonin 1. Bars, 50 µm. ION, inferior olivary
nuclei; Ax-1, axonin 1.
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exclusively at r7 and demonstrated that their axonal crossing
and growth toward the cerebellum (Figures 4B,C) is initiated
much before their neuronal soma migrate to the ION and
establish the mature olivocerebellar circuit (Meredith et al., 2009;
Kohl et al., 2015).

Class B: dB1 Interneurons
Specification and Fate
The dB1 subpopulation is the dorsal most group amongst class B
dINs, ventrally flanking dA4 (Figure 1A). This inhibitory group
expresses a combination of molecular markers including Ptf1a
and Ascl1 in their progenitorial stage, followed by upregulation
of Lbx1, Lhx1, Lhx5, and Pax2 (Figures 1B,C) (Gross et al.,
2002; Müller et al., 2002; Glasgow et al., 2005; Sieber et al., 2007;
Fujiyama et al., 2009; Storm et al., 2009; Hoshino, 2012; Kohl
et al., 2015; Nothwang, 2016). Multiple lineages tracing studies in
mice and chicks, together with the generation of Ptf1a−/− mice,
have indicated that dB1 neurons migrate to various locations
in the hindbrain and contribute inhibitory outputs to multiple
nuclei centers, according to their rhombomeric origin (Sieber
et al., 2007; Tashiro et al., 2007; Hori and Hoshino, 2012;
Iskusnykh et al., 2016). For instance, dB1/Ptf1a+ neurons from
r2–r5 were found to contribute to the auditory system by settling
in the DCN, or the avian homolog nucleus angularis (NA)
(Farago et al., 2006; Fujiyama et al., 2009; Kohl et al., 2015;
Lipovsek and Wingate, 2018). The DCN, which receives inputs
from the auditory nerve as well as from various brain sources,
has a complex layered organization that resembles the cerebellum
(Soares et al., 2002; Sawtell and Bell, 2013; Trussell and Oertel,
2018). Within the DCN, dB1 (Ptf1a+/lbx1+) derivatives were
shown to give rise to multiple GABAergic neuronal cell types
such as the inhibitory stellate cells, cartwheel cells, and Golgi
cells, as well as to a small glycinergic population within the
VCN (Farago et al., 2006; Fujiyama et al., 2009; Schinzel et al.,
2021). Moreover, comparative analyses of the origin of different
vestibular nuclei in mice and chick embryos have indicated that
dB1/Ptf1a+ neurons from r2–r8 also contribute to the medial,
lateral, and descending vestibular nuclei (MVN/LVN/DVN),
three relay sensory hubs located in the medial column of the
medulla and function to control eye, head and neck movements
to maintain balance (Marín and Puelles, 1995; Díaz et al., 2003;
Maklad and Fritzsch, 2003; Pasqualetti et al., 2007; Yamada et al.,
2007; Straka et al., 2014; Kohl et al., 2015; Lipovsek and Wingate,
2018; Díaz and Puelles, 2019; Lunde et al., 2019), as well as
to the spinal trigeminal nucleus and solitary nucleus (Yamada
et al., 2007). This wealth of derivatives raises the question as
to how distinct lineages of dB1 inhibitory neurons are being
generated from the longitudinal Ptf1a+ progenitorial domain in
the hindbrain RL.

Axonal Projection Patterns
Multiple axonal labeling studies and genetic fate maps uncovered
the projections of the auditory and vestibular centers, which
are likely to contain dB1/Ptf1a+ neuronal derivatives. For
instance, the mammalian DCN/avian NA was found to form
local medullary connections with the ipsilateral mammalian
VCN/avian NM. This center projects to the nearby SON and the

lateral lemniscal nuclei and extends projections through the ipsi
and contralateral DF into the mammalian inferior colliculi/avian
nucleus mesencephalicus lateralis pars dorsalis (MLD) in the
anterior midbrain, an auditory center that transmits inputs
to the medial geniculate body of the thalamus (Figure 5B)
(Rubel and Parks, 1975; Takahashi and Konishi, 1988; Puelles
et al., 1994; Cant and Benson, 2008; Krützfeldt et al., 2010a,b;
Trussell and Oertel, 2018). Moreover, the different vestibular
nuclei project via multiple ipsi and contralateral tracts to
either descend to the spinal cord via the lateral or medial
vestibulospinal tract or ascend via the medial longitudinal
fascicle (MLF) to the midbrain Edinger–Westphal nuclei (EW,
an autonomic parasympathetic component of the oculomotor
nuclear complex that connects to the orbit ciliary ganglion)
(Figure 5C). Other vestibular neurons form local connections
between different vestibular nuclei or ascend to the cerebellum
via vestibulocerebellar mossy fibers (Figure 5C) (Akert et al.,
1980; Díaz et al., 1998; Straka et al., 2001, 2014; Balaban,
2003; Barmack, 2003; Pasqualetti et al., 2007; Gottesman-
Davis and Peusner, 2010; Chagnaud et al., 2017; Di Bonito
et al., 2017; Lunde et al., 2019; Ando et al., 2020). Albeit
the importance of these brainstem circuits, the association of
these multiple axonal projections to the dB1 subgroup was
not fully confirmed, as neurons within different vestibular
nuclei were found to derive from additional dINs such as dA1
and dB2 subgroups.

To address this issue, we aimed at tracing the axons of dB1
dINs, from soon after their birth up to their arrival at their target
sites. By electroporating Ptf1a-enhancer element upstream to
Cre recombinase along with conditional GFP reporter plasmids
we were able to reliably label dB1(Ptf1A+/Lhx1/5+/Pax2+)
dINs and demonstrate their multiple axonal projections that
extended at subsequent time points (Figure 5A) (Meredith et al.,
2009; Kohl et al., 2015). The first-appearing axons crossed the
floor-plate and turned rostrally, joining either the contralateral
MLF or the contralateral DF. Next, an ascending ipsilateral
axonal tract began to project along with the ipsilateral MLF.
Finally, two more ascending ipsilateral projections were evident;
one emerged from a medial position forming an ipsilateral
funiculus (LF) whereas the other elongated in a dorsal position
forming an ipsi dorsal funiculus (DF) (Figure 5A). These axons
projected and terminated in the medulla, cerebellum, MLD,
and EW nuclei, invariably with the above-mentioned axonal
routes of the vestibular and auditory nuclei (Figures 5B,C).
These findings enabled us to connect the dB1 lineage with
typical hindbrain tracts and target sites, as well as to uncover
that dB1 axons begin to project toward different targets before
their cell body migrate and settle in their final VN/CN centers
(Kohl et al., 2015).

Taken together, the inhibitory dB1/Ptf1a+ subclass contributes
to various types of brainstem nuclei, projects into discrete tracts
at different time points, and synapses at multiple target sites.
Their various fates and functions indicate that the dB1 neuronal
group is likely to be composed of several subpopulations,
each with its birth-time and fate. Intriguingly, since a single
rhombomere gives rise to different dB1 axonal tracts and to
several neuronal lineages that settle at various nuclei centers, it
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FIGURE 5 | dB1 axonal projections. (A) A summary of dB1 axonal projections as seen in a flat-mount view of E6.5 chick embryonic hindbrain. dB1 cell bodies are
shown as blue dots. Each axonal tract is shown in a different color and refers to a distinct funiculus. (B) A schematic sagittal section of the main auditory axonal
circuits of dB1 subclass in the chick hindbrain. dAB1-derived NA (purple circle) is shown to project axons (green lines) to the NL in the medulla or to the MLd in the
midbrain (green circles). (C) A schematic sagittal section of the main vestibular axonal circuits of dB1 subclass in the chick hindbrain. dA1-derived VN (purple circle)
is shown to project axons (green lines) to the cerebellum and EW nuclei in the midbrain (green circles). FP, floor plate; iDF, ipsi dorsal funiculus; iLF, ipsilateral
funiculus; iaMLF; ipsilateral ascending; caMLF, contralateral ascending medial longitudinal funiculus; cdMLF, contralateral descending medial longitude in nucleus
laminaris; MLD, mesencephalicus lateralis pars dorsalis; VN, vestibular nuclei; EW, Edinger–Westphal.

is likely that several rhombomere-specific regulators, which are
unknown yet, act in defined spatiotemporal patterns to provide
such intra-segmental diversity.

Class B: dB2 Interneurons
Specification and Fate
The dB2 subpopulation is an excitatory group that develops
in r2–r6, ventral to dB1 (Figures 1A,B). In contrast to
its neighboring subgroups, it does not express Ascl1 in its
progenitorial state but expresses Lbx1 and Phox2b upon
differentiation (Figure 1B). In r4–r6, dB2 INs also express
Phox2a, indicating at least two dB2 subgroups in the hindbrain
(Sieber et al., 2007; Dubreuil et al., 2009; Rose et al., 2009a,b;
Storm et al., 2009). Interestingly, this subpopulation is hindbrain-
specific as no equivalent spinal dIN subgroup exists. Genetic
fate map studies in rodents, combined with the generation of
Lbx1/Phox2b-deficient mice, uncovered the contribution of dB2
(Lbx1+/Phox2b+) neurons to the RTN/parafacial respiratory
group (pFRG) in the ventral medulla. This glutamatergic
center relays modulatory input to the preBötC to control
respiration rhythm by chemosensing CO2 levels in the blood

(Stornetta et al., 2006; Pagliardini et al., 2008; Dubreuil et al.,
2009; Guyenet et al., 2009; Thoby-Brisson et al., 2009; Feldman
and Kam, 2015; Ikeda et al., 2015, 2017). Notably, the dB2-
RTN precursors begin to express Atoh1 once they mature,
serving as the only non-dA1 subgroup which requires this
gene for its development (Dubreuil et al., 2009; Rose et al.,
2009a,b; van der Heijden and Zoghbi, 2018). Elegant lineage
tracing strategies uncovered that dB2/Phox2b+ RTN neurons
arise from r3/r5/Krox20+ domains, and as such, mouse or human
mutations in Phox2b or Krox20 lead to respiratory rhythm
impairments (Jacquin et al., 1996; Weese-Mayer et al., 2005;
Dubreuil et al., 2008; Pagliardini et al., 2008; Champagnat et al.,
2009; Thoby-Brisson et al., 2009). In addition, dB2 neurons are
also likely to contribute to the VN complex; fate map analysis of
Hoxb1GFP reporter mice showed that the LVN, which regulates
the vestibulospinal reflex to maintain proper balance via the back
and limb muscles, originate from Hoxb1+ precursor neurons in
r4 which co-express the dB2 markers Lbx1/Phox2b/Phox2a, and
fails to form in Hoxb1-null mice (Díaz et al., 1998; Maklad and
Fritzsch, 2003; Chen et al., 2012; Di Bonito et al., 2015). Yet,
although detailed chick/mouse fate map studies have previously
delineated the rhombomeric origin of all VN subtypes in the
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hindbrain, (Díaz et al., 1998; Cambronero and Puelles, 2000;
Pasqualetti et al., 2007), their association to dB2 dINS that
originate from various rhombomeres has not been shown yet.

Axonal Projection Patterns
As described above, intersectional fate maps demonstrated
the contribution of dB2 dINs to respiratory and vestibular
circuits. However, knowledge regarding the axonal patterns of
genetically-identified dB2 dINs, either before their arrival to their
nuclei centers or after they settle in their final destinations, is
sketchy. Data from Atoh1lacZ reporter mice have demonstrated
that mature pFRG/RTN neurons extend LacZ-labeled axons
toward the ipsilateral preBötC (Figure 6) (Huang et al., 2012).
Furthermore, multiple anterograde/retrograde studies, as well
as electrophysiological analyses in the mature brainstem, have
demonstrated that the pFRG/RTN relays glutamatergic inputs
to other hindbrain areas, in addition to the pre-BötzC centers,
such as to the ventral respiratory column in the medulla,
the ipsilateral, ventrolateral, and intermediate subnuclei of
the NTS, the PBN/KF at the dorsolateral pons, and the
noradrenergic A5 cluster (Stornetta et al., 2006; Dubreuil
et al., 2009; Guyenet et al., 2009; Thoby-Brisson et al., 2009;
Bochorishvili et al., 2012; Feldman and Kam, 2015; Ikeda et al.,
2017). Despite these findings, it is not fully clear whether
all these projections arise from dB2-derived neurons in the
pFRG/RTN or from other types of neurons that cluster in these
heterogenic nuclei.

In addition, r4-derived VLN neurons, which are likely to
originate from dB2 subpopulation, were found to project to
the ipsilateral vestibulospinal tract (LVST), that descends along
the spinal cord to connect to motor neurons of the extensor
musculature of the limbs and the trunk (Figure 6). These LVST
axons extend in a ventromedial direction toward the inferior
olive, thereupon turning and descending through the medullary
reticular formation within the ipsilateral ventral funiculus, and
terminates at cervical and lumbosacral levels on INs residing
in the ventral gray column (Díaz et al., 1998; Auclair et al.,
1999; Straka et al., 2001, 2014; Maklad and Fritzsch, 2003;

Pasqualetti et al., 2007; Chen et al., 2012; Liang et al., 2014; Di
Bonito et al., 2015; Lunde et al., 2019).

Altogether, the complex reality of several dB2 subgroups
as recognized by their unique transcriptional profile and
fates among different rhombomeres, require further fate map
investigations to reveal their precise destination and axonal
connection to different somatosensory brain circuits.

Class B: dB3 Interneurons
Specification and Fate
The excitatory dB3 neuronal population is born ventrally to
the dB2 subgroup in r2–r6, and to dB1 in r7 (Figure 1A). dB3
is derived of a Ascl1+ progenitor domain and has a unique
transcriptional profile of Lbx1/Tlx3/Lmx1b/Pou4f1/FoxP2
(Cheng et al., 2004; Mizuguchi et al., 2006; Sieber et al., 2007;
Pagliardini et al., 2008; Storm et al., 2009; D’Autréaux et al.,
2011; Gray, 2013) (Figures 1B,C). Multiple fate map studies
of Ascl1+/Lbx1+/Tlx3+ neurons, as well as knockout of these
genes, have suggested that Ascl1+/Lbx1+/Tlx3+ neurons
contribute to the development of somatic sensory nuclei in the
hindbrain, such as the spinal trigeminal nuclei (Sp5) and the
principal trigeminal nucleus (Pr5), that relay various sensory
modalities including temperature, touch, and pain from the
ipsilateral faces (Qian et al., 2001, 2002; Sieber et al., 2007; Kim
et al., 2008). Yet, genetic intersection approaches to target only
dB3 dINs, rather than various Ascl1+/Tlx3+/Lbx1+-expressing
neurons, have not been performed. Hence, the involvement of
this subgroup in the brainstem somatic sensory system as well as
its possible contribution to other hindbrain nuclei centers needs
to be fully determined.

Axonal Projection Patterns
Axonal projections of brainstem relay somatic sensory neurons
have been well described in adult brains. For instance, neurons
originating from different subparts of the Sp5 nucleus project to
several thalamic domains via the contralateral ventral trigeminal
tract, such as the ventral posteromedial nucleus, the posterior
group, and the region intercalated between the anterior pretectal

FIGURE 6 | dB2 axonal projections. A schematic sagittal section of the main respiratory and vestibular circuits of dB2 subclass. dB2-derived pFRG or LVN nuclei
(purple circles) are shown to project axons (green lines) to the hindbrain preBötC nuclei or to descend toward the spinal cord motor neurons (green circles).
pFRG/RTN, parafacial respiratory group/reticulotegmental nucleus; LVN-lateral vestibular nucleus; preBötC-pre Bötcinger.
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and the medial geniculate nuclei. Sp5 neurons were also shown
to project to the contralateral inferior colliculus in the midbrain,
as well as to the local Pr5 nuclei and the granular, bushy, and
stellate cell layers of the brainstem CN (Veinante et al., 2000;
Zhou and Shore, 2006; Zeng et al., 2011; Heeringa et al., 2018).
Furthermore, different subsets of Pr5 neurons were shown to
project to centers in the medulla and pons such as the ipsi
and contralateral solitary tract, the rostroventrolateral reticular
nucleus, the AMB nucleus, the lateral reticular nucleus, and
the ipsilateral PBN, as well as to the red nucleus (de Sousa
Buck et al., 2001; Pinto et al., 2007). Interestingly, Lbx1−/−

mice were reported to extend misrouted tracts, where medullary
longitudinal fibers shifted from ventral to more dorsal positions
(Pagliardini et al., 2008). Yet, whether these fibers extended from
dB3/Lbx1+ neurons in the Sp5/Pr5 nuclei, is not fully clear.
Moreover, as Sp5 and Pr5 nuclei are divided into several sub-
centers, the relative contribution of dB3 neurons to these nuclei
and their multiple axonal projections has to be deciphered.

Class B, dB4 Interneurons
Specification and Fate
The dB4 subpopulation is the ventral most group of hindbrain
dINs, located ventral to dB3 (Figure 1A). Derived from
Neurog1/2 progenitor domain, dB4 INs are inhibitory and
express a combination of markers including Lhx1/5, Pax2,
bHLHb5, Wilms tumor protein (Wt1), and presumably also the
double sex/male abnormal 3 (DMRT3) (Figures 1B,C) (Gross
et al., 2002; Müller et al., 2002; Sieber et al., 2007; Gray,
2008; Pagliardini et al., 2008; Hernandez-Miranda et al., 2017;
Schnerwitzki et al., 2020). Notably, their spinal cord homolog
group dI6, which shares a similar molecular profile and DV
localization as dB4, was found to consist of three distinct
subgroups, based on their singular or co-expression of Wt1
and/or DMRT3 (Gross et al., 2002; Helms and Johnson, 2003;
Vallstedt and Kullander, 2013; Hernandez-Miranda et al., 2017;

Schnerwitzki et al., 2020). dI6 neurons were found to migrate to
the ventral horn of the spinal cord and to coordinate locomotion
in different mammals (Andersson et al., 2012; Vallstedt and
Kullander, 2013; Haque et al., 2018; Schnerwitzki et al., 2018).
Nevertheless, it is currently uncertain whether the dB4 subgroup
is also heterogeneous in Wt1/DMRT3 expression and whether it
also plays a role in locomotion coordination.

In a previous study, hindbrain WT+ neurons were discovered
in the AP nucleus, suggesting that dB4/WT+ neurons may be
fated to contribute an inhibitory module to this nucleus, in
addition to the presence of excitatory dA3 neurons in the AP
(Sharma et al., 1992). Recent data have uncovered an additional
fate of Wt1+ neurons in the caudal ventral respiratory group
(cVRG) (Schnerwitzki et al., 2020). This neuronal cluster is
positioned in the caudal-most part of the respiratory column and
is known to participate in the activation of motor neurons in
the cervical spinal cord, which in turn innervate the diaphragm
muscles, leading to their contraction and thereby to inspiration
(Ezure et al., 2003; Alheid and McCrimmon, 2008). As such,
ablation of Wt1+ neurons resulted in the death of neonates due
to the inability to initiate respiration, suggesting a vital role for
Wt1+ neurons in breathing (Schnerwitzki et al., 2020). Since WT
expression in the dINs is restricted to the dB4 subgroup, these
results strongly suggest the contribution of the dB4 subgroup
to respiratory control. Yet, as dB4 dINs appear along the entire
hindbrain AP axis, this subgroup is likely to contribute to
additional brainstem nuclei.

Axonal Projection Patterns
In the spinal cord, dI6/DMRT+ neurons project ipsi and
contralateral axons that innervate somatic motoneurons of
tibialis anterior and/or gastrocnemius (Andersson et al.,
2012; Vallstedt and Kullander, 2013). Although dB4/WT+
subpopulation was found to contribute to the AP and cVRG
(Figure 7) (Sharma et al., 1992; Schnerwitzki et al., 2020), genetic
labeling of their axons and target sites has not been performed

FIGURE 7 | dB4 axonal projections. A schematic sagittal section of dB4/WT1+ axonal circuit. dB4-derived cVRG (purple circle) is shown to project axons (green line)
to pMNs in the cervical spinal cord (green circle). WT, Wilm’s tumor 1; cVRG, caudal ventral respiratory group; pMN, pre motor neurons.
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as of yet. Hence, while multiple ipsi and contralateral axonal
projections are known to arise from the AP to target multiple
nuclei sites in the medulla and the upper brain (van der Kooy
and Koda, 1983; Shapiro and Miselis, 1985; Price et al., 2008;
Stein and Loewy, 2010), it is not yet clear whether any of these
targets are innervated by dB4 axons. In addition, cVRG sends
commissural axons that descend in the ventromedial medulla
toward their premotor neuronal targets in the contralateral
cervical spinal cord that are responsible to activate inspiratory
and expiratory motor neurons (Ezure et al., 2003; Alheid and
McCrimmon, 2008). Although this tract is likely to be projected
from the dB4/WT+ cVRG neurons (Figure 7) (Schnerwitzki
et al., 2020), tracing of genetically labeled dB4 axons is required to
fully support this data as well as to identify additional projections
from more rostral dB4 neurons.

MOLECULAR REGULATORS THAT
CONTROL AXONAL GROWTH OF
HINDBRAIN dINS

Axonal growth is a multi-event process that includes
axonogenesis, pathfinding, arborization, and establishment
of terminals on appropriate postsynaptic structures (Chédotal
and Richards, 2010; Stoeckli, 2018; Comer et al., 2019). As
different dA/dB subgroups display multiple types of axonal
routes, they are likely to share common molecular cues that, for
instance, guide their axonal crossing across the FP or extend their
projections in fasciculated funiculi. In parallel, each neuronal
subtype is also likely to respond to individual cues that determine
its particular axonal pattern. Identification of such cues is crucial
for uncovering how brainstem circuitries are assembled during
normal development or misassembled in neurodevelopmental
disorders. Less knowledge exists on dA/dB hindbrain axons, as
opposed to their dI/dB spinal cord homologs. A summary of the
knowledge on dA/dB axonal growth regulation is presented here,
according to different types of molecules. Notably, although dINs
undergo extensive neuronal cell body migration in parallel to
growing axons, this topic is not discussed here.

Transcription Factors
Lhx
Lim-HD proteins control multiple aspects of neuronal
development, including axonal guidance (Hobert and Westphal,
2000; Kania et al., 2000; Shirasaki and Pfaff, 2003; Wilson et al.,
2008; Avraham et al., 2009; Roy et al., 2012). In particular,
different Lhx protein members are expressed in the spinal cord
and forebrain and regulate axonal growth and neurotransmitter
type of different neuronal populations (Pillai et al., 2007; Wilson
et al., 2008; Avraham et al., 2009; Palmesino et al., 2010; Chou
and Tole, 2019). In the hindbrain, particular dA/dB subgroups
express different Lhx’s proteins; Lhx2/9 are specific to dA1, while
Lhx1/5 are specific to dB1 and dB4 (Gray, 2008; Hernandez-
Miranda et al., 2017). To address whether these factors govern
the specific axonal paths of each subgroup, we have switched
between the expression of the dA1-specific Lhx2/9 and the
dB1-specific Lhx1/5 genes, such that each neuronal population

was forced to express the Lhx’s of the other. This modification
did not affect their specification but was sufficient to misdirect
axonal patterns and target sites of one subgroup to phenocopy
the patterns of the other (Kohl et al., 2012, 2015). As such,
dA1 axons shifted to target the Purkinje cell layer, and dB1
axons terminated at the granular cell layer of the cerebellum,
demonstrating the important regulatory role of the Lhx code in
assembling dA/dB axonal circuits in the developing brainstem.
To uncover the mechanism by which Lhx proteins control
dA/dB axonal patterns, downstream effector genes that act as
guidance cues should be uncovered. Notwithstanding is the fact
that although Lhx2/9 or Lhx1/5 are longitudinally expressed
in dA1/dB1 subgroups along with the entire hindbrain, several
axonal trajectories extend from each subgroup (Figures 2, 5),
indicating that other factors guide the growth of axons within
each group, in addition to Lhx proteins.

Hox
As Hox genes are fundamental for the segmental identity and
patterning of rhombomeres, their involvement in regulating
axonal projections of dINs that originate from individual
rhombomeres has been suggested. Well-designed fate map
analyses of individual rhombomeres using Hox-specific
enhancers, together with the characterization of mutant
mice/zebrafish, uncovered the role of Hox genes in governing
vestibular, trigeminal, branchial, auditory, pre-cerebellar, and
somatosensory nuclei projections (Carpenter et al., 1993; Marín
and Puelles, 1995; Gavalas et al., 1997; Glover, 2000; del Toro
et al., 2001; McClintock et al., 2002; Maklad and Fritzsch,
2003; Farago et al., 2006; Oury et al., 2006; Pasqualetti et al.,
2007; Geisen et al., 2008; Narita and Rijli, 2009; Di Bonito
et al., 2013, 2015; Lipovsek and Wingate, 2018; Beiriger et al.,
2021). For example, Hoxa2 was found to be required for the
contralateral projections of dA1-derived AVCN axons to the
medial nucleus of the trapezoid body (MNTB), which aberrantly
innervated the ipsilateral MNTB in Hoxa2 mutants (Di Bonito
et al., 2013). Hoxa2 was also found to be involved in the
topographic specificity of axons extending from the dB3-derived
Pr5 nuclei to the thalamic ventral posterior medial (MPV)
nucleus (Oury et al., 2006). Yet, many of these studies focused
more on neuronal cell body migration rather than on axonal
projections or did not associate defined projection patterns with
genetically identified dA/dB subclasses. Hence, more data is
required to further illuminate the role and manner of action of
Hox genes in governing axonal growth decisions of particular
dA/dB dorsal INs.

Zic
The transcription factor Zic1, a member of the Zinc Finger of
the Cerebellum (Zic) family, is expressed in PGN neurons in the
ventral hindbrain. Zic1 was found to drive axon laterality choice
to the ipsilateral, rather than the contralateral pontocerebellar
tract, by inhibiting axonal midline crossing (DiPietrantonio
and Dymecki, 2009). PGN neurons belong to dA1/Atho1+ MF
neuronal subgroup that arises in the caudal hindbrain. While
Zic1 effectors that inhibit dA1 axonal crossing are not known,
previous studies in the spinal cord or the upper brain have found
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that Eph receptors are induced by Zic proteins to activate the
repulsive Eph-ephrin signaling cue (García-Frigola et al., 2008;
Lee et al., 2008; Escalante et al., 2013). Future studies are required
to reveal whether Zic1 upregulates Eph receptors in MF neurons
and whether it impacts axonal growth decisions in additional
neuronal subgroups along the rhombic lip that extend axons to
both sides of the hindbrain.

Axonal Guidance Cues
Robo/Slit
Roundabout (Robo) family of transmembrane receptors and
their soluble ligands Slit are chemorepulsive cues fundamental
for commissural axonal guidance in the CNS (Tessier-Lavigne
and Goodman, 1996; Dickson and Gilestro, 2006). Mutations
in human Robo genes were found to disrupt hindbrain axon
crossing in patients with horizontal gaze palsy with progressive
scoliosis (Jen et al., 2004). Multiple studies in mice have shown
a conserved role of Robo/Slit signaling in guiding commissural
axons in the hindbrain, before and after crossing the FP (Lee
et al., 2001; Causeret et al., 2002; Bloch-Gallego et al., 2005;
Howell et al., 2007; Tamada et al., 2008; Bouvier et al., 2010;
Renier et al., 2010; Mirza et al., 2013; Friocourt et al., 2019). For
instance, PCN/MF neurons and auditory AVCN neurons, that are
both generated from the dA1/Atoh1+ group, require Robo/Slit
signaling for axonal elongation from the dorsal rhombic lip
toward the FP and for crossing the midline, which fails to
occur in Robo3 mutant mice (Marillat et al., 2004; Renier
et al., 2010). Similarly, ION/CF neurons, that originate from
dA4/Ptf1a+ progenitors and extend contralateral fibers toward
the cerebellum, require Robo3 signaling for their axonal crossing,
as shown by their abnormal extension of ipsilateral processes
in Robo3 deficient mice (Marillat et al., 2004). At variance, the
knockout of other Robo/Slit members such as Robo1/2 or Slit1/2
did not impair the midline crossing of PCN axons, although it
severely affected their cell body migration (Geisen et al., 2008).
Interestingly, Robo1/3 expression was found to be induced by
Lhx2/9 and to control axonal growth of thalamocortical and
spinal neurons (Wilson et al., 2008; Chatterjee et al., 2012).
These findings may suggest that the regulatory role of Lhx2/9
on dA1 axons (Kohl et al., 2012, 2015) is mediated by Robo3.
Yet, an opposite role of Lhx2/9 to prevent the expression of
Slit was recently found in retinal ganglion axons (Yang et al.,
2020), indicating that the inductive or inhibitory role of Lhx2/9
on Robo/Slit signaling is context-dependent. Another interesting
upstream regulator of Robo3 in the hindbrain is Hoxa2; In the
dA1-derived AVCN, Robo3 expression was found to be induced
by Hoxa2 and to be necessary to guide AVCN axons to project
into the contralateral medulla (Di Bonito et al., 2013).

Adhesion Molecules
Cell adhesion molecules (CAMs) are instructive for axonal
pathfinding, elongation, and fasciculation (Walsh and Doherty,
1997; Colman and Filbin, 1999; Hirano et al., 2003; Bloch-
Gallego et al., 2005; Pollerberg et al., 2013). Several previous
studies discovered various cadherin (Cdh) subtypes (i.e., N-Cdh,
E-Cdh, Cdh6/8/11, and protocadherins7/10) that are expressed in
dA/dB-derived nuclei, such as in the trigeminal, raphe, inferior

olive, pre-cerebellar, and vestibular nuclei (Shimamura et al.,
1992; Redies and Takeichi, 1993; Korematsu and Redies, 1997;
Taniguchi et al., 2006; Neudert and Redies, 2008). Confirmation
of their role in axonal guidance was shown in the LRN, ECN,
and PN, which originate from dA1 dINs and require N-Cdh and
Cdh11 for their soma and axonal migration toward the FP, or
Cdh7 for their projection toward the cerebellum (Taniguchi et al.,
2006; Kuwako et al., 2014). Interestingly, an interplay between
Robo and N-Cdh was shown to guide spinal commissural axons
of dI1/dI2 subgroups into longitudinal tracts that participate
in the spinocerebellar projection (Sakai et al., 2012), raising
the possibility that these cues also cooperate in hindbrain
PCN/ION axonal migration. Two additional adhesion molecules,
the NgCAM-related CAM Nr-CAM and its receptor TAG-1 were
also found to be expressed in the caudal hindbrain; Nr-CAM
is expressed in the dA4-derived ION neurons whereas Tag1 is
restricted to the dA1-derived PCN (Backer et al., 2002). As Tag1
and Nr-CAM play crucial roles in commissural axon guidance
across the spinal cord midline (Stoeckli and Landmesser, 1995;
Lustig et al., 2001), it remains to be determined whether they
play a similar role in hindbrain axons. Finally, nectin-like
proteins (Necl1/3) were found to be involved in the regulation
of commissural axonal trajectories in the anterior hindbrain, as
their perturbation caused abnormal fasciculation in the form
of failure to turn longitudinally at the contralateral side of the
rat hindbrain (Okabe et al., 2004). Although not genetically
identified, their position suggests they are likely to arise from the
dA1 subgroup in r1.

Eph-Ephrin
Eph proteins, including the Eph receptors and their ligands
ephrins, are fundamental for axonal guidance in the CNS (Cheng
et al., 1995; Cramer and Gabriele, 2014; Klein and Kania, 2014;
Milinkeviciute and Cramer, 2020). A series of elegant studies
in the auditory hindbrain uncovered the role of EphA4/B2/B3
receptors in regulating axonal connectivity of the dA1-derived
NM-NL binaural circuit in avian, or in the projection of the
VCN nuclei, which consist of dA1 and dB1 neurons, to the
contralateral MNTB in mice. Disruption in these receptors in
chick or mouse embryos resulted in axonal misrouting and
various targeting errors (Cramer et al., 2004, 2006; Huffman and
Cramer, 2007; Hsieh et al., 2010; Abdul-latif et al., 2015). EphA-
ephrinA interactions also play a role in guiding the turning point
of axons that project from caudal vestibular neurons (cC-VC)
once they cross the midline and extend longitudinally toward
the cerebellum (Zhu et al., 2006). Although the genetic identity
of these neurons was not shown in this study, their cell body
position and axonal patterns suggest that they originate from
the dA1 subgroup. Finally, EphA-ephrinA interaction was also
suggested to guide ION axons that derive from the dA4 subgroup
to their correct targets in the cerebellum (Nishida et al., 2002).
Interestingly, data from the spinal cord suggested that limb
innervation by lateral motor column neurons depends on EphA4,
which is a downstream target of Lhx1 (Kania et al., 2000), raising
the possibility that also in the hindbrain, Lhx proteins, which
were found to control dA1/dB1 axonal projections (Kohl et al.,
2012, 2015), are upstream to Eph-ephrin signaling.
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Netrin/Deleted in Colorectal Cancer
Multiple pieces of evidence have shown the involvement of
the chemoattractant molecule Netrin and its receptor Deleted
in Colorectal Cancer (DCC) in hindbrain commissural axons
(Keino-Masu et al., 1996; Guthrie, 1997; Bloch-Gallego et al.,
2005). For instance, dA1-derived VCN axons, which express
DCC, cross the midline to target the contralateral superior olivary
complex (SOC). Yet, mice mutated for DCC lack VCN axonal
outgrowth (Howell et al., 2007). Moreover, dA1-derived PCN,
dA4-derived ION, or dB3-derived Pr5 trigeminal nuclei draw
their axons to cross the midline and ascend in defined funiculi
toward upper brain regions. Their projection toward the midline,
crossing of the FP, and post-crossing trajectories was severely
impaired in Netrin or DCC mutants (Yee et al., 1999; Alcantara
et al., 2000; Causeret et al., 2002; de Diego et al., 2002; Mirza
et al., 2013; Shoja-Taheri et al., 2015; Dominici et al., 2017).
Moreover, recent studies uncovered that in the aforementioned
knockouts, some of these nuclei project abnormal axons into
the PNS along the trigeminal, auditory, and vagal nerve routes
(Moreno-Bravo et al., 2018; Yung et al., 2018). Together, these
data indicate that the netrin-DCC signaling system is required for
establishing proper axonal projections of auditory, pre-cerebellar,
and somatosensory hindbrain neurons together with maintaining
a clear CNS-PNS boundary in this region.

Neuropilin/Semaphorin
The role of the neuropilin (Npn) receptors and their semaphorin
(Sema) ligands in axonal growth is well known in various sensory
and motor neural systems (Neufeld et al., 2002; Meléndez-
Herrera and Varela-Echavarría, 2006; Pasterkamp, 2012). In the
hindbrain, Nrp1 and Sema3A were found to form gradients
across the projections of A1-derived pontine axons (Solowska
et al., 2002), whereas Npn-1/2 were shown to be expressed
in axons projecting from the NTS, which contain dA3-derived
neurons (Corson et al., 2013). These spatiotemporal expression
patterns indicate that the Npn and Sema families of axon
guidance molecules are potential molecular regulators for dA1
and dA3 axonal trajectories. Furthermore, previous data from
zebrafish embryos have shown that hindbrain axons that project
along the MLF, require Sema3D to promote their fasciculation,
which was mediated by the upregulation of the adhesion molecule
L1 CAM (Wolman et al., 2007). As many sorts of axons, including
those projecting from several dA/dB neuronal subtypes, ascend
or descend along the MLF, Npn-Sema signaling may have a broad
role in hindbrain axonal guidance.

The RNA Binding Protein Fragile X
Mental Retardation Protein
The RNA binding protein FMRP is broadly expressed in
the CNS where it acts as a reversible repressor of specific
mRNA translation (Darnell et al., 2001; Davis and Broadie,
2017). Functional loss of FMRP leads to fragile X syndrome, a
neurodevelopmental disorder with severe cognitive impairment
(Hagerman et al., 2017). Multiple studies have supported
the role of FMRP in axonal development, as, for example,
FMRP knockout results in excessive axonal branches in motor
neurons and abnormal projection patterns in the forebrain

FIGURE 8 | CRISPR-mediated FMRP knockout induces disoriented axonal
growth in dA1-derived NM neurons in the chick hindbrain. (A–B′)
Flat-mounted hindbrains from embryos electroporated with control (A) or
FMRP (B) CRISPR/Cas9- guide RNA-GFP plasmids. Electroporated NM
axons are GFP-labeled. Higher-magnification views of the boxed areas in
(A,B) are shown in (A′,B′). Yellow arrows indicate aligned axons that cross the
hindbrain midline (A,A′). Dashed yellow arrows indicate disoriented axons
(B,B′). (C,D) Cell cultures from GFP-expressing NM neurons that were
electroporated with the above-mentioned plasmids. Control cells (C) project
straight and oriented axons. FMRP-knockout cells (D) project over-branching
axons Scale bars: 50 µm. FP, floor plate; NM, nucleus magnocellularis;
CRISP, Crisper/Cas9-based plasmids.

(Bureau et al., 2008; Shamay-Ramot et al., 2015; Scharkowski
et al., 2018). Notably, FMRP was found to associate with RNAs
that encode axonal guidance molecules, such as netrin and Dscam
(Jain and Welshhans, 2016; Kang et al., 2019). We have recently
uncovered the role of FMRP in dA1-derived neurons of the
auditory NM nuclei in the chick. FMRP was found to localize
in axons of dA1/NM neurons, and its downregulation led to
perturbed axonal pathfinding, delay in midline crossing, excess
branching of neurites, and axonal targeting errors during the
period of auditory circuit development (Figure 8) (Wang et al.,
2020). This finding provided the first in vivo identification of
FMRP activity in developing axons in the hindbrain. Further
studies are required to elucidate FMRP-downstream RNA targets
in dA1 axons and to uncover whether fragile X patients suffer
from axonal development deficits in the auditory brainstem.

CONCLUDING REMARKS

The orderly and conserved development of the segmented
hindbrain in vertebrates, together with its fundamental roles to
transmit and process sensory-motor orders that arrive from the
surroundings, or the spinal cord and higher brain centers, makes
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it a fascinating CNS domain. Yet, how it is set to produce
diverse neurons that are programmed to assemble dedicated
neuronal circuits that execute a wealth of physiological actions,
is only partially clear. The ground plan to develop 8 dINs
subclasses along the longitudinal axis of the hindbrain which
have to respond to antagonistic roof plate and floor plate DV
cues along with rhombomere-specific AP positional information
is unique. Many important studies along the years have initially
mapped definite DV and AP positions in the hindbrain that
drive specific axonal tracts and neuronal clustering which
in turn give rise to different brainstem nuclei. With the
generation of transgenic and mutant animal models, the genetic
code of all individual dA/dB subtypes has been decoded,
enabling investigation of the developmental program, circuit
formation, and fate of dA1-4/dB1-4 neuronal subgroups. Yet,
many challenges remain to fully correlate the identity of
specific dINs in the early embryo with brainstem nuclei and
projections at advanced stages, to identify the mechanism
by which each dA/dB subgroup, which displays a uniform
genetic identity along the AP axis, can eventually give rise
to different types of neuronal cell types with distinct axonal
connections, target sites, and functions, and to uncover how
multiple attractive and repulsive axonal cues are orchestrated to
guide the step-by-step assembly of multiple axonal projections
that arise from individual and/or neighboring dINs in the
developing hindbrain.
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