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Editorial on the Research Topic

The human brain multiscale imaging challenge

Introduction

The combination of tissue preparation techniques (Costantini et al., 2019), advanced

optical microscopy (Abdelfattah et al., 2022), and big data analysis is revolutionizing the

way of studying the brain anatomy (Ueda et al., 2020). These techniques already allowed

mapping of cell distribution or reconstruction of neuronal circuits in whole mouse brains

(BRAIN Initiative Cell Census Network, 2021; Silvestri et al., 2021). However, the analysis

of the human brain is still in its infancy. Such specimens present specific challenges that

need to be solved in comparison to animal models: massive dimension of the specimen

(up to several cm3), geometry, variability of post-mortem fixation conditions and storage,

presence of blood inside the vasculature, autofluorescence signals from lipofuscin-type

pigments, and consistency of cellular labeling. In addition, alteration of antigens, due

to fixation and storage conditions, may prevent reliable immunostaining (Weiss et al.,

2021; Pesce et al., 2022). Various optical technologies have started to address human

brain reconstruction in combination with advanced staining methods or relying on

label-free detections (Axer et al., 2016; Wang et al., 2018; Menzel et al., 2020; Costantini

et al., 2021a) but much remains to be done. Moreover, the capability of achieving the

reconstruction of human brains has also raised the problem of creating new software

platforms that enable to manage, analyze, and share TB-sized volumetric images (Tyson

and Margrie, 2022). In this collection various methodologies are proposed to perform

human brain study from the macro- to the microscale. These studies are summarized in

the following paragraphs.
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Comparison of di�erent tissue
clearing methods for
three-dimensional reconstruction of
human brain cellular anatomy using
advanced imaging techniques

In this study, Scardigli et al. evaluated different tissue

transformation approaches to find the best solution to uniformly

clear and label all neurons in the human cerebral cortex

to perform 3D reconstruction with light-sheet fluorescence

microscopy (LSFM) (Hillman et al., 2019). They applied to adult

human brain samples various tissue transformation protocols:

CLARITY (Chung et al., 2013; Costantini et al., 2015), SWITCH

(Murray et al., 2015; Costantini et al., 2021b), SHIELD (Park

et al., 2018), and ExM (Expansion Microscopy) (Chen et al.,

2015). Then they optimize a specific procedure to obtain

homogeneous staining of the samples with high-density epitopes

marker such as NeuN (neuronal nuclear antigen). Finally, they

performed mesoscopic high-resolution 3D reconstruction of the

successfully cleared and immunostained samples with a custom-

made LSFM.

Scatterometry measurements with
scattered light imaging enable new
insights into the nerve fiber
architecture of the brain

Menzel et al. developed a method based on visual light

scattering (Scattered Light Imaging SLI, introduced in Menzel

et al., 2021) to infer fiber orientations, particularly in crossing

fiber configurations, in unstained histological brain sections.

They used a display with individually controllable light-emitting

diodes to measure the full distribution of scattered light behind

the sample (scattering pattern) for each image pixel recorded

at once, enabling scatterometry measurements of whole brain

tissue samples. Finally, they performed SLI scatterometry

measurements of a human brain section with 3-µm in-plane

resolution, demonstrating that the technique is a powerful

approach to gain new insights into the nerve fiber architecture

of the human brain and to construct a detailed network model

of the brain.

Structural brain imaging predicts
individual-level task activation maps
using deep learning

In the presented work, Ellis and Aizenberg aim to obtain

information that can accurately predict variations in task

activation between individuals from structural imaging. To

this end, they trained a convolutional neural network to use

structural imaging (T1-weighted, T2-weighted, and diffusion

tensor imaging) to predict 47 different functional MRI task

activation volumes across seven task domains. These results

obtained indicate that indeed structural imaging contains

information that is predictive of inter-subject variability in task

activation mapping and that cortical folding patterns, as well as

microstructural features, could be a key component to linking

brain structure to brain function.

Three dimensional-arterial spin
labeling evaluation of improved
cerebral perfusion after limb remote
ischemic preconditioning in a rat
model of focal ischemic stroke

The purpose of Zheng et al. is to investigate the application

of 3D arterial spin labeling (3D-ASL) (Zhang et al., 2015) for

evaluating distal limb ischemic preconditioning (Basalay et al.,

2020) to improve acute ischemic stroke (AIS) perfusion. The

study is divided in two analysis. The first one is conducted on 40

patients with AIS and 15 healthy individuals in whom diffusion-

weighted imaging (DWI), magnetic resonance angiography

(MRA), and 3D-ASL, and cerebral infarct volume and cerebral

blood flow (CBF) were measured in the area of the infarct

lesion. The second part is performed on rats to characterize

the cerebral artery occlusion (MCAO) in correlation with limb

remote ischemic preconditioning (LRP). From the work on

patients the authors found that hypertension and internal

carotid atherosclerosis are high-risk factors for ischemic stroke,

and CBF values in the infarct area are significantly lower

than those in the corresponding regions of the contralateral

side. From the second part of the study, they found that

LRP reduced cerebral infarct size and improved neurological

function in rats after ischemic stroke, while CBF measurements

reflected a corresponding improvement in perfusion. The

authors concluded that 3D-ASL can be used to evaluate LRP to

improve stroke perfusion, and its protective effect may be closely

related to LRP-induced vascular regeneration.

Conclusion

Characterizing the human brain cytoarchitecture,

myeloarchitecture, and angioarchitecture, remains one of

the biggest challenges of neuroscience. Optical imaging is a

powerful tool to analyze such networks and their relationships

to cellular anatomy at the microscopic level, which is not

achievable by traditional imaging techniques such as dMRI

and could lead to better understanding of connectivity, brain

development and pathology. Addressing the morphomolecular

specificities of cellular diversity globally in the human brain at
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multiple levels of resolution requires a large-scale, convergent

efforts from several disciplines. The papers included in the

present collection demonstrates that only the combination

of knowledge among various fields, methods, and modalities

allows describing the complexity of the brain in an integrated

and useful manner. This approach reflects the efforts of massive

projects such as the BRAIN Initiative Cell Census Network

(BICCN), the BRAIN Initiative Cell Atlas Network (BICAN),

and the Human Brain Project (HBP). Realizing human

brain atlases with a comprehensive structural and molecular

characterization at the cellular level will allow to determine the

roles of the different cell types in health and disease, explain

the functional alterations occurring in specific cell populations

and brain regions as part of a given disease process, opening

the possibility of deeply understanding brain’s functionalities,

while providing accessible, permanent high-quality datasets to

the scientific community.
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