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Themammalian amygdala is a complex forebrain structure consisting of a heterogeneous

group of nuclei derived from the pallial and subpallial telencephalon. It plays a critical role

in a broad range of behaviors such as emotion, cognition, and social behavior; within the

amygdala each nucleus has a distinct role in these behavioral processes. Topological,

hodological, molecular, and functional studies suggest the presence of an amygdala-like

structure in the zebrafish brain. It has been suggested that the pallial amygdala homolog

corresponds to the medial zone of the dorsal telencephalon (Dm) and the subpallial

amygdala homolog corresponds to the nuclei in the ventral telencephalon located

close to and topographically basal to Dm. However, these brain regions are broad and

understanding the functional anatomy of the zebrafish amygdala requires investigating

the role of specific populations of neurons in brain function and behavior. In zebrafish,

the highly efficient Tol2 transposon-mediated transgenesis method together with the

targeted gene expression by the Gal4-UAS system has been a powerful tool in labeling,

visualizing, andmanipulating the function of specific cell types in the brain. The transgenic

resource combined with neuronal activity imaging, optogenetics, pharmacology, and

quantitative behavioral analyses enables functional analyses of neuronal circuits. Here,

we review earlier studies focused on teleost amygdala anatomy and function and discuss

how the transgenic resource and tools can help unravel the functional anatomy of the

zebrafish amygdala.

Keywords: zebrafish, amygdala, Gal4-UAS system, emotion, dorsomedial telencephalon, pallium, subpallium,

transgenic

INTRODUCTION

The amygdala is a closely associated cluster of nuclei found in the cerebral hemispheres of
vertebrates; it is located within the temporal lobe of primates and in the caudoventral telencephalon
of non-primate mammals (Goddard, 1964; Maren, 2001). It is best known for its role in recognition
and response to fearful stimuli. Initial evidence of its involvement in emotional response to stimuli
comes from lesion studies in non-human primates; temporal lobe lesion in monkeys (Macaca
mulatta) resulted in a marked change in emotion including loss of fear (Brown and Schäer, 1888;
Kluver and Bucy, 1997). Subsequently, Weiskrantz (1956) showed that this loss of fear results from
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damage to the amygdala region. Studies in several mammalian
species such as rodents, cats, rabbits, dogs, and humans
showed functional similarity of the amygdala across mammals
(Goddard, 1964; Blanchard and Blanchard, 1972; Adolphs et al.,
1994; Anderson and Phelps, 2001). Although morphological
differences exist, the circuits and function of the amygdala
are well conserved; amygdalar lesion results in an inability to
recognize and respond to fear stimuli (LeDoux, 2000; Maren,
2001).

The amygdala is derived from both pallial and subpallial
cells (Puelles et al., 2000). It consists of approximately 20
subnuclei, divided into three major groups; namely, cortical
nuclei, basolateral nuclei (BLA), centromedial nuclei (medial
[MeA], and central [CeA], and bed nucleus of the stria terminalis
[BNST]) (Sah et al., 2003; Marek et al., 2013). Each subnucleus
is characterized by distinct neural types and connections; the
robustness of fear response has allowed understanding the role
of the amygdala subnuclei in specific behavioral responses.
The BLA is a cortex-like structure containing predominantly
glutamatergic neurons and is characterized by interconnections
with the hippocampus and the cortical areas; it is the main
sensory interface of the amygdala. The CeA is a striatum-like
structure containing predominantly GABAergic neurons and is
the primary output structure that has divergent projections to
BNST and other brain regions; it controls emotional responses
(LeDoux, 2000; Maren, 2001; Marek et al., 2013). The cortical
and medial nuclei are characterized by major projections from
the main and accessory olfactory bulbs (Sah et al., 2003). In-
depth reviews of structure and function of the amygdala can
be found elsewhere (Sah et al., 2003; Ehrlich et al., 2009;
Duvarci and Pare, 2014; Janak and Tye, 2015; Tovote et al.,
2015).

The mammalian amygdala is crucial for a broad range of
emotional and motivational behaviors such as fear learning
and responses, social behavior, anxiety-related behavior, and
addiction (LeDoux, 2000; Tovote et al., 2015). Studies show
existence of amygdala-like brain regions in non-mammalian
vertebrates including teleost fish (Martínez-García et al., 2009).
For a long time, amygdala-like structure in teleost had remained
elusive. A series of lesion studies together with behavioral
experiments in goldfish showed that distinct brain regions in
teleost brain mediate specific behavioral responses and identified
forebrain regions that mediate fear conditioning (Rodríguez
et al., 2002a,b; Salas et al., 2003; Portavella et al., 2004a,b;
Broglio et al., 2005). Further developmental, hodological,
and functional studies in teleosts including zebrafish revealed
the presence of an amygdala-like structure consisting of
the medial zone of the dorsal telencephalon (Dm) and the
dorsal most nucleus (Vdd), supracommissural nucleus (Vs),
postcommissural nucleus (Vp), and intermediate nucleus (Vi)
of the ventral telencephalon (Northcutt, 2006; Lau et al.,
2011; Ganz et al., 2014; von Trotha et al., 2014; Biechl
et al., 2017; Porter and Mueller, 2020). This review focuses
on the past studies on the presence of an amygdala-like
structure in zebrafish and the recent advances and future
perspectives on understanding the functional anatomy of
zebrafish amygdala.

THE ZEBRAFISH AMYGDALA COMPLEX

Similar to mammalian telencephalon, teleost telencephalon is
divided into a dorsal telencephalon or pallium and a ventral
telencephalon or subpallium (Wullimann and Mueller, 2004).
However, due to differences in developmental mechanisms, there
are marked differences in the organization of pallial nuclei
between mammals and teleosts. In mammals, the forebrain is
formed by evagination, whereas the teleost pallium is formed
by eversion (Nieuwenhuys and Meek, 1990; Braford, 1995;
Nieuwenhuys, 2009) (Figure 1A). Eversion leads to an inverted
medio-lateral organization of pallium in teleost compared to
mammals; hence, the medial and lateral regions in teleost
forebrain are suggested to correspond to the lateral and
medial regions in mammalian forebrain, respectively. Studies in
zebrafish have visualized the eversion and show that eversion
process is more complex than a simple out-folding of the
neural tube (Folgueira et al., 2012); pallial growth, neuronal
differentiation, and radial migration of neurons add complexity
to the pallial organization (Mueller et al., 2011; Folgueira et al.,
2012; Dirian et al., 2014; Furlan et al., 2017). This presents
difficulty in establishing homologies between brain regions in
mammals and zebrafish.

The expression pattern of conserved developmental

regulatory genes and molecular markers provides useful
landmarks to identify subdivisions within a brain region and

to homologize the brain regions among divergent vertebrate
species. In mammals, the developing pallium expresses Tbr1,

Lhx9, and Emx1 genes; the pallial amygdala is marked by the

expression of Tbr1 but the absence of Emx1 gene (Rétaux et al.,
1999; Puelles et al., 2000). Interestingly, the excitatory neurons
of the BLA are produced from the pallial Emx1-expressing
cell lineage (Gorski et al., 2002). The developing zebrafish
pallium expresses tbr1, lhx9, and emx-genes (Mione et al., 2001;
Costagli et al., 2002; Ganz et al., 2014; Liu et al., 2015) and
there is no distinct emx-negative pallial region (Ganz et al.,
2014). In agreement with the pallial location, most neurons
in the Dm are glutamatergic (Wullimann and Mueller, 2004;
von Trotha et al., 2014). Furthermore, zebrafish Dm expresses
cannabinoid receptor (cb1) (Lam et al., 2006), a marker for BLA
in rodents (Mailleux and Vanderhaeghen, 1992; Matsuda et al.,
1993; Katona et al., 2001). Taken together, the zebrafish Dm is
suggested to be the homolog of mammalian BLA.

The subpallial homologs, MeA, CeA, and BNST, are predicted
to be close to and topographically basal to the Dm in the
subpallium consisting of Vdd, Vs, Vp, and Vi of the ventral
telencephalon (Mueller et al., 2008; Ganz et al., 2012; Biechl
et al., 2017; Porter andMueller, 2020). Themammalian subpallial
amygdala is characterized by the expression of Dlx2 and GAD67
as well as Nkx2.1, Lhx6, Lhx7; in addition, amygdalar cells those
originating from the striatal area express Isl1 (Puelles et al.,
2000; Moreno et al., 2009, 2018). The zebrafish-developing dorsal
subpallium expresses dlx2, lhx6, lhx7, and gad1b (Mueller et al.,
2008). In adult zebrafish, the subpallium broadly expresses dlx2a,
dlx5a, and gad1b; the expression of lhx6 and lhx7 are restricted
to Vs; the dorsal Vs and most of Vp lack nkx2.1b and lhx1b
expression; medial and ventral parts of Vs express isl (Ganz
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FIGURE 1 | Teleost amygdala. (A) The development of telencephalon from neural tube (top) comparing evagination (in mammals) vs. eversion (in teleosts). In

mammals, the lateral pallium (LP), putative amygdala region, lies laterally, whereas in teleosts, in a simple eversion, the corresponding structure lies medially. (B) The

main neural connectivity of the teleost amygdala complex. Teleost Dm receives sensory information (somatosensory, visual, auditory, lateral line, gustatory, and odor)

(Continued)
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FIGURE 1 | through thalamus and preglomerular complex (coronal view/top panel). Dm has extensive projections (sagittal view/bottom panel) to the dorsal nucleus

(Vd), suppracommissural nucelus (Vs), and postcommissural nucelus (Vp) of the ventral telencephalon. These nuclei project efferents to several hypothalamic nuclei

and the periaqueductal gray (PAG). Olfactory projections to Vd, Vs, and Vi are not showed. The dorsal most nucleus (Vdd) is dorsal most part of the ventral

telencephalon as defined by Porter and Mueller (2020). ATN, anterior tuberal nucleus; Dl, dorsolateral telencephalon; EN, entopeduncular nucleus; Hd, dorsal zone of

periventricular hypothalamus; LH, lateral hypothalamus; OB, olfactory bulb; Ppa, preoptic area; Vi, the intermediate nucleus of the ventral telencephalon (adapted from

Nieuwenhuys and Meek, 1990; Folgueira et al., 2004; Lal et al., 2018, and Northcutt, 2006).

et al., 2012). The Vdd also lacks expression of isl1 (Baeuml et al.,
2019; Porter and Mueller, 2020). Based on this, Vdd, dorsal and
medial Vs, and most of Vp have been proposed to constitute
the central amygdala (Ganz et al., 2012; Porter and Mueller,
2020). In mice, among the subpallial amygdalar nuclei, the BNST
expresses Nkx2.1 (Puelles et al., 2000; García-López et al., 2008).
In zebrafish, the ventral-most part of Vs and Vp expresses
nkx2.1b suggesting homology to the mammalian BNST (Ganz
et al., 2012). In mammals, otp is a differential marker of MeA
within the telecephalon; based on neuroanatomical features and
expression pattern of the otpa gene, the otpa-positive neuronal
population in Vi is identified as the homolog of MeA (Biechl
et al., 2017). Calretinin is another differential marker of MeA
(Wójcik et al., 2013), Porter and Mueller (2020) identified the
calretinin-expressing regions within the Vs, Vp, Vdd, and Vi
as the MeA homolog. Although the identified region includes
the otpa-expressing cells in the Vi, this study interpreted Vi to
be a thalamic eminence (EmT) derivative as it is contiguous
to EmT and predominantly glutamatergic. In mammals, the
glutamatergic cells in the MeA originate from the ventral pallium
and the hypothalamic supraopto-paraventricular area (Morales
et al., 2021); a similar origin for excitatory cells in the zebrafish Vi
has been suggested that Vi is a part of the MeA homolog (Gerlach
and Wullimann, 2021).

CONSERVED NEURAL CONNECTIVITY
BETWEEN ZEBRAFISH AND MAMMALIAN
AMYGDALA

Although the developmental and molecular studies delineated
subdivisions within the zebrafish amygdala, it does not
imply that the identified subdivisions have similar functional
relationships with other brain structures (Faunes et al., 2015). The
hodological studies provide compelling evidence on similarity
in neuronal architecture and homology between the teleost
and the mammalian amygdala (Figure 1B). In mammals, BLA
receives primary sensory inputs such as visual, auditory,
olfactory, gustatory, and somatosensory from the sensory
thalamus and cortex (Maren, 2001; Ledoux, 2003). Tracing
studies in goldfish show that Dm receives afferent projections
from the preglomerular complex of the posterior tuberculum
and the central nucleus of the thalamus (Northcutt, 2006).
The preglomerular complex receives auditory input via the
medial and central pretoral nuclei, lateral line input via the
ventrolateral toral nucleus, visual input via the optic tectum, and
chemosensory information via the medial preglomerular nucleus
(Northcutt, 2006). In goldfish, the central posterior nucleus of
the thalamus receives and responds to auditory and visual inputs

(Kirsch et al., 2002; Northcutt, 2006). In the zebrafish larvae, the
dorsal pallium including the putative Dm region is activated in
response to light pulses (Randlett et al., 2015), and the thalamus
responds to auditory stimuli (Constantin et al., 2020). In goldfish
(Kato et al., 2012) and trout (Folgueira et al., 2004), Dm receives
gustatory cues from the preglomerular tertiary gustatory nucleus.
However, a study on zebrafish could not find similar connectivity
(Yáñez et al., 2017). In juvenile and adult zebrafish, calcium
imaging studies show that Dm is activated in response to odors
(Diaz-Verdugo et al., 2019; Bartoszek et al., 2021). Thus, the
teleost Dm receives sensory input similar to themammalian BLA.

In mammals, BLA and hippocampus are connected by
bidirectional projections (Maren, 2001). Similarly, tracing studies
in goldfish and trout show that the homolog of the hippocampus
in fish, the lateral zone of the dorsal telencephalon (Dl), forms
projections to the Dm (Folgueira et al., 2004; Northcutt, 2006).

In mammals, the intra-amygdalar projections convey
information from BLA to CeA. The CeA has divergent
connections to hypothalamus and brainstem that are known to
modulate the physiological responses during fear conditioning
(Royer et al., 1999; Maren, 2001). Anatomical studies in goldfish,
trout, and zebrafish show that the Dm has efferent projections to
the subpallial homologs, Vd, Vs, and Vp (Folgueira et al., 2004;
Northcutt, 2006; Lal et al., 2018). In trout, tracing studies show
that Vd is well connected to Vs, and both Vd and Vs have efferent
projections to several hypothalamic nuclei including the anterior
tuberal nucleus (Folgueira et al., 2004). In midshipman fish,
connectivity between Vs and the periaqueductal gray homolog
has been shown (Kittelberger and Bass, 2013). In mammals,
CeA is the main output nucleus and regulates fear response.
In teleosts, Dm has major efferent projections to several brain
regions such as the lateral hypothalamus, the anterior tuberal
nucleus, and the dorsal zone of the periventricular hypothalamus,
that are proposed to modulate fear response, presenting a teleost
specific difference (Northcutt, 2006; Lal et al., 2018; Yáñez et al.,
2021).

The mammalian MeA receives projections from the
vomeronasal organ and is involved in social and fear odor
detection (O’Connell and Hofmann, 2011). Although teleosts
lack a vomeronasal organ (Døving and Trotier, 1998), crypt
cells in the zebrafish olfactory epithelium have shown increased
pERK level in response to kin odor (Biechl et al., 2016).
Crypt/microvillous sensory neurons project to the mediodorsal
olfactory bulb glomerulus which has efferent projections to
the ventral telencephalon including Vi. Vi shows increased
pERK level in response to kin recognition and projects to the
tuberal nucleus in the hypothalamus supporting the homology
of Vi to the mammalian MeA (Biechl et al., 2017; Gerlach and
Wullimann, 2021).
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FUNCTIONAL AND BEHAVIORAL ROLE OF
THE ZEBRAFISH AMYGDALA

Functional and behavioral studies in teleost have mostly focused
on the pallial homolog Dm. Portavella et al. (2004a) carried out
lesion studies on Dm in goldfish; goldfish were trained in active
avoidance fear conditioning and after conditioning Dm was
surgically lesioned. The Dm lesioned goldfish showed a deficit in
retention of active avoidance response (Portavella et al., 2004a).
In a subsequent lesion study, the Dm was showed to be essential
for the avoidance learning (Portavella et al., 2004b). A similar
ablation study showed that Dm lesion also impairs the acquisition
of conditioned taste avoidance (Martín et al., 2011).

In zebrafish, the function of Dm has been analyzed in
light/dark choice, drug seeking behavior, innate, and conditioned
fear response assays. Light/dark choice task is thought to induce
anxiety-like responses in zebrafish (Maximino et al., 2010). Lau
et al. (2011) found an increased c-fos expression in Dm and other
brain regions, including hypothalamus and ventral telencephalic
regions when fish performed a light/dark choice task. von Trotha
et al. (2014) analyzed the c-fos expression in the zebrafish brain
induced by acute administration of amphetamine and observed
increase in c-fos expression in the Dm area during amphetamine-
induced place preference behavior. Calcium imaging studies
showed that the Dm is activated during aversive reinforcement
learning (Aoki et al., 2013). Both rewarding (food) and
fear inducing (skin extract) odor activate neurons in the
Dm (Ruhl et al., 2015; Diaz-Verdugo et al., 2019; Bartoszek
et al., 2021). Recently, using genetic methods, we identified a
population of neurons, named 120A-Dm-neurons, mediating
fear conditioning; these neurons were also found to modulate
freezing in response to skin extract, an innate fear cue (Lal et al.,
2018). Thus, like mammalian amygdala, zebrafish Dm is involved
in emotional and motivational behaviors.

INVESTIGATING THE FUNCTIONAL
ANATOMY OF THE ZEBRAFISH
AMYGDALA

The zebrafish amygdala is a broad region and constitutes
genetically diverse populations of neurons; evolutionary
molecular studies have revealed distinct subdivisions within this
structure (Ganz et al., 2012, 2014; Porter and Mueller, 2020).
Although the functional and ablation studies provide evidence
of homology, to understand the functional organization of
the zebrafish amygdala, it is crucial to study the structure and
function of its distinct populations of neurons in a particular
behavioral task. Genetic methods allow target specificity in
labeling, visualizing, and manipulating the activity of specific
neurons (Scott et al., 2007; Asakawa et al., 2008). In a recent
study, by using genetic methods, we identified and mapped
neural circuits-mediating fear conditioning (Lal et al., 2018).
Using the Tol2 transposon-mediated gene and enhancer trap
methods and the Gal4-UAS binary gene expression system, we
performed a large-scale genetic screen and isolated transgenic
fish lines that expressed Gal4FF, an engineered Gal4 transcription

activator, in specific populations of cells in the brain including
the amygdala region (Figures 2A–C). These transgenic lines were
crossed with an UAS effector fish carrying genetically engineered
botulinum neurotoxin (UAS:zBoTxBLC:GFP) (Figure 2D). In
these fish, the botulinum neurotoxin is expressed in the Gal4FF
expressing cells and inhibits the activity of the labeled neurons
(Sternberg et al., 2016). These double transgenic fish were
analyzed in an active avoidance fear conditioning assay. We
identified several fish lines that had Gal4FF UAS:zBoTxBLC:GFP
expression in the Dm and showed a defect in acquisition of
active avoidance fear conditioning. In two fish lines, the Gal4FF
expression was restricted to a population of neurons within the
Dm area, named 120A-Dm-neurons (Figure 2C). Inhibition
of 120A-Dm-neurons also reduced performance in Pavlovian
fear conditioning suggesting that these neurons mediate sensory
association for conditioned fear. Moreover, these neurons were
also found to modulate freezing in response to skin extract, an
innate fear response. Thus, the 120A-Dm-neurons modulate
both conditioned and innate fear response.

The transgenic approach allowed neurochemical and
anatomical characterization of the labeled neurons. The 120A-
Dm-neurons expressed vglut genes and were glutamatergic. The
120A-Dm-neurons had efferent projections to various brain
structures including the subpallial amygdala homologs Vd and
Vs, entopeduncular nucleus (EN), preoptic region, and the
hypothalamus (Figure 2E). The Dm-hypothalamus pathway is
suggested to modulate fear response. The zebrafish EN consists
of a dorsal GABAergic part (ENd) and a ventral glutamatergic
nucleus (ENv). The teleost ENd and ENv are proposed to be
the homologs of the EN of non-primate mammals and the
bed nucleus of stria medullaris, respectively (Mueller and Guo,
2009). In goldfish and zebrafish, ENv has efferent projections
to habenula. The habenula-median raphe circuit in zebrafish is
essential for active avoidance conditioning (Amo et al., 2014).
Hence, the Dm–EN circuit may mediate active avoidance
response. Thus, the genetic approach helped identify a functional
neuronal circuit in the Dm essential for fear conditioning.

PERSPECTIVES

In summary, studies have identified the amygdala homolog in
zebrafish. However, to understand its functional anatomy, it is
crucial to understand how it contributes to the generation of
different behaviors. To understand the structure and function
of distinct populations of neurons, genetic approaches provide
target specificity in labeling, visualization, and manipulation of
specific neural circuits (Scott et al., 2007; Asakawa et al., 2008;
Förster et al., 2017; Lal et al., 2018). However, it is unlikely that
all the neurons that share a genetic marker or that have common
projection patterns also have identical functions. There is a need
for an even greater library of molecular markers and transgenic
resources that can be utilized to achieve target specificity, e.g., by
using combinatorial expression systems such as Gal4-UAS and
Cre/loxP (Sato et al., 2007).

Moreover, how information is processed within the zebrafish
amygdala and how this affects the downstream neural circuit
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FIGURE 2 | Genetic dissection of the zebrafish amygdala. (A) Schematic of dorsal and coronal view of the zebrafish brain and telencephalon, respectively. The red

line in the dorsal view shows the position of coronal section. (B) Examples of isolated brains of gene trap and enhancer trap transgenic zebrafish lines that show

Gal4FF (UAS:GFP) expression in the Dm region. (B1–B8) Dorsal view of the isolated brain. Scale bar, 500µm. (B1’–B8’) Coronal section of the corresponding

transgenic fish in (B1–B8). The position and region of the coronal section are showed in A (red line and red box). Scale bar, 200µm. (C) The Gal4FF (UAS:GFP)

expression pattern in the brain of transgenic fish SAGFF120A. SAGFF120A is an emx3-enhancer trap line and labels a population of neurons in the Dm, named

(Continued)
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FIGURE 2 | 120A-Dm-neurons. (C1) Dorsal view. Scale bar, 500µm. (C1’) Coronal view as above. Scale bar, 200µm. (D) Gal4FF drivers lines are crossed with

botulinum toxin effector fish (UAS:zBoTxBLC:GFP). The double transgenic fish is analyzed in an active avoidance fear conditioning assay. (E) 120A-Dm-neurons have

efferent projections to Vd, Vs, EN, Ppa, and hypothalamus. CCe, corpus cerebelli; Dl, dorsolateral telencephalon; EN, entopeduncular nucleus; OB, olfactory bulb;

Ppa, preoptic area; TeO, optic tectum; Vd, the dorsal zone of the ventral telencephalon; Vv, the ventral zone of the ventral telencephalon [figures reused and adapted

from Lal et al. (2018), https://creativecommons.org/licenses/by/4.0/].

is not known. To address this, we need to simultaneously
manipulate the specific neural populations within the amygdala
and observe the activity of the target brain regions. Recently
developed virtual reality systems allow in vivo imaging of adult
zebrafish brain at a single-cell resolution during a behavioral
task (Huang et al., 2020; Torigoe et al., 2021). The optogenetic
and chemogenetic approaches combined with neural activity
imaging are needed to study the role of specific populations
of neurons in neural computations (Antinucci et al., 2020).
Although the amygdala is well known for processing and
response to fear stimuli, it is also crucial for a broad range
of behaviors such as emotion, cognition, and social behavior
(Murray, 2007; Morrison and Salzman, 2010; O’Connell and
Hofmann, 2011; Janak and Tye, 2015). An integrated approach
using the transgenic resource and tools combined with neuronal
activity imaging, neural activity manipulation, and quantitative

behavioral analyses will help to reveal the functional anatomy of
the zebrafish amygdala.
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