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Communicating pain: emerging 
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Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). 
This condition afflicts millions of people, significantly burdening healthcare 
systems and putting strain on families’ financial well-being. Here, we  will 
focus on the role of peripheral sensory neurons, specifically the Dorsal Root 
Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, 
DRG neurons activate regenerative signals of axons-soma communication to 
promote a gene program that activates an axonal branching and elongation 
processes. The results of a neuronal morphological cytoskeleton change are 
not always associated with functional recovery. Moreover, any axonal miss-
targeting may contribute to NeuP development. In this review, we will explore 
the epidemiology of NeuP and its molecular causes at the level of the peripheral 
nervous system and the target organs, with major focus on the neuronal cross-
talk between intrinsic and extrinsic factors. Specifically, we will describe how 
failures in the neuronal regenerative program can exacerbate NeuP.
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1 Introduction to neuropathic pain

1.1 What is Neuropathic pain?

With the term “pain” we refer to an “unpleasant sensory and emotional experience that is 
associated with or resemble actual or potential tissue damage,” as defined by the International 
Association for the Study of Pain (IASP; Raja et al., 2020). We consider pain a debilitating 
condition, but in reality this is an evolutionary conserved protective response to harmful 
stimuli, such as excessive cold/heat, chemical irritants and dangerous mechanical forces (Testa 
et al., 2021). Indeed, patients with congenital insensitivity to pain suffer from multiple lesions, 
untreated bone fractures and severe complications (Phatarakijnirund et al., 2016; Wang et al., 
2016; Hartono et al., 2020). Nonetheless, excessive pain is detrimental and pharmacological 
treatments are necessary to abate it.

We distinguish two phases of pain: acute and chronic. Acute pain arises from chemical 
exposure (acetone, capsaicin), temperature (heat and cold) and mechanical stimuli (Fernandez 
Rojas et al., 2023). Acute pain is the first response to damaged tissue, followed by inflammation 
that triggers swelling of the area and promotes tissue repair (Rabiller et al., 2021; Parisien et al., 
2022). However, if the pain persists for more than 3 months, it is defined as chronic and it 
becomes a pathological condition in itself (Treede et al., 2019). A temporal parameter is used 
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to differentiate between acute and chronic pain due to the lack of 
consistent biomarkers that could be applied in the clinical setting.

Pain is also classified according to its origin as nociceptive (when 
tissues are injured), neuropathic (if nerves are damaged) or nociplastic 
(when the nervous system is sensitized, while no damages are 
observed on tissues and/or peripheral nerves; Fitzcharles et al., 2021). 
In the clinical practice, it may be difficult to separate the types of pain 
and most of the conditions may present a mixed phenotype such as 
neuropathic and nociplastic (Caraceni and Shkodra, 2019).

Neuropathic pain (NeuP) can arise because of lesions or diseases 
(genetic or acquired) affecting the somatosensory nervous system 
(SNS). The SNS is called spinothalamic tract ascending pathways 
formed by the synapses of three order of neurons: primary neurons 
(housed in dorsal root ganglia), secondary neurons (located in the 
spinal cord) and tertiary neurons (present in the thalamus; Viswanath 
et  al., 2020; LRM et  al., 2021). This system is responsible for the 
perception of crude touch, pain, temperature, as it integrates 
information from external stimuli and conveys them from the 
periphery to the cerebral cortex. Any damage of this pathway disrupts 
the signal transmission and can results in pain (Colloca et al., 2017).

1.2 Pathologies associated with peripheral 
NeuP

While acute trauma is a common trigger, NeuP can develop from 
non-traumatic conditions that affect the nervous system. These 
conditions may be: (a) genetic mutations or polymorphisms, (b) 
acquired afflictions, like infections or injuries, or (c) medical 
treatments or drugs.

In humans, mutations of certain genes, such as PMP22, GJB1, 
MPZ and GDAP1, cause Charcot–Marie–Tooth disease, a group of 
inherited disorders characterized by nerve damage with painful motor 
and sensory neuropathy (Liu et  al., 2020). People suffering from 
erythromelalgia and paroxysmal extreme pain disorder (Ahn et al., 
2013; Goodwin and McMahon, 2021), generally called idiopathic 
painful small fiber neuropathies, present gain-of-function mutations 
in sodium voltage-gated channel encoding NaV1.7, NaV1.8, and 
NaV1.9. Other mutation in TRPA1, TRPV1, α-galactosidase and 
KIF5A (Biegstraaten et al., 2012; Boukalova et al., 2014; Rinaldi et al., 
2015) are  responsible for sensory neurons hyperexcitability that 
clinically manifests as sudden bouts of pain propagating inward from 
the extremities. Mutations of SPTLC1, a serine palmitoyltransferase, 
cause a form of hereditary sensory neuropathy with early sensory loss 
and later “lightning” or “shooting” pains (Lorenzoni et al., 2023). More 
gene variations have been associated to the development of painful 
syndromes, as reported in the DOLORisk study1 (Pascal et al., 2019) 
and the Human Pain Genetics Database (HPGDB; 
humanpaingeneticsdb.ca; Meloto et al., 2018).

A plethora of acquired afflictions can damage nerves and provoke 
NeuP. This is the case of spinal cord injury (Shiao and Lee-Kubli, 
2018), diabetes (Feldman et  al., 2019), herpes zoster infection 
(Kinchington and Goins, 2011), HIV infection (Laast et al., 2011), 
Lyme disease (Karri and Bruel, 2021) and also COVID infection 

1 http://dolorisk.eu/

(Fernández-De-las-peñas et al., 2022). Cancer may induce NeuP by 
compressing the surrounding nerves while growing or by inducing 
fibrosis, both of which cause pain fibers hypersensitivity (Oh and 
Yoon, 2018). Moreover, the pro-inflammatory cytokines released by 
the immune cells recruited in the tumor microenvironment may 
increase pain perception and hyperalgesia (Bennett et  al., 2012; 
Caraceni and Shkodra, 2019).

People suffering from painful conditions often turn to surgical or 
pharmacological treatments, but they may not always find relief. 
Surgical operations cause additional nerve damage, which can evolve 
in persistent Surgically-Induced Neuropathic Pain (SNPP; Borsook 
et  al., 2013). Drugs used to treat pain, such as psychotropic and 
anticonvulsants (e.g., gabapentin; Jones et al., 2019), can trigger Drug 
Induced Peripheral Neuropathy (DIPN). Chemotherapy-induced 
peripheral neuropathy (CIPN) can cause irreversible nerve damage 
with pain that cannot be relieved even after the end of the treatment 
(Zhang et al., 2016; Bjornard et al., 2018; Eldridge et al., 2021). In 
particular, CIPN patients present altered activity and expression of 
voltage-gated ion channels (i.e., neurotransmission) and loss of 
intraepidermal nerve fibers and Meissner’s corpuscles in the skin 
(Boyette-Davis et al., 2015). Understanding the molecular basis of 
neuropathic pain to develop targeted analgesic could be incredibly 
beneficial for all these patients.

1.3 Epidemiology of NeuP

It is estimated that between 6.9% and 10% of the world general 
population suffers from chronic NeuP (Van Hecke et al., 2014). The 
prevalence reported in population studies varies between 3.2% and 
14.5%, likely due to differences in evaluation methods, language 
barriers, sample recruitment processes, and patient self-reported 
information employed in the data collection (Figure 1).

Clinical diagnosis (e.g., documented neurological lesion) is rarely 
used in the census studies due to the difficulties in the patients’ 
recruitment process. The majority of the epidemiologic investigations 
employ one of three screening questionnaires for NeuP assessment: 
PainDETECT, LANSS (Leeds Assessment of Neuropathic Symptoms 
and Signs), or DN4 (Douleur neuropathique 4). Even though their 
results do not completely overlap (VanDenKerkhof et al., 2016; Attal 
et  al., 2018), these questionnaires are a useful tool to identify the 
classical symptoms of NeuP, specifically allodynia (i.e., pain by a 
stimulus that should not be  causing discomfort), hypersensitivity, 
shooting pain, numbness, burning and tingling sensations (Truini 
et al., 2013).

NeuP symptoms greatly affect the quality of life of the people and 
increase the individual healthcare cost. Looking at five European 
countries (Italy, Spain, France, the UK and Germany), the average 
annual spending healthcare-related per patient ranged from €1,939 to 
€3,131, when adjusted to 2012 prices (Liedgens et  al., 2016). 
Additionally, psychological factors (such as stress, anxiety, and 
depression) can worsen and, at the same time, be  worsened by 
neuropathic pain (Breivik et al., 2013; Meng et al., 2020; Roughan 
et al., 2021). This psychological spiral is usually attenuated when the 
patients have a support system around them to help dealing with pain 
(Cohen et al., 2021).

Consumption of western-style high-fat diet, excessive alcohol and 
sedentariness are on the rise worldwide, and unfortunately they are 
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also correlated with an increased risk of developing NeuP (Brandão 
et al., 2020; Dudek et al., 2020; Smith et al., 2020; Tanaka et al., 2023). 
Therefore, there is an urgent need for proper unbiased pain biomarkers 
to be employed in the clinics to diagnosis and then alleviate pain in 
the sufferers.

1.4 Sex hormones and the effect of aging 
on NeuP

It is widely known that pain perception varies according to age, 
sex, and ethnic group (Mills et al., 2019; Chang et al., 2022). Females 
more than males suffer from NeuP, a phenomenon observed in both 
rodents and humans (Szabo-Pardi et al., 2021; Elliott et al., 2024). Sex 
hormones are known to influence pain perception, as both estrogen 
and testosterone receptors are expressed in sensory neurons. In 
particular in peripheral nociceptors, 17-β-estradiol increase sensitivity 
to mechanical and thermal pain (Patrone et al., 1999; Deng et al., 
2017), while testosterone, binding to TRPM8, dampens pain 
perception (Barbosa Neto et  al., 2019). The molecular bases of 
sex-dimorphism in NeuP are still unclear, but it has been speculated 
that sex steroids might influence specific protective or detrimental 
gene expression for pain perception (Stephens et al., 2019) and axonal 
regeneration (Ward et al., 2021).

Population studies indicate that NeuP is prevalent in the elders. 
This does not mean that young people are exempt from nerve damage. 
In both humans and animals, the nerve damage occurring at an early 
age will trigger NeuP only in late childhood and adolescence (Walco 
et al., 2010). In rats, specifically, nerve injuries before P28 will develop 
into NeuP only after 3 weeks, a time that corresponds to the animal’s 
adolescence (Fitzgerald and McKelvey, 2016). This phenomenon 
occurs because before P28 the neuroimmune response is skewed 

toward anti-inflammation, which suppresses nociceptors excitability 
and prevents NeuP. As the rodent grows, the neuroimmune signature 
shifts toward pro-inflammation, which uncovers the latent pain 
response to early trauma (McKelvey et al., 2015).

In general, with age there are increased number of abnormal or 
degenerating neuronal fibers, slower conduction speed, altered 
endogenous inhibition and decreased function of neurotransmitters, 
all of which favor NeuP development (Giovannini et  al., 2021). 
Nociceptor gene expression also changes with age. Aged murine 
models (18–24 months) have increased pain sensitization (Tac1 and 
Calca) and stress (Atf3) markers in DRGs, and also elevated levels of 
neurotrophic factor Bdnf (Vincent et al., 2020).

The described physiological variability renders pain detection and 
analgesic development incredibly challenging. It will be difficult to 
develop an all-encompassing wonder drug to resolve NeuP in all the 
conditions for all type of patients. Pharmacological studies, especially, 
will have to be even more attentive in subject clustering to properly 
identify drug candidates.

2 DRG neurons in NeuP

2.1 DRG structure

Animals perceive pain, defined as intense above threshold thermal, 
mechanical or chemical stimuli, via a subpopulation of peripheral nerve 
fibers called nociceptors (Basbaum et al., 2009), that are to the primary 
order neurons mentioned previously. These nociceptors have their soma 
situated in the dorsal root ganglia (DRG), bilateral structures that reside 
inside the intervertebral foramina. Therefore, DRGs are functional centers 
for sensory transduction and modulation, but also for pain transmission 
and maintenance of pain states (Berger et al., 2021). The neurons residing 

FIGURE 1

The world map represents the prevalence of NeuP in different countries in the general population. A color gradient was used for those countries with 
published data. Gray color was used for countries were no studies were found. The figure was created using Datawrapper, and is also available online 
at the following link https://datawrapper.dwcdn.net/kgAz0/1/. Additional information on the studies used to compile this graph is available in the 
Supplementary Table 1.
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in the DRG structures are a population heterogeneous in size and 
function. In the same DRG it is possible to recognize nociceptors’, 
mechanoceptors’ and propioceptors’ cell bodies (Belmonte and Viana, 
2008), which present diverse gene expression profiles. Through single cell-
sequencing, several researchers could even obtain the transcriptome 
signature of the different DRG nociceptors, a throve of information 
available online in several databases (Table 1).

Nociceptors have their soma enveloped by satellite glial cells 
(Avraham et al., 2022; Mapps et al., 2022), that are multipotent glial 
precursors implicated in pain transmission. The axons of these sensory 
neurons are in close association with myelinating or non-myelinating 
Schwann cells (Harty and Monk, 2017). Nociceptors with myelinated 
axonal projections are termed Aδ-fibers (1-5 μm diameter), while 
those lacking myelin wrapping are C-fibers (0.2–1.5 μm diameter). In 
the distal peripheral nerve, C-fibers are closely associated with 

non-myelinating Schwann cells, forming Remak bundles, that are 
structures crucial for neuronal repair after peripheral nerve injury 
(Harty and Monk, 2017). The two types of fibers serve different 
functions: Aδ-nociceptors elicit fast, sharp pain (“first pain”) after 
mechanical and chemical stimuli; C-nociceptors transmit slow, aching 
dull pain (“second/slow pain”) following an ample range of stressors 
(i.e., polymodal function; Basbaum et al., 2009).

DRG neurons possess a peculiar morphology: in vivo they are 
bipolar in shape during the embryonic stage, while upon maturation 
they become pseudo-unipolar (Nascimento et al., 2018), with a single 
axon—the stem axon—that bifurcates (Figure  2). The peripheral 
branch innervates skin, muscle and viscera and acts as the afferent 
portion of the system, while the central branch reaches the dorsal horn 
of spinal cord (laminae I and II) where it synapses with second-order 
neurons (Basbaum et al., 2009; Nascimento et al., 2018). These spinal 

FIGURE 2

This illustration depicts key components involved in pain signaling within a dorsal root ganglion (DRG) neuron. Sensory channels located in the 
peripheral axon detect mechanical, thermal (heat/cold), and chemical stimuli. Resident macrophages and Schwann cells near the neuron release 
neurotrophins, cytokines, and growth factors, which support cell survival. Following axotomy, calcium ions enter the neuron, initiating an injury signal. 
This signal activates sodium and potassium channels, which transmit the signal towards the nucleus. Transcription factors, such as AP-1, bind importin 
α3 and are transported into the nucleus, where they induce the expression of genes associated with pain and axonal regeneration. Additionally, the 
injury signal is conveyed to the central nervous system via saltatory conduction. At the synapse with the second-order neuron, the calcium influx in the 
sensory neuron triggers the release of substance P and glutamate. Activated pro-inflammatory microglia in the surrounding region amplify mechanical 
hypersensitivity and pain. This image was created with BioRender.
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neurons project via the spinothalamic tract to upper brain structures 
(like the cerebral cortex) to transmit noxious stimuli and information 
about intensity and location. Some of the secondary order neurons 
project to the cingulate and insular cortex via the connections in the 
parabrachial nucleus and the amygdala, contributing to the pain 
experience (Yam et al., 2018).

The DRG structure contains other non-neuronal cells, such as 
macrophages and T-lymphocytes and a small number of B-lymphocytes 
(Laast et al., 2011; Makker et al., 2017; Zhou et al., 2022; Feng et al., 2023). 
Endothelial and smooth muscle cells are also present, as fenestrated 
capillaries directly irrorate the DRGs to release oxygen and blood borne 
molecules that interact with the neuronal cells (Jimenez-Andrade et al., 
2008). These surrounding cells and their released factors directly influence 
the functions of the sensory neurons.

2.2 Nociceptor signaling after peripheral 
nerve injury

In general, NeuP arises when nerves are damaged. Rupturing the 
nociceptor plasma membrane triggers signaling cascades that alter the 
expression and function of ion channels. This causes a change in the 
electrical signal transmission, which the nervous system processes and 
perceives as pain.

When the nociceptor peripheral branch undergoes axotomy 
(Figure  2), the distal axon is separated from the cell body and is 
subjected to Wallerian degeneration, an active process that disrupt the 
axolemma. At the same time, the proximal axon is exposed to 
inflammatory cytokines and trophic factors from the surrounding 
cells (e.g., Schwann cells, macrophages; Campbell and Meyer, 2006; 
Rotshenker, 2011), which activate signaling cascades. Axotomy does 
not activate ion channels like TRPV1 (heat), TRPM8 (cold), ASICs 
(acidic milieu), TRPA1 (chemical irritant), KCNK2/TREK-1 
(mechanical stimuli) and Piezo1 (mechanical stimuli; Wang and 
Woolf, 2005; Patapoutian et al., 2009; Coste et al., 2010; Wemmie et al., 
2013; Djillani et al., 2019).

The plasma membrane rupture leads to ionic influx, elevated 
intracellular calcium levels, and cytoskeleton disruption through 
calpain activation (George et al., 1995; Zang et al., 2015). Apart from 
calpain activity, the axotomy causes actomyosin contraction, which 
makes the sensory neurons shrink. This is necessary to eliminate water 
via aquaporin channels and to prevent excessive swelling that may 
lead to cell death (Aydın et al., 2023). The calcium wave moves toward 
the soma to trigger epigenetic changes and regeneration-associated 
genes (RAGs) expression. Slow motor-based retrograde complexes 
deliver injury signaling (such as ERK) to the nucleus (Puttagunta 
et al., 2014). Axon injury activate other molecular pathways such as 
cAMP/PKA, PTEN/mTOR, gp130/Jak and DLK/JNK (Zigmond, 

TABLE 1 Online databases of DRG transcriptome.

Database Laboratory Tissue and cell origin Details of the study

SeqSeek

SeqSeek (nih.gov)

N. Ryba, NIH

A.J. Levine, NIH

Nguyen et al. (2021), Russ et al. (2021)

Human DRG

Mouse spinal cord

Map of human DRG, according to 

function

Murine spinal cord cell atlas

Sex difference in pain

Resources — Denk Laboratory 

(franziskadenk.com)

F. Denk, King’s College London

Lopes et al. (2017)

Mouse DRG Male and Female mouse nociceptors

Comparison between naive and injury 

states

NIPPY - Neuro-Immune interactions in 

the Periphery

http://rna-seq-browser.herokuapp.com/

F. Denk, King’s College London

Liang et al. (2020)

Mouse sciatic nerves

Mouse DRG

Male and Female mouse nociceptors and 

sciatic nerve

Comparison between naive and injury 

states

Sensoryomics (DRG TXome Database)

https://sensoryomics.shinyapps.io/RNA-

Data/

T.J. Price, University of Texas (Dallas)

Tavares-Ferreira et al. (2022)

Human nociceptors DRG transcriptomic Neuropathic pain

Nociceptra

Streamlit (nociceptra.streamlit.app)

M. Kress, Medical University Innsbruck

T.J. Price, University of Texas (Dallas)

Zeidler et al. (2023)

Human iPSC-derived sensory 

neurons

Expression Signatures

XSpecies DRG Atlas

XSpecies DRG Atlas (gene.com)

L. Riol-Blanco, Genentech

J.S. Kaminker, Genentech

D.H. Hackos, Genentech

Jung et al. (2023)

Mouse DRG

Guinea pig DRG

Monkey DRG

Human DRG

Cross-species transcriptome atlas of 

dorsal root ganglia (naive)

Harmonized DRG and TG reference atlas

https://painseq.shinyapps.io/harmonized_

drg_tg_atlas/

W. Renthal, Brigham and Women’s Hospital 

and Harvard Medical School

R.W. Gereau IV, Washington University 

School of Medicine

T.J. Price, University of Texas (Dallas)

Bhuiyan et al. (2023)

Human DRG and TG

Five other species DRG and TG

Cross-species transcriptome atlas of 

DRG and TG (naive)

Neuronal and non-neuronal cells
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https://seqseek.ninds.nih.gov/humanDRG/genes
https://www.franziskadenk.com/resources
http://rna-seq-browser.herokuapp.com/
https://sensoryomics.shinyapps.io/RNA-Data/
https://sensoryomics.shinyapps.io/RNA-Data/
https://nociceptra.streamlit.app/
http://research-pub.gene.com/XSpeciesDRGAtlas/#symbol/symbol/2939.html
https://painseq.shinyapps.io/harmonized_drg_tg_atlas/
https://painseq.shinyapps.io/harmonized_drg_tg_atlas/


Testa et al. 10.3389/fnana.2024.1398400

Frontiers in Neuroanatomy 06 frontiersin.org

2012; Li et al., 2015; Valakh et al., 2015; Chen et al., 2016; Alber et al., 
2023), all of which target transcription factors (such as ATF3, CREB, 
STAT3, and c-Jun) to promote regeneration (Bareyre et  al., 2011; 
Moore and Goldberg, 2011). Gene inactivation mediated by DNA 
methylation as well as gene downregulation by non-coding RNA 
transcripts (miRNAs, siRNAs, lncRNAs) are involved in the control of 
the axon regeneration program (Oh et al., 2018; Han et al., 2022). 
Interestingly, these regenerative programs are sexually dimorphic in 
the early phases (Chernov and Shubayev, 2022). Several alterations in 
gene expression post-nerve injury have been reported in a number of 
studies, some of which are reported in Table 1.

As mentioned, the calcium influx is necessary to induce the initial 
neuronal survival program. However, if the calcium influx persists, it 
lowers the threshold for action potentials, making the DRG neurons 
hyperexcitable, which favors NeuP development (Chung and Chung, 
2002). Even sodium and potassium ionic currents, propagating along 
the axons through specific channels, are involved in pain signaling. In 
sensory neurons, the main sodium channels are NaV1.7, NaV1.8 and 
NaV1.9, while the potassium ones are Kv1.2, TRAAK and TREK-1: 
improper activities of these channels can lead to either hyperalgesia 
or analgesia (Tsantoulas and McMahon, 2014; Goodwin and 
McMahon, 2021). Ionic currents travel toward the central axonal 
branch that forms a synapse with the second-order neurons in the 
dorsal horn of the spinal cord (Todd, 2010). Here, the calcium influx 
triggers the release of neurotransmitters and neuropeptides (such as 
glutamate, substance P and CGRP), that will be captured by the spinal 
cord neurons and transmitted to the CNS (Gross and Üçeyler, 2020).

When nociceptor activation is persistent, neural circuits undergo 
rearrangements. Changes have been observed in genes and proteins 
expression which affect neuronal excitability and transmission (i.e., 
functional plasticity), in the spines morphology (i.e., structural 
remodeling) and in the neural connectivity (Tracey et al., 2019; Fiore 
et al., 2023). The result of these alterations is sensitization to pain, 
either at the peripheral or central levels, which can be aggravated by 
the pro-inflammatory products released by surrounding cells (Woller 
et al., 2017; Rosenbaum et al., 2022).

3 Neuronal factors contributing to 
NeuP post injury

3.1 Retrograde transport and importins

As mentioned, damaged sensory axons activate two response 
phases: an early one, mediated by ion influxes (mainly calcium), and 
a late one, characterized by slower signals conveyed through molecular 
motors. These molecular motors travel on microtubules and move 
vesicles, organelles, proteins, and RNA granules containing snRNP 
along the axons (Rishal and Fainzilber, 2014; Saito and Cavalli, 2016; 
Smith et al., 2020). There are two type of motor proteins: the plus-end 
directed kinesins, and the minus-end directed dynein. In neurons, 
dynein exclusively moves cargo from pre-synapses back to the soma 
(Terenzio et  al., 2020), a process called “retrograde transport.” 
Retrograde transport is essential for regulating cell homeostasis, 
neurotrophic factor signaling, autophagy–lysosomal degradation, 
nerve injury response and pain signaling (Rishal et al., 2012; Rishal 
and Fainzilber, 2014; Prior et al., 2017; Mao et al., 2019; Marvaldi 

et al., 2020). Indeed, reduced expression of the dynein heavy chain 1 
(Dync1h1) in sensory and motor neurons causes accelerated axonal 
outgrowth and delayed recovery after injury (Di Pizio et al., 2023).

Protein kinase signaling pathways and post-translational 
microtubule modifications regulate the efficiency of retrograde 
transport (Barlan and Gelfand, 2017; Brady and Morfini, 2017). To 
properly function, retrograde axonal transport requires the interaction 
between the dynein motor and its cargo, which is usually mediated by 
adaptor proteins. Adaptor/scaffold proteins dictate the specificity of 
the cargoes to be shuttled. Any deregulation caused by modifications 
of key adaptors and scaffolds could result in neuropathic pain. Indeed, 
some forms of hereditary Charcot–Marie–Tooth have mutations that 
compromise retrograde transport (Markworth et al., 2021).

Importins are a family of adaptor proteins involved in retrograde 
transport (Figures 2, 3). These proteins, classified as karyopherins, are 
divided into ɑ and β subunits. To be  functional, importins form 
heterodimers, where β interacts directly with dynein while ɑ binds the 
nuclear localization signals (NLS) of cargo proteins (Panayotis et al., 
2015). Moreover, importin β mediates the docking of the importin/
substrate assembly to the nuclear pore complex (NPC) through 
binding to nucleoporin FxFG repeats (Lott and Cingolani, 2011).

Mouse and human have, respectively, six and seven isoforms 
of importin ɑ, with specific tissue expression profiles and cargo-
binding selectivity. For example, importin ɑ5 directly binds and 
regulates nuclear import of MeCP2, which affects anxiety levels 
(Panayotis et al., 2018). Importins ɑ1 and ɑ5 were also found to 
bind viral proteins to aid viral replication of herpes simplex virus 
and Newcastle disease virus, respectively (Döhner et  al., 2018; 
Duan et al., 2018). Interestingly, mutant importin ɑ4 can cause 
Infantile-Onset Hereditary Spastic Paraplegia, though the 
molecular mechanism is unclear (Schob et al., 2021). Importin ɑ3 
was recently found to be relevant for persistence of chronic NeuP 
(Marvaldi et al., 2020).

3.2 Cargos in response to nerve injury

In both naive and injured sciatic nerve, importin α-s are in axons 
constitutively associated with dynein, while importin β1 protein 
assumes axonal localization only after an injury occurred (Hanz et al., 
2003; Alber et al., 2023). Moreover, only upon damaged importin β 
undergoes local axonal translation and forms α/β functional 
heterodimers to accelerate the retrograde transport of cargo (Perlson 
et al., 2005).

What are the cargoes that are retrogradely transported after 
axonal injury? Transcription factors (TF), such as ATFs and STATs, 
have been found to used importin-based nucleocytoplasmic transport 
(Lindwall and Kanje, 2005; Michaelevski et al., 2010). Members of 
AP-1 family of TF, which have roles in neuronal activation and axonal 
regeneration, also bind importins (Raivich et al., 2004). In particular 
c-FOS, a member of the AP-1 group, binds importin α3-β complex, 
which results in its nuclear import and the expression of downstream 
genes that regulate pain (Manassero et  al., 2012; Marvaldi et  al., 
2020). Mice injected with AAV9 vector [that specifically targets 
sensory neurons (Chan et al., 2017)], carrying importin α3 shRNA 
had reduced pain perception in the acute and chronic pain response. 
Coherently, blocking the nuclear import of AP-1 factors was sufficient 
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to reduce pain. This effect was even reproduced pharmacologically 
with the use of two non-analgesic FDA-approved drugs (sulmazole 
and sulfamethizole), identified via cMAP screening analysis (https://
www.broadinstitute.org/connectivity-map-cmap Connectivity Map 
(CMAP) | Broad Institute). Further analysis showed that indeed  
these two drugs reduced pain by blocking c-Fos nuclear import 
(Marvaldi et al., 2020).

STAT3 is another TF that not only is locally translated in the axon 
and activated upon injury, but also retrogradely transported by 
dynein-importin α5. This modulates survival of sensory neurons  
in vivo by acting as an anti-apoptotic factor (Ben-Yaakov et al., 2012). 
Experimental evidence suggests that even members of the Myc/Max, 
PPAR and Smad families may undergo the same dynein-mediated 
transport in rodents after sciatic nerve injury (Ben-Yaakov et  al., 
2012), though additional biochemical assay will be required to obtain 
a full picture of the phenomenon.

Signaling endosomes are another kind of cargoes retrogradely 
transported after injury via dynein motors. The maturation and 
movement of these endosomes are regulated by Rab5/Rab7 and 
Erk1/2 (Deinhardt et al., 2006; Ito and Enomoto, 2016). Specifically, 
Rab5 is found associated with stationary organelles, while Rab7 is 
present in the moving endosomes. In sensory neurons, the tethering 
of the signaling endosomes to dynein motor protein is mediated by 
retrolinkin (a membrane endosomal protein) that directly binds 
BPAG1n4, which in turn is associated with dynactin/dynein (Liu et al., 
2003, 2007).

As they originate from the plasma membrane, the signaling 
endosomes are responsible for endocytosis of ligand and their 
receptors, such as P2X3, NaV1.7 and Trk receptors (Chen et al., 2012; 
Higerd-Rusli et al., 2023). Interestingly, P2X3, a ATP-receptor highly 
expressed in DRG nociceptors, has been associated with neuropathic 
pain and its pharmacological downregulation has showed analgesic 
effects in rat (Dan et al., 2021). TrkA-NGF complexes are endocytosed 
and retrogradely transported together with CREB TF (that was locally 
translated) and other signaling molecules like MEK, ERK, PLCγ and 

PI3K (Cosker et al., 2008; Marlin and Li, 2015; Crerar et al., 2019). By 
doing so, the signaling endosomes effectively become platforms for 
the propagation of molecular cascades that got activated a the nerve 
terminal. The CREB TF contained in the vesicles, once delivered in the 
proximity of the nucleus, activates genes for neuronal survival (Cox 
et al., 2008; Melemedjian et al., 2014). Alteration of this signaling 
pathway was observed in Charcot–Marie–Tooth mice models carrying 
Gars mutations and, as expected, these mice also display sensory 
defects (Sleigh et al., 2017).

In DRG neurons, other neurotrophins-receptor complexes, such 
as BDNF-TrkB (Vermehren-Schmaedick et al., 2022) undergo similar 
retrograde transport prompting the expression of anti-apoptotic/
pro-survival genes that prevent nerve degeneration.

3.3 Axonal regeneration post-injury is 
altered by NeuP

The injury signals delivered through retrograde transport induce 
alterations of the cytoskeletal architecture and of the gene expression 
profile (Renthal et al., 2020). These rearrangements require epigenetic 
changes dependent on the activity of MeCP2, DNMTs, and on the 
export of HDAC5 (Cho et al., 2013; Penas and Navarro, 2018).

The nuclear import of transcription factors [e.g., Jun, ELK1, 
STAT3, SMAD (Doron-Mandel et  al., 2015)] promotes the 
expression of several genes associated with regeneration, such as 
Atf3, Sprr1a, Gap43, Sox11, Gadd45a, Smad1 and NPY (Jang 
et  al., 2021). Gap43, a well-known protein involved in axonal 
growth, also increases in the axons following the local translation 
of mTOR (Terenzio et al., 2018). Axonal regeneration is promoted 
by reduced levels of molecules, such as Spry2, Sarm1, Gas5 and 
DRAK2 kinase, that regulate the activity of growth factor receptors 
and inflammatory pathways (Marvaldi et  al., 2014, 2015; 
Thongrong et al., 2016; Han et al., 2022; Park et al., 2023). In the 
growth cone, the axonal elongation is at the same time stabilized 

FIGURE 3

Following axotomy, the fate of nociceptors is influenced by both extrinsic and intrinsic factors. After axonal injury, pro-survival factors such as 
neurotrophins are released by surrounding cells. Concurrently, specific molecular cascades are activated within the damaged neurons. These signals 
must be transported from the periphery to the nucleus to initiate pain and axonal regeneration signaling. This retrograde transport is facilitated by the 
motor protein dynein and its adaptor importin, which are localized along the axons and shuttle cargoes to the nucleus of nociceptors. Any impairment 
in this retrograde transport can affect both pain perception and axonal recovery. This image was created with BioRender.
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by p110δ PI 3-kinase and destabilized by RhoA/ROCK (Eickholt 
et  al., 2007), while the branching relies MAP7 and Sema3A 
signaling (Terenzio et al., 2018; Hu et al., 2021). The directionality 
of the axonal growth is controlled by gradients of cytokines and 
growth factors (released by the surrounding cells; Turney et al., 
2016; Grasman and Kaplan, 2017), that regulate Slit/Robo and 
Netrin/DCC signaling pathways (Yi et  al., 2006; Webber 
et al., 2011).

Axonal regeneration requires all these steps and more, 
however actual functional recovery is slow, often incomplete and 
accompanied by NeuP. Moreover, some transcription factors that 
promote axon growth also contribute to NeuP development. 
Among these TFs are listed the previously mentioned Jun/Fos, 
but also the upregulated OCT1 and the downregulated EBF1 and 
NRF2 (Yuan et al., 2019; Vasavda et al., 2022; Liang et al., 2024). 
Perturbation of guidance molecules gradients and altered axonal 
sprouting, which lead to impaired pathfinding and tissue 
mistargeting, can cause NeuP (Xie et  al., 2017; Gangadharan 
et  al., 2022). Painful neuromas are one of the most common 
clinical manifestation of erroneous target innervation (Shamoun 
et al., 2022).

3.4 Altered gene expression by non-coding 
RNA after injury

The retrogradely-transported transcription factors are not the 
only elements that perturb gene expressions in sensory neurons 
after injury. Altered levels of non-coding RNA (ncRNAs), mainly 
miRNA and lncRNA, have been associated with neuropathic pain. 
Some ncRNAs have been even proposed as NeuP biomarkers, but 
significative differences were observed between in vivo and in 
vitro experiments (Hu et  al., 2021), invalidating their 
widespread use.

Functionally, ncRNAs expressed by sensory neurons act at 
the post-transcriptional level to modulate the expression of 
proteins involved in the injury/regenerative response. For 
example, miR-21 and miR-222, which are found elevated in rat 
DRG post sciatic nerve injury, downregulate TIMP3, a 
pro-apoptotic protein, and promote neuronal viability 
(Strickland et al., 2011; Zhou et al., 2015). Few miRNAs have 
been identified to affect DRG neurons, by either favoring or 
impairing the axonal elongation. Among these figure miR-132, 
that by targeting RASA1 promote axonal extension (Hancock 
et al., 2014), and miR-138, which is downregulated in injured 
DRG neurons as it suppress axonal growth by targeting SIRT1 
(Liu and Wang, 2013). Even lncRNAs found in DRG post nerve 
injury, such as lncRNA BC089918, were found to affect neuronal 
growth (Yu et al., 2013).

Few ncRNAs have been found deregulated in murine models 
of NeuP. In particular, in rat DRG the expression of several 
potassium channels was compromised by the upregulation of 
miR-18a, miR-19a, miR-19b, and miR-92a (Sakai et al., 2017). 
Both miR-30b and miR-182, highly expressed in NeuP developed 
post nerve injury, could reduce the amount of NaV1.7 and 
alleviate NeuP (Shao et al., 2016; Cai et al., 2018). Ion channels 
are not the only targets of ncRNA in NeuP conditions. In rat with 

constricted nerves, miR-206 favors analgesia by physiologically 
reducing the levels of BDNF (Sun et  al., 2017). On the other 
hand, lncRNA LINC01119, upregulated in NeuP conditions, 
binds BDNF mRNA and stabilizes it, promoting hypersensitivity 
(Zhang et al., 2021).

Human pathologies with NeuP symptoms display altered 
expression of ncRNAs. For examples, in the patients’ blood miR-34a 
and miR-101 were downregulated, while miR-199a-3p and 
miR-455-3p were upregulated (Shenoda et al., 2016; Li et al., 2017; 
Asahchop et al., 2018; Liu et al., 2019). Interestingly, reduced levels of 
miR-101 correspond to an increase of importin β protein (which is the 
miRNA direct target) and to the activation NF-κB signaling, which 
contributes to NeuP development (Liu et al., 2019).

4 External factors influencing NeuP

4.1 Cytokines and neurotrophins from 
surrounding cells

After peripheral nerve injury, the surrounding cells (i.e., glial, 
immune, and tissue cells) undergo changes to promote neuronal 
regeneration. Notably, Schwann cells organize themselves in Büngner 
bands to serve as guideposts for sprouting axons (Ribeiro-Resende 
et  al., 2009). Meanwhile, perineuronal satellite cells and resident 
macrophages proliferate to support regeneration (Lindborg et  al., 
2018; Feng et al., 2023; Konnova et al., 2023).

All these cells release cytokines (e.g., gp130, IL-6, TGFβ), 
neurotrophins (e.g., FGF-2, NT-3, NGF and GDNF) and other 
mediators. These released factors on one hand dampen pain 
perception, on the other sensitize cells to fire action potentials, 
promoting peripheral/central sensitization and chronic NeuP 
(Figures 2, 3; Krames, 2014). Notably, trophic factors like NGF have 
peculiar mechanisms of action on DRG neurons, as they regulate 
development, plasticity, cell death, and survival (Lykissas et al., 2007; 
Khan and Smith, 2015). However, excessive NGF sensitize 
nociceptors and cause hyperalgesia and/or allodynia in both human 
and murine models by eliciting pro-inflammatory responses and by 
increasing the expression of voltage-gated sodium channels (Barker 
et al., 2020).

The contribution of glial cells to NeuP is extensively studied. 
In mice models, Schwann cells promote an inflammatory response 
by releasing ATP through the Panx1 channels and by recruiting 
T-cells through the expression of MHC II (Hartlehnert et  al., 
2017; Wang et al., 2022). In rodents, satellite glial cells also release 
ATP and potassium, which increase neuronal excitability and 
promote peripheral sensitization (i.e., hyperalgesia; McGinnis and 
Ji, 2023).

Macrophages phagocyte the endosomes released by damaged 
DRG neurons and, in response, secrete pro-inflammatory cytokines 
and NGF, giving rise to and sustaining mechanical allodynia (Simeoli 
et  al., 2017; Green et  al., 2019; Yu et  al., 2020). Indeed, the 
DRG-resident macrophages are critical contributors to both the 
initiation and maintenance of NeuP in rodents (Yu et al., 2020). Upon 
peripheral nerve injury, these macrophages assume M1 phenotype to 
produce pro-inflammatory peptides (e.g., IL6, IL-1β, TNF-α, IGF-1) 
that exacerbate NeuP by increasing the nociceptors excitability (Zhao 
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et  al., 2023). In the late stage of nerve damage, regulatory T cells 
influence the M1/M2 polarization of the macrophages through the 
release of cytokines. This promotes a shift toward the M2 macrophage 
phenotype, which alleviates pain and favors axon outgrowth in rats 
(Chen et al., 2022). Indeed, the anti-inflammatory M2 macrophages 
secrete high amount of opioid peptides (such as β-endorphin, 
Met-enkephalin, and dynorphin A) that reduce allodynia in mice 
(Labuz et al., 2009; Pannell et al., 2016).

Cells localized in the innervated tissue can also affect NeuP, 
though the studies are limited in number. Murine and human 
fibroblasts and keratinocytes release NGF, IL-6 and ATP to alter 
neuronal activity and promote NeuP (Baumbauer et al., 2015; 
Shinotsuka and Denk, 2022; Xu et al., 2022). In mice, fibroblasts 
secrete SMOC2, a component of basement membrane, that is 
necessary for basal mechanical nociceptive threshold in the 
DRG. By interacting with P2X7 receptor expressed on satellite 
glial cells, SMOC2 inhibits the coupled activation of adjacent 
DRG neurons, which in turn suppresses the nociceptive signaling 
(Zhang et  al., 2022). Peripheral inflammation actually causes 
SMOC2 downregulation in DRG, which exacerbates mechanical 
allodynia. Fibroblasts also release Protease Inhibitor (PI)16 that 
that promotes NeuP development by altering the blood-nerve 
barrier permeability and the leukocyte infiltration (Singhmar 
et al., 2020; Garrity et al., 2023). PI6 may be an optimal target for 
new analgesics as (a) it has a limited distribution and (b) in its 
absence mice are protected from NeuP development (Singhmar 
et al., 2020). Even adipocytes can influence pain. In mice with 
nerve damage, adipocytes release adipokine leptin that not only 
causes allodynia by activating macrophages, but also promotes 
Schwann cell metabolic adaptation to favor nerve repair (Maeda 
et al., 2009; Sundaram et al., 2023).

4.2 Effect of ECM and substrate on axonal 
growth

The extracellular matrix (ECM) provides structural support and 
maintenance of cellular regulation. In particular, ECM influences 
differentiation, survival, growth and migration. Neurons, like other 
cells, have receptors on their plasma membrane to interact with ECM 
components. These are principally glycoproteins (both collagenous 
and non-collagenous proteins) and proteoglycans secreted by cells in 
the vicinity. In the case of human and murine DRGs, the ECM 
elements are principally produced by fibroblasts and neuronal cells 
(Vroman et al., 2023).

ECM mechanical properties, such as substrate stiffness, 
module sensory neuron axonal outgrowth and morphology 
(Roumazeilles et al., 2018). DRG neurons are mechanosensitive 
cells and their morphology varies according to the stiffness of the 
substrate (Rosso et al., 2017). The stiffness is perceived through 
the activation of Piezo1 channel, which induces a calcium influx 
that regulates E-cadherin and integrin-β1 functions to modify 
the neuronal cytoskeleton (Lei et  al., 2023). Softer substrates 
actually favor the neurite branching of DRG neurons (Koch et al., 
2012) by contrasting the effect of Sema3a, a guidance cue that 
induce growth cone collapse. In fact, the expression of Sema3a 
receptors Nrp1 and Plxna4 is controlled by stiffness: stiffer 

substrates increase Nrp1 mRNA levels while reducing the 
amounts of Plxna4 mRNA (Vela-Alcatara et al., 2022).

While in normal conditions, the ECM environment support 
nerve maintenance, when an injury occurs the ECM shifts toward 
a pro-regenerative status to favor axonal sprouting. In vitro 
studies highlighted how collagen, fibronectin and laminin can 
differentially affect the neurite outgrowth of sensory neurons and 
their remyelination post-injury (Baron-Van Evercooren et  al., 
1982; Deister et al., 2007; Yu et al., 2023). Interestingly, combining 
ECM components with neurotrophins promotes sensory axons 
regeneration and target reinnervation. Indeed, treating rats after 
sciatic nerve injury with a combination of collagen, laminin 
matrix and NGF/NT3 could regenerate sensory neurons and 
improve sensory functional recovery (Santos et  al., 2017). 
Notably, chicken DRG in vitro culture manifested differences in 
growth as a response of either NGF or NT3 treatment, depending 
on the ECM substrate composition they were cultivated on (Guan 
et al., 2003).

There are increasing evidences that alterations in ECM 
molecules/pathways are associated with painful conditions. For 
example, in CIPN models (specifically Drosophila and murine 
sensory neurons) nociceptive neurons showed altered branching 
pattern as a result of integrins overexpression (Shin et al., 2021). 
In addition, after peripheral nerve injury, some types of collagen 
(i.e., col4α5, col18α1, col19α1) are found upregulated at the 
damaged site (Roumazeilles et  al., 2018). Interestingly, even 
samples of people suffering from NeuP presented dysregulation 
of these ECM-genes (Vroman et al., 2023).

5 Therapeutic approaches for NeuP 
targeting the PNS

The pursuit of new drugs for NeuP poses significant 
challenges, considering the complexities of pain mechanisms and 
the limitations of existing treatments. Pain-suppressing agents 
like gabapentin and pregabalin, that block ion channels, can have 
adverse effects such as somnolence and nausea (Attal, 2019). 
Opioids, while effective, are associated with addiction and 
mortality concerns (Neuman et al., 2019; Campbell et al., 2020). 
The economic burden of pain management is substantial, 
amounting to $18.3 billion for prescription analgesics and $2.6 
billion for non-prescription analgesics in the US only (Turk and 
Patel, 2022). Finding safer and more effective alternatives is a 
priority for the pharmaceutical industry.

New approaches to block NeuP at the injury sites are being 
tested, taking into consideration the recent advances in the field. 
In a few trials to impair signaling transmission, botulinum toxin 
A was injected and the patients reported analgesic effects (Attal 
et al., 2016). Local DRG stimulation with electrodes has also been 
tested to block pain signaling, but at the moment there is not 
enough evidence to support its efficacy as a treatment (Knotkova 
et al., 2021). The VX-548 drug, a NaV1.8 channel inhibitor acting 
on the PNS, is showing promising results in the clinical trials 
(Jones et al., 2023). 

Gene therapies and cellular reprogramming approaches have 
been tested as a way to achieve analgesia and to promote nerve 
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regeneration, with mixed results (Carvalho et  al., 2019; Park 
et al., 2019). In mice, the targeted ubiquitination of a calcium 
channel, achieved by viral delivery of a genetically modified 
protein in DRG neurons, could actually abate hyperalgesia in 
response to nerve injury (Sun et al., 2022).

Even modulation of the growth factors signaling has been 
explored as a possible therapeutic method (Li et  al., 2020). 
Tanezumab, an inhibitor of NGF, could reduce lower back pain 
and diabetic neuropathy, however it was not effective in treating 
postherpetic neuropathy (Patel et  al., 2018). In preliminary 
studies, neurotrophic factors combined with ECM components 
were able to enhance sensory axons regeneration and promote 
appropriate target reinnervation in rat (Santos et  al., 2017). 
Decellularized ECM-structures without growth factors are being 
tested in rodents to ameliorate the recovery post nerve injury. 
The results vary, as some boosted neovascularization but not 
axonal regrowth, while others improved electrophysiologic 
response and axon counts (Ren et al., 2018; Meder et al., 2021).

More technological approaches are being experimented to 
alleviate NeuP, such as 3D-bioprinted implantable devices to promote 
nerve guidance (Sanchez Rezza et al., 2022). Combined expertise of 
biomechanics, biology and bioengineering will be crucial to develop 
new implants and achieve complete functional recovery.

6 Conclusion

Millions of people worldwide suffer from neuropathic pain 
(NeuP), which has a huge cost on the healthcare systems and reduces 
the quality of life and the lifespan of the individuals. This problem is 
also underestimated as there are not many studies that take into 
consideration the differences in pain perception between man and 
women and the effect of aging.

Even though pain perception involves both central and peripheral 
nervous system, in this review we  focalized only on the latter. In 
particular, we  explored what happens after damage of the axons 
innervating tissue and viscera, while only briefly mentioning the 
signaling in the spinal cord region.

Peripheral sensory neurons, have a crucial role in pain 
perception as the initiators of the injury signal. These cells are 
heavily influenced by extrinsic factors released by neighboring cells 
(i.e., immune, glial, tissue cells) and by the activation of intrinsic 
elements (e.g., signaling cascades, axonal-soma communication). 
The cross-talk between intrinsic and extrinsic factors dictate the 
outcome of the regenerative program after nerve injury. Any 
alteration can lead to failure of organ innervation and functional 
recovery, giving rise to neuropathic pain. The ability to control 
axonal growth and directionality, while limiting the firing potential 
(that causes the release of painful stimuli), could be highly beneficial 
for patients suffering from chronic pain. Discovering new drugs 
that specifically target the peripheral nervous system should be a 
priority, as this approach may help manage pain more effectively 
without affecting central nervous system functions. Such targeted 
therapies could provide relief by modulating the peripheral 
mechanisms of pain without the side effects associated with broader 
systemic treatments.
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SUPPLEMENTARY TABLE 1

Information on the NeuP population studies. Here we report the studies 
per country used to create Figure 1. We were able to find only nineteen 
studies in the literature that investigated the prevalence of NeuP in the 
general population. These studies greatly varied in the number of cases 
examined, the use of controls, and the way the NeuP was evaluated. 
Moreover, different types of questionnaire to define NeuP were used, 
such as LANSS, DN4, PainDETECT. While all the questionnaires are 
extensively used as diagnostic tools, they don’t measure the same 
parameters. All these factors may partially explain the great variation in 
NeuP prevalence between countries.
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