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The morphological analysis of dendritic spines is an important challenge for the

neuroscientific community. Most state-of-the-art techniques rely on user-supervised

algorithms to segment the spine surface, especially those designed for light microscopy

images. Therefore, processing large dendritic branches is costly and time-consuming.

Although deep learning (DL) models have become one of the most commonly used

tools in image segmentation, they have not yet been successfully applied to this

problem. In this article, we study the feasibility of using DL models to automatize

spine segmentation from confocal microscopy images. Supervised learning is the most

frequently used method for training DL models. This approach requires large data sets of

high-quality segmented images (ground truth). As mentioned above, the segmentation of

microscopy images is time-consuming and, therefore, in most cases, neuroanatomists

only reconstruct relevant branches of the stack. Additionally, some parts of the dendritic

shaft and spines are not segmented due to dyeing problems. In the context of this

research, we tested themost successful architectures in the DL biomedical segmentation

field. To build the ground truth, we used a large and high-quality data set, according to

standards in the field. Nevertheless, this data set is not sufficient to train convolutional

neural networks for accurate reconstructions. Therefore, we implemented an automatic

preprocessing step and several training strategies to deal with the problems mentioned

above. As shown by our results, our system produces a high-quality segmentation in

most cases. Finally, we integrated several postprocessing user-supervised algorithms in

a graphical user interface application to correct any possible artifacts.

Keywords: automatic 3D image segmentation, artificial neural network, confocal microscopy, reconstruction

algorithms, pyramidal cells

1. INTRODUCTION

Pyramidal cells are the most abundant neurons in the cerebral cortex. These cells are the principal
source of intrinsic excitatory cortical synapses, and they represent the major cell type projecting
to other cortical and subcortical regions. Furthermore, they form the vast majority of cortical
connections, and their dendritic spines (for simplicity, spines) are the main postsynaptic targets
of excitatory synapses (DeFelipe and Fariñas, 1992). Spines were discovered by Cajal in 1888
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(DeFelipe, 2015) and, since then, thousands of studies have been
conducted, as these structures are critical to learning, memory,
and cognition (Harris and Kater, 1994; Bourne and Harris, 2007;
Spruston, 2008; Yuste, 2010; Kandel et al., 2014). Alterations of
spines have been related to several neurodegenerative diseases
and pathologies, including Alzheimer’s disease (Fiala et al., 2002;
Yu and Lu, 2012; Merino-Serrais et al., 2013).

Spine structure is considered crucial for neural signal
transmission and changes in its morphology are related to
synaptic plasticity (Segal, 2005; DeFelipe, 2006; Yuste, 2010).
Over the years, much effort has gone into the study of spine
density, shape, size, and distribution at the structural level.
Nevertheless, the segmentation techniques used and accepted by
the community still rely on an expert to supervise the process.
The large number of these structures makes the user-guided
extraction process tedious and time-consuming, reducing the
segmented data available for analysis, making the development
of automatic techniques necessary (Zhang et al., 2010; Mukai
et al., 2011). In recent years, light microscopy techniques, such
as confocal microscopy or two-photon microscopy, are preferred
over electron microscopy for two main reasons: (i) they allow
larger regions to be captured (Arellano et al., 2007; de Lagran
et al., 2012) and (ii) some of them can be used in live brain tissue
and allow the study of its structural changes over time (Hoover
and Squier, 2013). The main constraint of light microscopy is the
limited optical resolution of the images. The relatively low quality
of these images, compared to electron microscopy, hinders the
segmentation process, leading to difficulties in the identification
of true spine boundaries (Mishchenko et al., 2010; Mukai et al.,
2011). For example, it is relatively common for the necks of
the spines of pyramidal cells to be so thin that they are close
to the optical resolution limit of the imaging techniques, since
their small size limits the quantity of fluorophore that can be
absorbed (Son et al., 2011).

Deep learning (DL) techniques are currently a standard in
automatic segmentation. They have been successfully applied
to several problems in the biomedical field (Minaee et al.,
2021). Generally, and particularly in this field, the most
widely used deep artificial neural networks belong to the
supervised learning subcategory. These techniques train deep
artificial neural networks using examples. The examples consist
of pairs of the inputs and the result (desired outputs) of
the task to be performed. The set of examples is known
as ground truth (GT), and is split into two: the training
set used to train and validate the network and the test
set used to evaluate the network performance once trained.
During the training phase, the network receives the training
set inputs and computes outputs. An error function (loss
function) compares the network outputs with the GT outputs
(correct results), and the model1 parameters are fitted to
reduce the error. Part of the training set is reserved for
validation during training. This data set allows the adjustment
of the network architecture. Regarding our image segmentation

1We will use the term “DL model” to refer to a trained deep artificial neural
network architecture. We will use the term “architecture” to refer to the topology
of a DL network and the rest of its hyperparameters.

problem, the inputs are the confocal microscopy images,
whereas the GT results and the network outputs are segmented
images2 called labeled images. In the present work, since
we are using intracellularly labeled neurons from confocal
microscopy, we will refer to the labeled images as annotated,
reconstructed, or segmented images to avoid any possible
confusion. After the training phase, the goal is to predict
the correct outputs for new inputs. The test set provides
previously unseen examples for unbiased estimation of the
model’s performance.

The success of the training process depends, to a large
extent, on the size and quality of the GT. The GT is often
built from expert knowledge. Scarce and weak annotated data
sets are common problems in biomedical imaging (Tajbakhsh
et al., 2020). In the context of spine segmentation, these issues
are, especially relevant. Current spine segmentation techniques
require user intervention, making the process costly and time-
consuming. Furthermore, even for data sets where a high number
of spines are reconstructed, there are some issues inherent to
confocal microscopy (e.g., some spine neck diameters are below
the optical resolution limit) or related to the way spines are
reconstructed (e.g., to capture the complete morphology of
spines, sometimes it is necessary to use several surfaces with
different intensity thresholds, and sometimes there are gaps in
between—see Section 3). Such issues need to be tackled. In
this research, we used a data set composed of 8,000 spines
extracted from high-quality confocal images, and most of them
were segmented accurately. Even with a data set of these
characteristics, we had to implement several techniques to train
DL models and address typical problems in this field, such as
overfitting.3 For this reason, despite their popularity, these types
of techniques have not yet been applied to this problem (Smirnov
et al., 2018).

In this article, we evaluate the feasibility of using artificial
neural networks for spine segmentation. For this purpose, we
built a GT of spine and dendritic shaft reconstructions from
confocal microscopy images. This data set was generated using
user-supervised algorithms. We propose an automatic data
preprocessing technique to generate a GT with sufficient quality
to train a reliable artificial neural network. Subsequently, we
used the GT to train and evaluate several variations of the two
main state-of-the-art DL architectures. The training phase was
adapted to solve some of the remaining problems of the GT. Our
final model shows promising results and some limitations. We
developed a graphical user interface (GUI) application to allow
experts to correct the automatic segmentation when needed and
overcome these limitations. Our GUI application stores the user-
guided corrections to improve the quality of the training data set
and to train more accurate models in the future. We believe that
our work opens the door to the use of DL for automating the
segmentation of spines.

2“Segmented images” are images in which their voxels are classified as background,
spine, or dendritic shaft.
3Overfitting is a common problem in ML. It occurs when the model learns to
resolve the task on the training set but does not work accurately on unseen data.
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2. RELATED STUDIES

Commercial tools, currently endorsed by the community, such
as Imaris (Bitplane AG, Zurich, Switzerland) or Neurolucida
(MicroBrightfield, VT, USA), are heading toward automation
of the segmentation process. Nonetheless, they still rely
on user-supervised techniques. Traditionally, Imaris allowed
the reconstruction of spines using algorithms based on
user-selected thresholds. Imaris Filament Tracer represents
a significant step toward automating the segmentation and
analysis of neural structures at the cost of simplifying the
spine geometries. Autospine is Neurolucida’s module for
spine detection, reconstruction, classification and quantitative
measurement. Users must configure a set of parameters for a
rather accurate segmentation. Issues such as detached spines are
common. Both environments complete their suites with editing
tools that enable the correction of segmentation problems. Imaris
and Neurolucida were successfully applied in relevant studies in
the field (Swanger et al., 2011; De Bartolo et al., 2015; Gao et al.,
2019; Henderson et al., 2019).

In recent decades, several studies have addressed the spine
segmentation problem. Intensive research on the topic is
motivated by the interest of the neuroscientific community in
these structures. A recent survey on detection, segmentation,
measurement, and classification of spines by light microscopy
was presented by Okabe (2020). In this study, the author
classified the algorithms depending on the dimensions of the
input images. Early techniques approached this problem from a
2D perspective. However, the increase in computational capacity
has shifted this focus toward 3D images. Most of the ad hoc
methods begin by estimating the centerline of the dendritic
shaft and spines. The work presented by Koh et al. (2002)
proposed one of the first techniques capable of segmenting 3D
images. Their technique computes a dendritic skeleton from a
binarized image (using a fixed threshold). The spine detection
phase was designed to deal with detached spines. Similarly, Son
et al. (2011) calculated a binarized image to obtain the dendritic
shaft and spine centerlines. They then recomputed the spine
borders from automatically detected feature points, using active
contour segmentation. Their technique separates overlapping
spines using a watershed-based algorithm. The method proposed
by Zhang et al. (2010) is also based on the medial axis extraction.
However, instead of using a binarized image, the authors
obtained the medial axis first and then calculated the seed points
to perform a fast-marching algorithm. Mukai et al. (2011) also
computed the dendrite boundary from its centerline and later
segmented the spines detecting features from the Hessian matrix
eigendecomposition of the image intensity function. Whereas
most techniques calculate features and seed points automatically
or assist the expert in the process, some modern algorithms,
such as the one proposed by Basu et al. (2018), still require
the user to select them manually. The authors of the same
study have recently tested the accuracy of their approach on
in vitro, ex vivo, and in vivo two-photon microscopy images (Das
et al., 2021). Although the approaches mentioned above are the
most widespread, some authors explore other alternatives. For
example, He et al. (2012) used non-linear degeneration equation

to enhance the morphological differences between dendritic
shafts and spines. After that, spine detection and segmentation
can be achieved in 3D by applying global thresholding.

In recent years, machine learning (ML) has become one of
the most widespread approaches for image processing, including
segmentation. However, only a few ML techniques for spine
segmentation can be found in the literature. In the context ofML-
based segmentation, Erdil et al. (2015) proposed a support vector
machine model to classify spines, and then used this information
to segment them by applying active contours. Blumer et al.
(2015) presented a spine detection and segmentation algorithm
based on a statistical dendrite intensity model and a spine
correspondence probability model. The statistical model was
trained on synthetic fluorescence images generated from serial
block-face scanning electron microscopy, and the method was
tested on real two-photon data sets. Smirnov et al. (2018)
presented an application to detect spines using ML. First,
they binarize the image and extract the backbone to identify
the dendrite (in a similar way to most ad hoc algorithms).
They do not apply machine learning to automatize the whole
segmentation process since they consider that current data sets
are not large enough to train complex DL networks. They then
classify the spines using several parameters calculated from the
dendritic contour. Unfortunately, their technique only works on
2D images (maximum intensity projections).

DL models have demonstrated outstanding performance in
image segmentation. In this regard, Minaee et al. (2021) reviewed
the most relevant neural networks to segment images. Two
architectures stand out in the medical image domain: U-Net and
V-Net. The former was proposed by Ronneberger et al. (2015).
A year later, Çiçek et al. (2016) extended this architecture to
deal with 3D images (3D U-Net). That same year, Milletari et al.
(2016) presented the V-Net for 3D medical image segmentation.
One of their most important contributions was the introduction
of a new loss function based on the Dice coefficient to deal with
highly imbalanced binary classes.

Despite the success of the above-mentioned architectures, the
frequent lack of quality of the annotated image data sets hinders
their application. Tajbakhsh et al. (2020) classified the main
problems of these data sets into two groups: weak-annotated and
scarce data sets. Additionally, they reviewed several solutions
proposed by the scientific community. Data augmentation and
postprocessing are frequently used to overcome these limitations.
Moreover, when these approaches do not solve the problem
completely, some authors develop tools to reduce the expert
annotation effort (Sakinis et al., 2019; Zheng et al., 2019). Our
work follows a similar approach. While exploring the feasibility
of DL models for spine segmentation, we have developed a user-
supervised tool for editing our neural network predictions. We
plan to use the corrected data to design new architectures in
future research.

3. MATERIALS AND METHODS

In this study, we evaluate the feasibility of using deep learning
techniques to automate spine segmentation. For this purpose, we
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FIGURE 1 | (A) GT preparation and training workflow. The GT preparation steps are shown in yellow. First, the reconstructed 3D meshes of dendritic shafts and

spines are transformed into a voxel-based segmented image. Then, unconnected parts of the dendritic shaft and its spines are detected and corrected automatically.

Among other strategies, the loss function, used to train our convolutional neural networks (CNN), considers several types of class and pixel weights to alleviate training

data set problems. (B) Automatic segmentation and postprocessing workflow. First, our CNN model provides a fully automatic segmentation. Then, the spine

instances are identified. Users can then correct the CNN prediction through our GUI, if necessary. Finally, our system generates the 3D meshes of the segmented

dendritic shaft and spines.

developed the two workflows shown in Figure 1. The pipeline
shown at the top of the image illustrates the GT preparation and
the model training, whereas Figure 1B displays the procedure
of segmenting new data. The software implementation for both
pipelines is publicly available for its non-commercial use under
an open-access license.

The first step for creating our GT was the data collection
phase (Section 3.1). Domain experts manually reconstructed
dendritic shafts and spines from confocal images. The most
prevalent issues of these segmentations were removed during the
preprocessing (Section 3.2) and training phase (Section 3.3) to

increase the GT quality. As shown by the results, our best neural
networks generated accurate segmentations in most scenarios.
Nevertheless, to integrate our models into the neuroanatomists’
workflow, we present a tool that allows correction of the
networks’ outputs and reconstruction of the surface meshes of
spines and dendritic shafts (Section 3.4).

3.1. Data Acquisition and Preparation
The data set used in the present study was taken from Benavides-
Piccione et al. (2013). It includes confocal stacks of images
and the corresponding 3D reconstructions of apical and basal
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FIGURE 2 | (A) Shows a confocal microscopy image of a proximal basal dendritic segment from an intracellularly injected layer III pyramidal neuron of the human

cingulate cortex. Dendritic shaft reconstruction is shown in white. (B) Shows the three-dimensional reconstruction of each dendritic spine from the dendritic segment

colored in white in (A). (C,D) Display higher magnification images of (A,B), showing the dendritic shaft and spine reconstructions. An estimation of the spine volume

values is shown in (B,D) by color codes (blue-white: 0.0–0.899µm3). (E,F) Present higher magnification images of the dendritic segment shown in (C,D). Spines are

randomly colored in (F) to clearly visualize the surface meshes that were manually created and assigned to each spine. Spine lengths (white lines) were also measured

in 3D. Arrows indicate the same spine in all panels. Scale bar: 10µm in (A,B); 4µm in (C,D); and 2.7µm in (E,F).
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dendritic shafts and spines from layer III pyramidal neurons
from the cingular cortex of two human males (aged 40 and
85 years old). A total of 8,926 spines were 3-dimensionally
reconstructed along 6.35 mm of dendritic length of 16 main
apical and 60 basal dendritic segments. As shown in Figure 2,
basal spines were reconstructed from the soma to the distal tip of
dendrites. The main apical dendritic spines were reconstructed
at a distance of 100–200 µm from the soma (since dendrites
were virtually devoid of spines for the first 80–90 µm). Apical
collateral spines were not included in the analysis. Further
information regarding tissue preparation and dendritic labeling is
outlined in Benavides-Piccione et al. (2013). Dendritic segments
were imaged at high magnification (×63, glycerol) using Leica
TCS 4D confocal scanning laser attached to a Leitz DMIRB
fluorescence microscope, using an excitation wavelength of 491
nm to visualize Alexa fluor 488. The images were 1,024 voxels
wide and high, with a variable depth. The voxel size was
0.0751562× 0.0751562× 0.279911µm. For each stack of images,
confocal parameters were set such that the fluorescence signal
was as bright as possible while ensuring that there were no
saturated pixels. Spines were individually reconstructed using
Imaris 6.4.0 (Bitplane AG, Zurich, Switzerland). For each spine,
a threshold was selected to constitute a solid surface that
exactly matched the contour of each spine. However, sometimes
it was necessary to use several surfaces of different intensity
thresholds to capture the complete morphology of a given spine
(Benavides-Piccione et al., 2013).

3.2. Ground Truth Preparation
Imaris stores the surfaces of the spines and dendritic shaft using
polygonal meshes. We transformed the dendritic shafts and spine
mesh-based representations (B-reps) into voxel-based segmented
images. All the segmented image voxels were classified either as
background (0), dendritic shaft (1), or spine (2). The algorithm
used is divided into two steps (see Figure 3): (i) it traverses
the mesh polygons of spines and dendritic shafts, and classifies
the voxels of the segmented image that contain them; (ii) it
segments the inner voxels of the spines and dendritic shaft by
applying the algorithm described by Suzuki et al. (2003) to detect
connected groups of voxels. Our algorithm only works on closed
surfaces. Imaris uses user-selected thresholds to compute closed
isosurfaces. Nevertheless, other meshes can be processed using a
hole-filling algorithm, such as the one proposed by Zhao et al.
(2007). Other spine segmentation tools and algorithms, such as
the one proposed by Das et al. (2021), provide an annotated
image as output instead of surface-based representations. In these
cases, the volumetrization step is not necessary to build the GT.

At this point, our data set suffered problems that hindered
our DL model training. As stated above, Tajbakhsh et al. (2020)
classified the main GT problems into two groups: scarcely and
weakly annotated data sets. We implemented a preprocessing
step to tackle some of these issues, whereas the rest were dealt
with during the training phase (see Section 3.3).

Scarce annotations: Difficult problems require complex
neural network architectures, and complex architectures require
large training data sets. If the GT is not sufficiently large,
overfitting is likely to happen. When overfitting occurs, the

network learns the training data but is not able to predict
unseen images correctly. In our data set, 8,926 spines were
distributed along 76 dendritic segments. This data set was
not sufficient for training our networks without overfitting.
As previously explained, data augmentation is the most
commonly used technique to avoid overfitting. We tested the
usefulness of this approach by increasing our data set applying
isometric transformations to preserve shape and distance. We
implemented symmetries, rotations, and translations that keep
voxel-to-voxel correspondence between the original and the
transformed image. Additionally, we tested other techniques
(such as early stopping, dropout, and other regularizations)
during the training phase to prevent overfitting.

Weak annotations: Weak annotations are sparse or noisy
reconstructions. In our case, small structures (such as spine
necks) were not always clearly visible due to the diffraction of the
confocal microscopy. Furthermore, neuroscientists sometimes
select a region of interest (ROI) and thus do not reconstruct
the whole confocal image stack (see Figure 2). We identified two
weak annotation problems in our data set (see Figure 4):

• Missing reconstructions: some dendrites were not selected to
be reconstructed. This problem is, especially relevant when
the non-segmented data is close to segmented spines and
dendritic shafts (see Figures 4B,E). In order to build the largest
GT possible, we did not remove this data. Instead, we tried
to alleviate this issue during the training step using several
strategies.

• Unattached components: occasionally, some parts of
dendritic shafts and spines could not be segmented, leaving
gaps in between. Unconnected parts were reattached at the
preprocessing phase.

In order to increase the quality of our GT, we designed a
fully automatic data preprocessing module to solve the problem
of unattached components. The objective of this stage was to
help the network to learn the topology of dendritic shafts and
spines and take into account that they must be connected. We
selected the parameters of the following algorithms to provide
good overall results. More accurate reconstructions will require
intervention from the experts.

The reconstruction process works as follows: first, it is applied
to the dendritic shaft, filling in the gaps between detached parts.
Then, each spine is processed independently. Finally, spines are
connected to the dendritic shaft when needed. These three steps
use the same automatic algorithm (see Figure 5). Our algorithm
receives the raw confocal image, the segmented image of the
dendritic shaft and spines, and the index of the segmented
structure to be processed; and it performs the subsequent steps:

1. Clipping: this phase computes the axis-aligned bounding box4

of the microanatomical structure. Both the segmented and the
confocal images are clipped using this bounding box. This step
speeds preprocessing up by reducing the volume of data.

4The minimum cuboid (box) whose faces are perpendicular to one of the basis
vectors (axis) and encloses a given 3D shape.
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FIGURE 3 | Imaris 3D segmentation and the two steps of the voxelization process: (A) Shows an example of the reconstructed 3D meshes of a dendritic shaft (dark

green) and spines (dark blue). The processed spine is highlighted. (B) Illustrates the first step of volumetrization. The voxels of the image are projected into surface

coordinate space as 3D boxes. If the projected box of a voxel contains or collides with a surface polygon, the voxel is marked. It should be noted that the voxel

projected boxes and surface polygons are 3D structures. Therefore, the surface can collide with more than one voxel in the same stack plane. (C) Shows the second

step, where the inner voxels are also marked. All spine stack planes are shown.

FIGURE 4 | Image annotation issues: missing dendritic shafts or spines (A–E) and unattached components (C,F). (A–C) Display the maximum projection of the

confocal images, and (D–F) show their corresponding segmented image. Manually segmented spines are displayed in dark blue, whereas dendritic shafts are

represented using dark green. (A,D) The main apical dendrite (and not the collateral dendrites) was selected to be reconstructed. (B,E) Non-segmented collateral

spines and dendritic shafts are, especially troublesome when they are close to the main branch. (C,F) The annotated image shows gaps in the dendritic shaft and

spine necks, mainly because the dendritic shaft and some spines were reconstructed using several surfaces.
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2. Unconnected component detection: the disconnected parts
of the structure are computed using an algorithm to detect
all connected groups of voxels (Fiorio and Gustedt, 1996; Wu
et al., 2005). The process stops once the structure is composed
of a single group of connected voxels.

3. Path finding: all the components are traversed consecutively,
computing a path to join them to another component. Our
path minimizes its length while maximizing the density of the
voxels it passes through. We use the A* algorithm (Hart et al.,
1968) to minimize the following equation:

minimize
p∈P

#p
∑

i=1

(

1− den(pi)
)

∗ fs+

#p
∑

i=2

dist(pi−1, pi),

(1)

where a path p is an ordered set of adjacent voxels, and #p is its
cardinality; P is the set of all paths that connect the processed
disconnected component with another component of the
structure and do not intersect other anatomical structures; pi
is the ith voxel of p; dist(pi, pj) computes the center distance
between pi and pj; den(pi) returns the normalized density
value of pi; and fs is a scale factor. We found that the path is
not too sensitive to changes in the fs value, and we used fs = 1.

4. Noise filtering: In this step, the algorithm applies a median
filter to remove noise from the confocal image. We use an
8× 8× 2 voxel mask.

5. Flooding: the algorithm uses the path elements (seeds) and
the filtered confocal image as inputs for a flood fill algorithm.
We set the parameter of the flood fill algorithm to label as
spine or shaft (depending on the case) voxels connected to the
seeds with intensity values within plus or minus 10% tolerance
from the seed intensity. Finally, the algorithm requires the
definition of two axis-aligned ellipsoid masks to constrain
the minimum and the maximum path growth. We selected a
maximum mask size of 3 × 3 × 2 voxels to connect dendritic
components and a size of 6 × 6 × 2 voxels for the spine
connections. In both cases, the minimum size was 1 × 1 × 0
voxels.

Figure 6 shows an example of a segmented image before
and after preprocessing. Before the data augmentation, our
GT consists of 62 confocal microscopy images and their
corresponding preprocessed segmented images. The confocal
images are single 16-bit color channel, whereas the segmented
images classify all voxels as background, dendritic shaft
or spine.

3.3. Network Architecture and Training
In the present study, we took the 3D U-Net (Çiçek et al., 2016)
and V-Net (Milletari et al., 2016) architectures as a reference to
find the most suitable DL network to solve our problem. This
section first describes the most relevant hyperparameters tested
to adapt these two architectures. We then provide some details
on the training step. Finally, we present the models selected for
our segmentation workflow.

FIGURE 5 | Reconstruction algorithm steps: (A,B) Show the clipped

maximum projection of a spine composed of three components. (A) Shows

the confocal image and (B) its reconstruction. (C) Displays the two paths

created to join the three components. (D) Shows the confocal image after

applying a median filter. The flooding phase results can be found in (E). Finally,

(F) illustrates the final reconstruction.

3.3.1. Tested Hyperparameters
This section looks at the hyperparameters tested to build the
network architecture for segmenting dendritic spines.

Reference architecture: our neural networks are based on
the two architectures mentioned above. Both models perform
convolutions to extract data features, compressing the data
first and decompressing it afterwards. Convolutional layers are
grouped in stages. 3D U-Net has a fixed number of convolution
layers per stage, while V-Net implements a progressive number
of layers per stage, from one to three. 3D U-Net downsamples the
information using max pooling5, and V-Net compresses data by
applying 2× 2× 2 convolution kernels with stride 2. Both neural
networks upsample data through transposed convolutions, but
3D U-Net considers context information beyond the output size.
Nevertheless, the most relevant difference between these models
is that V-Net was designed to learn a residual function adding the
input to the last convolutional layer of the stage. Finally, as in the
original study (Milletari et al., 2016), our V-Net implementation
uses a PReLU (parametric ReLU) activation function, while 3D
U-Net uses a ReLU.

Loss function: imbalanced classes are common in image
segmentation. U-Net (Ronneberger et al., 2015) tackled this issue
proposing aWeighted Cross-Entropy Loss (WCEL) function. Let
� be the set of all possible pixel positions. Let pk :� → [0, 1] be
the model prediction for class k. Let rk :� → {0, 1} be the GT
probability map for the class k. Since we use one-hot encoding,
rk(x) takes the value 1 when the pixel x is classified as k and 0
otherwise. Then, the WCEL is defined as:

WCEL = −
∑

x∈�

w(x)
∑

k∈{0,1,2}

rk(x)log(pk(x)), (2)

where w :� → R is a weight map and is computed as w(x) =

wclass(x) · wpixel(x), where wclass :� → R deals with imbalanced
classes, and wpixel :� → R allows the setting of the pixel
importance. Let wk ∈ R be the weight of a class k, then:

wclass(x) =
∑

k∈0,1,2

wkrk(x). (3)

53D U-Net max pooling: our implementation applies a pool of 2 × 2 × 2 voxels
with stride of 2× 2× 1 voxels in the first two stages and a stride of 2× 2× 2 voxels
in all other stages.
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FIGURE 6 | Ground truth preparation: This image shows the maximum projection of a confocal image (A) and its corresponding annotated image before (B) and after

(C) the preprocessing. We use dark blue and dark green to represent the manually segmented spines and the dendritic shaft, respectively.

During our preliminary experiments, we tested different
approaches, but we achieved significantly better results with the
following smoothed function:

wk
′ = max

(

log

(

2
#�

#k

)

, 1

)

,

wk =
wk

′

∑

i∈0,1,2 wi
′
,

(4)

where #� is the number of image voxels and #k is the number of
image voxels classified as k.

Section 3.2 explains that some anatomical structures were
not segmented by the experts (see Figures 4A,B), hindering the
model training. We designed two different weighting functions
wpixel to alleviate this problem. Both functions (w

exp

pixel
and

wwindow
pixel

) are based on the same principle: they reduce the

importance of the pixel when the distance to the segmented
structures (dendritic shafts and spines) increases. Let d :� → R

be the distance field to the nearest structure, then:

w
exp

pixel
(x) = (1− rdecay)

d(x), (5)

and

wwindow
pixel (x) =







(

1−
(

d(x)
dmax

)2
)2

if d(x) < dmax

0 if d(x) ≥ dmax

, (6)

where the decay ratio (rdecay ∈ [0, 1]) allows control of the
exponential decay, and dmax allows the definition of a maximum
influence distance in the window function. Figure 7 compares
both functions.

It should be noted that the non-weighted version of the
cross-entropy loss function was also tested (w(x) = 1,∀x ∈ �).

Milletari et al. (2016) tailored an objective function for
the V-Net based on the Dice coefficient. This function was
designed to deal with strong class imbalance cases. Their
approach is limited to binary segmentation. Consequently, in

FIGURE 7 | Distance weight maps: (A) uses (5) with rdecay = 0.5, and (B) uses

(6) with dmax = 5µm.

our multi-class problem, we used the Generalized Dice Loss
(GDL) function (Sudre et al., 2017), which is also based on the
Dice coefficient:

GDL = 1− 2

∑

k∈{0,1,2} wk

∑

x∈� rk(x)pk(x)
∑

k∈{0,1,2} wk

∑

x∈�(rk(x)+ pk(x))
, (7)

where the class weights wk are computed as follows:

wk =
1

(
∑

x∈� rk(x))2
. (8)

Model size: we used the same number of layers per stage as
described in the original papers. We increased the input and
output patch size to observe the impact of augmenting the
context information.Moreover, we tried to expand the number of
stages (4 and 5 stages) and the initial number of feature channels
(8, 16, 32, and 64 channels) which determines the size of all
convolutional layers.

3.3.2. Training Step
All convolutional neural network (CNN) models were trained on
a preprocessed data set (see Section 3.2). We randomly reserved
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10% of the data (6 images) for testing and 10% (6 images)
for validation. The remaining data (50 images) were used for
training. The images were dynamically divided into patches,
depending on the architecture input size. To reduce the problem
of non-segmented data, we only fed the network with patches
in which dendrites were segmented. Removing unsegmented
patches is, especially relevant for unweighted loss functions. The
batch size was limited to 8 patches by GPUmemory. The training
phase was run in a server with two Intel Xeon Gold 6248 CPUs
at 2.50GHz, and a NVIDIA Tesla V100 GPU with 32 GB VRAM.
We trained our models for a maximum of 50 epochs (around 36
h). As explained in Section 1, overfitting is a frequent problem
in ML. The analysis of learning curves is the most commonly
used approach to detect this situation. When the loss function
decreases in the training set and the error metric increases in the
validation set (Section 1), overfitting problems are very likely. In
our case, the evolution of the error in the validation set is noisy,
but, for most models, the overfitting pattern is distinguishable
after 50 epochs. We provide some examples of learning curves
as Supplementary Material. For each architecture, we chose the
model with the smallest validation error.

3.3.3. Selected Models
During the training phase, we used the validation data to screen
the best architectures and tune other learning hyperparameters
such as regularization, normalization, dropout, optimizer, and
learning rate. To achieve this goal, we computed three
quality metrics:

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

F1-score = 2 ∗
Precision ∗ Recall

Precision+ Recall
. (11)

In the data set used in this study, only one dendritic branch was
selected to be segmented per confocal image (see Section 3.2).
Thus, performing an accurate and objective evaluation of the DL
models was not a trivial task. To alleviate this problem, we applied
a binary mask to remove data from the predictions. Our filter
does not consider voxels that are farther away than 7.58 µm from
the dendritic shaft, since this was the maximum distance from
a segmented spine voxel to the dendritic shaft in our data set.
We guided the hyperparameter search using the results from the
validation set:

Reference Architecture: Although V-Net is known for its
ability to learn a residual function, 3D U-Net yielded better
results for our particular problem. For similar setups, V-Net
performed significantly worse. Therefore, we abandoned it at an
early stage.

Loss function: Our models had to face weak annotation and
imbalanced class problems. In this scenario, WCEL provided
better results than unweighted loss functions (even when

removing unsegmented patches), GDL, and non-smoothed class
weight functions. GDL and non-smoothed class weight functions
increased the recall, but the overall model behavior worsened.
RegardingWCEL, w

exp

pixel
and wwindow

pixel
offered similar results when

combined with the smoothed version of wclass.
Data augmentation: The loss curves’ analysis showed

that data augmentation alleviates overfitting. For our models,
applying simple isometric transformations was sufficient.

Model size: Larger patch sizes improved the network accuracy
until overfitting could not be handled with data augmentation.
Increasing the patch size increases the context information
and might improve the model accuracy but requires a larger
training set.

Padding: Zero padding produced poor results for structures
close to the image borders. This problem was alleviated using
reflective padding instead.

Mixed precision: Finally, since we aimed to run our
segmentation on consumer GPUs, we implemented our models
using 16-bit floating-point type parameters. We maintained the
32-bit floating-point type for the last layer of each model to
ensure numerical stability. This optimization halved our models’
memory footprint without any performance loss.

Since the validation set is involved in the training process,
the results must be confirmed on unseen data (the test
set). It is critical to note that evaluating all models with
the test set increases the probability of erroneous inferences.
Therefore, we selected a reduced subset of models for evaluation.
For reader convenience, we provide the validation results as
Supplementary Material.

Based on the performance of the models on the test set, we
selected three models: M1, M2, and M3. The results of these
three models are shown in Section 4. M1 and M2 exhibit the
best F1-score and balanced precision and recall. Despite using a
binary mask, there are spines that the network predicts correctly,
which are not segmented in the GT (see Figures 4B,E). Precision
is, especially sensitive to wrong false positives, but recall is not.
For this reason, we also selected the model with the best recall
(M3). M1, M2, and M3 shared most of their hyperparameters:
they are base 3D U-Net architecture defined by a 300× 300× 66
input patch, a 116 × 116 × 10 output patch, 16 filters in the
first layer, and five stages of depth; they use reflective padding
and mixed precision; they were trained with augmented data and
an Adam optimizer (β1 = 0.9, β2 = 0.999, ǫ = 10−7 and
learning rate = 10−7). Additionally, all of the models useWCEL,
but M1 and M2 compute wk per patch, while M3 uses the whole
data set. M1 uses wwindow

pixel
(dmax = 5 µm), while M2 uses w

exp

pixel

(rdecay = 0.5), and M3 does not use any pixel weight. Instead,
during training, M3 only uses patches with more than 10% of the
pixels classified as dendrite or spine.

3.4. Postprocessing
We developed a GUI application to allow users to segment
their confocal stack images using our best DL models (M1, M2,
and M3). We then used the algorithm described by Wu et al.
(2005) to compute the spine instances. Additionally, users can
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correct the models’ prediction if needed. We designed automatic
and user-supervised algorithms to address the following
issues: noise, misclassification, unconnected components, and
overlapping spines.

Noise: given CNN’s ability to deal with noisy images, we
did not preprocess the inputs. Although the problem is almost
negligible, occasionally, our network misclassifies high-intensity
background voxels as spines or dendritic shafts. This particular
type of misclassification can be solved semi-automatically by
eliminating the disconnected dendritic components that verify
the following equation:

(dVd
(x) > D) ∧ (getSize(s) < Vs), (12)

where dVd
: S → R returns the distance from a disconnected

component s ∈ S to the closest dendritic shaft component bigger
than Vd, and getSize : S → R returns the volume of disconnected
component s. The user sets the values of Vd, Vs and D. This filter
can be applied to spines, dendrites, or both.

Misclassification: this problem is also almost negligible. The
users can select a set of pixels and relabel them. We implemented
different voxel selection algorithms to facilitate the task. This
algorithm can be used to remove the remaining noise if needed.

Unconnected components: while detached dendritic shaft
sections can be connected automatically, spines cannot.
Determining whether or not they must be connected to a
dendritic shaft or spine is not a trivial task. For the latter case,
we implemented a semi-automatic version of the algorithm
described in Section 3.2. Before running the A* algorithm,
the user must select which components will be connected.
Additionally, they can set the ellipsoid mask sizes, median mask
size, and the tolerance of the flood fill algorithm.

Overlapping spines: this is the most important issue as
it requires a higher degree of user intervention. During the
segmentation, some spines appear attached in a connected set of
voxels. To address this issue, we allow the users to mark the spine
borders manually. In addition to this technique, we implemented
a watershed separation algorithm (Beucher and Lantuéj, 1979).
The user selects a set of seeds manually [similar to the procedure
used in the technique proposed by Das et al. (2021)].

Our GUI application is shown in Figure 8. The software
was implemented in Python, Qt and VTK, following a flexible
and modular plugin-based architecture. Due to incomplete
segmentation in some GT images, it is impossible to assess
the best model quantitatively and objectively. To alleviate this
problem and achieve the best segmentations, we make several
models available to the user, who can choose the best model
for their data. Furthermore, they can segment the whole image
or just a user-defined ROI. The tool incorporates basic image
editing features and several view modes, and users can choose
the ones that best suits their needs. Finally, we implemented the
marching cubes algorithm (Lorensen and Cline, 1987) to extract
a B-rep from the segmented image.We present case studies of the
postprocessing stage in Section 4.3.

TABLE 1 | Test results of the selected models.

Model ID Metric Class F1-score

meanDendritic shaft Spine

M1 Precision 74.5 % 66.1 % 77.3 %

Recall 86.9 % 84.9 %

F1-score 80.2 % 74.3 %

M2 Precision 72.5 % 64.9 % 77.3 %

Recall 88.8 % 88.3 %

F1-score 79.8 % 74.8 %

M3 Precision 53.9 % 56.1 % 67.9 %

Recall 90.1 % 87.0 %

F1-score 67.5 % 68.2 %

4. RESULTS

In this section, we examine the results of our models on the
test data set. First, we analyze the best models quantitatively
(Section 4.1). We then show examples of the strengths and
limitations of these models (Section 4.2) and, in the next section
(Section 4.3), describe how these limitations can be overcome
with our postprocessing stage. Finally, we assess the impact of the
preprocessing on the model training (Section 4.4).

4.1. Quantitative Analysis
Table 1 shows the test results of the three selected models. M1
and M2 maximized the F1-score. Both models balance precision
and recall. However, M1 performs slightly better on dendritic
shafts and M2 on spines. As mentioned previously, M3 has the
best recall. This metric is less sensitive to wrong false positives.
However, if the precision value is too low, the misclassification
and noise problems increase (see Figure 9). Although noise
can be automatically removed in postprocessing, misclassified
segmentations require user intervention (see Section 3.4).
Nevertheless, since these models can perform well on difficult
confocal stacks (see Figure 11), our GUI application allows users
to select between the three models.

4.2. Visual Inspection
Figure 9 shows how M1, M2, and M3 perform on two images
of the test set. Although all models suffer from the problems
described in Section 3.4, most spines are correctly segmented
and do not require human intervention. M1 and M2 show
problems at the image border since there is less context around
the segmented patch. By contrast, M3 can handle challenging
scenarios such as image borders, but it is, especially sensitive
to noise and exhibits more misclassification cases. Although all
models may exhibit these issues, for the sake of clarity, not all
subfigures in Figure 9 show all error types.

4.3. Case Studies
To incorporate our DL models into the neuroscientists’
workflow, we implemented a GUI application that integrates the
best networks and the postprocessing algorithms described in
Section 3.4. This software also includes several data visualizations
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FIGURE 8 | GUI: (A) Organizes the users’ data hierarchically. (B–E) Provide a GUI to the postprocessing algorithms. (B) Shows the raw confocal image of the ROI.

(C) Displays the output segmentation. (D) Allows the user to configure the algorithms, and (E) shows all the segmented structures.

FIGURE 9 | Results of running M1, M2, and M3 models on two images of the test set: This figure shows the maximum projection of two confocal images (A,F), the

GT segmented images (B,G), M1 results (C,H), M2 results (D,I), and M3 results (E,J). The following issues are highlighted: unconnected components (C,D),

overlapping spines (H,J), noise (E), and misclassification (J). We use dark colors to show the manual segmentation (GT) and bright colors for network predictions. The

segmented spines are shown in blue and the dendritic shafts in green.

and basic editing algorithms. Additionally, it allows the users
to extract the data mesh-based B-rep. Our system offers
neuroscientists the possibility of segmenting full images on their
lab PCs. We tested our system on a PC with an NVIDIA GeForce
GTX 1080Ti, obtaining the prediction in 210 seconds for an
image size of 1024× 1024× 101.

Figure 10 illustrates the process and results of a first case
study. In this example, the user was not interested in segmenting

the entire image. Instead, the neuroanatomist selected an
ROI (Figure 10B). M2 was then used to segment the data
(Figure 10C). Next, the two unconnected dendritic branches
were reattached. The user selected the two components and
ran the corresponding algorithm. The width of the union was
adjusted by changing the tolerance of the flood fill algorithm.
The user then corrected a few misclassified elements, selecting
the component and changing its class. Figure 10D shows the
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FIGURE 10 | First case study: (A) original confocal image; (B) ROI selected by the user; (C) M2 segmentation; (D) correction of misclassified and unconnected

components; (E) the segmentation after the separation of overlapping spines. Finally, dendritic shaft and spine surfaces are calculated (F). The top row shows the

process steps from left to right, and the bottom row continues from right to left. This order allows direct comparison between the preceding and successive images at

each step.

segmentation after these two processes. No noise issues needed to
be fixed. Once the segmentation was corrected, the user executed
a pixel cluster algorithm to estimate single spine instances.
At this point, the only problem left was overlapping spines.
To address this issue, the user manually selected seeds and
ran a watershed algorithm. Solving the issue of overlapping
spines requires more user intervention than other postprocessing
algorithms. However, our tool requires significantly less user
effort than other modern state-of-the-art techniques, such as Das
et al. (2021). The results of this step are displayed in Figure 10E.
Finally, the dendritic shaft and spine surfaces were extracted
(Figure 10F). Figure 8 shows the GUI and the postprocessing
panels after computing the B-reps of the segmented structures.
A hierarchical scene tree is displayed in panel A. This panel
allows the operations performed on the data to be tracked. In
this example, the user stored the original raw image, the ROI, the
segmentation performed by M2, the corrected segmentation, the
surface meshes and a tabular structure with dendritic shaft and
spine data. Panels B, D, F, and G were designed to assist users
during the postprocessing.

In our second case study, the user was interested in a
challenging ROI (see Figure 11). In this case, M2 results were
not good enough in one of the dendritic branches (Figure 11C).

M3 segmented all relevant structures at the cost of increasing
the image noise (Figure 11D). The user eliminated noise by
removing unconnected spines and dendritic shafts and selecting
the following parameters: D = 3 µm, Vd = 0.16 µm3,
and Vs = 0.024 µm3. These have been set as the default
parameters since they work well with our data. Users can modify
these values if necessary. There is almost no visual difference
between the segmented image after the noise removal process
(Figure 11E) and the structures in the segmented images of the
GT (Figure 11B).

In our third case study (Figure 12), the user computed M1,
M2, andM3 predictions and selectedM2 to be themodel that best
fitted the user’s expectations. Thereafter, the user could further
edit reconstruction errors. For example, in this reconstruction,
one of the spines that were not connected to the dendritic shaft
could be reattached using our semi-automatic tool. Additionally,
spines that were not correctly identified could be separated using
our watershed-based algorithm.

4.4. Impact of the Preprocessing Stage
The goal of the preprocessing step is to increase the GT quality,
detecting disconnected reconstructions of dendritic shafts and
spines and reattaching them automatically. M1, M2, and M3
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FIGURE 11 | Second case study: (A) an ROI selected by the user from the original confocal image; (B) GT segmented dendritic shafts and spines (note that the

collateral branch was not originally selected for reconstruction); (C) M2 produced insufficient quality results segmenting some structures; (D) M3 performed better but

introduced noise; (E) removed noise, the segmented structures in the GT (B) were properly segmented; (F) compares the GT with M3 results after noise removal,

showing matched dendritic shafts (bright green) and spines (bright blue), structures missing in GT (gray), structures missing in M3 (red), and misclassifications (yellow).

were trained with the preprocessed GT. To assess the impact
of the preprocessing step, we trained the architectures used to
build M1, M2, and M3 with a non-preprocessed version of the
GT and compared their results. We named the DL architectures
according to their corresponding models: ArchM1, ArchM2,
and ArchM3.

Table 2 compares the total number of unconnected spine
parts after segmenting all images of the testing set for the
three architectures and the two training sets. As reported
previously, the GT does not contain all the structures shown
in the confocal image. Therefore, we are only considering the
spines predicted by the model that intersect with the spines
segmented in the GT. All models trained with a preprocessed
GT performed better. However, there was less improvement
of ArchM3 than occurred in the other architectures. ArchM3’s
low precision and high recall make this architecture prone
to false positives, oversegmentation, and also more sensitive
to noise.

As mentioned in Section 3.3, we reserved six of the GT images
for testing purposes. These images contained the reconstruction
of 451 spine components. 134 of these components were
disconnected before the preprocessing stage. Table 2 shows that
the segmentation generated by all models had a lower number

of unconnected spines parts than the manual reconstruction
performed with Imaris. Even for the models trained with the
non-preprocessed GT, the number of unconnected spine parts
decreased. This is not surprising since most spines of the
non-preprocessed GT are connected to the dendritic shaft,
and the models try to apply this learned behavior to unseen
data (the test set). However, a more significant decrease is
achieved in the segmentation generated by the models trained
with preprocessed GT. Finally, Figure 13 shows the result of
ArchM1 trained with non-preprocessed and preprocessed GT.
This figure illustrates how M1 connects the spines to the
dendritic shaft despite the low intensity of their necks in the
confocal image.

5. DISCUSSION

The automatic segmentation of dendritic spines using light
microscopy continues to present challenges. In the literature,
many techniques can be found that resolve certain issues but such
techniques also have other limitations. Some techniques focus
on providing precise segmentation [such as the one proposed
by Das et al. (2021)] but require intensive user intervention.
Many others [such as Neurolucida and the technique proposed
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FIGURE 12 | Third case study: (A) maximum projection of a confocal image; (B) original surface reconstructions used to build the GT; (C–E): M1, M2, and M3

predictions, respectively; (F–J) user corrections of M2 predictions. First, the user identified a disconnected spine (F). (G) Shows the user’s first attempt at attaching

the spine to the dendritic shaft. (H) Shows the edited final spine reconstruction. Additionally, the user selected three overlapped spines and then separated them in

two steps (I,J).

TABLE 2 | Comparison of models trained with and without preprocessing the GT using the test set.

Ratio of unconnected spine parts

to total number of spine parts in

NPGT test set

Arch. ID Unconnected spine

parts in model

prediction

Prediction improvement of the

model trained on

PGT

Trained on

NPGT

Trained on

PGT

With respect to the

model trained on NPGT

With respect to the

NPGT test set

134 : 451

ArchM1 84 20 76.19% 85.07%

ArchM2 63 7 88.89% 94.78%

ArchM3 65 30 53.85% 77.61%

The third and fourth columns show the number of unconnected spine parts for the models trained with the non-preprocessed GT (NPGT) and the processed GT (PGT). The last two

columns present the prediction improvement of the model trained on PGT with respect to the model trained on the NPGT and the NPGT test set.

by Levet et al. (2020)] offer semi-automatic solutions, reducing
the time required for the user to complete the task, but
hindering the correction of local errors. By contrast, Filament
Tracer allows the correction of local errors at the cost of
approximating the geometry of the spines and dendritic shafts
with simple forms.

Our work demonstrates the possibility of using DL
architectures in this context. Artificial neural networks
have been successfully applied to segmentation problems
in many different domains, providing a fully automatic
solution. Despite being popular techniques, they had
not previously been used to segment confocal images
of dendritic spines. As previously mentioned, the size
and quality of the data sets used as GT are essential
for training phase success. We managed to build a GT
for training reliable DL networks thanks to the quality

and size of our non-preprocessed data set. We tackled
the remaining problems following three main strategies:
data preprocessing, data augmentation, and weighted loss
functions. Our preprocessing algorithms joined disconnected
structures automatically, increasing the data quality. Section
4.4 shows how our model trained on preprocessed data
reconstructs less disconnected parts than Imaris manual
reconstructions. The missing structure issues were mitigated
by using weighted loss functions and removing unsegmented
patches during training. Finally, we significantly reduced
overfitting problems using isometric transformations to increase
the training data set size. Currently, there are many other
data augmentation techniques (Shorten and Khoshgoftaar,
2019). However, exploring them all would go beyond the
scope of this research, and we have therefore left their study
for future work. We will pay special attention to DL data
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FIGURE 13 | Preprocessing comparison: (A) maximum projection of a confocal image; (D) ROI segmented in (B,C,E,F). The GT is displayed before preprocessing

(B) and after preprocessing (E). (C,F) Show the prediction obtained with ArchM1. (C) Shows the results for the model trained with the non-preprocessed GT, whereas

(F) displays those of the model trained with the preprocessed GT. We use dark colors to show the manual segmentation (GT) and bright colors for networks

predictions. The segmented spines are shown in blue and the dendritic shafts in green.

augmentation techniques such as generative adversarial
networks (GANs).

We consider that this work has taken a significant step
toward the automation of the segmentation task. However,
there is still room for improvement. First, DL networks learn
from examples, and our training data set only includes in vitro
confocal images of healthy humans. Accurately segmenting other
image types would require including a sufficient number of
examples in the GT. As mentioned in the abstract, obtaining
segmented data sets is expensive, and they are rarely publicly
available. We provide the source code of all our software
implementations. Researchers and laboratories can train our
models with their own data sets. Additionally, we provide
examples of how our DL models behave on other data types
as Supplementary Material. Second, the results obtained show
some minor issues. We developed several user-supervised
postprocessing algorithms to address these issues and correct
local errors, unlike other automatic or semi-automatic systems.
Semi-automatic alternatives, such as Neurolucida or the work

proposed by Levet et al. (2020), require the modification of
the system parameters to refine the initial solution and do
not allow the correction of specific errors. However, further
segmentation refinement will be necessary to obtain accurate
segmented spines in certain cases, particularly regarding neck
diameters. Thus, our GUI application integrates models that have
demostrated better performance, as well as supervised correction
algorithms. The application completely solves the problem of
dendritic spine segmentation, although (thus far) this has only
been achieved semi-automatically.

Splitting overlapping spines is the most time-consuming
correction. This problem may be solved in the future by
combining existing spine detection algorithms with the
prediction obtained from our DL model. However, we
believe that a DL model can solve the problem completely
and automatically. To this end, we plan to increase the
size and quality of our GT to train new artificial neural
networks architectures. Our preprocessing step has proved
its effectiveness, allowing us to incorporate corrected
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segmentations from other tools and our models’ outputs,
an approach that has been successfully applied to medical
imaging in the past (Wang et al., 2018). Such an approach
will likely allow us to fully automate the process in the
near future.
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