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Santiago Ramón y Cajal’s pioneering work laid the foundations for modern 
neuroscience and continues to impact the development of artificial intelligence, 
particularly deep learning. His neuron theory, the principle of dynamic polarization, 
and his insights into brain plasticity and network organization have significantly 
influenced both our understanding of the nervous system and the design of artificial 
neural networks. This article reviews Cajal’s key contributions, explores their role 
in the evolution of AI, and emphasizes the enduring links between neuroscience 
and machine learning in the digital era.
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1 Introduction

Groundbreaking research into the structure and function of the nervous system by Santiago 
Ramón y Cajal (1852/1934) marked a pivotal turning point in neuroscience and earned the 
recognition as the father of the field (DeFelipe, 2002). Cajal’s early work depended on a powerful 
new technique, the “black reaction” (reazione nera), developed by Camillo Golgi in 1873. This 
innovation revolutionized the study of the nervous system’s anatomy by allowing, for the first 
time, nerve cells to be seen in remarkable detail—including their cell body, dendrites, and axon. 
In honor of its creator, this staining technique became known as the Golgi method. At that time, 
the prevailing theory about nervous system organization was the reticular theory, which 
proposed that the elements of the nervous system formed a continuous, interconnected 
network. Ironically, despite the clarity produced by his own method, Golgi himself was the 
primary advocate of this theory, suggesting that while dendrites ended freely, axonal branches 
interconnected to create an extensive “rete nervosa diffusa” (diffuse nervous network). A few 
years later, Cajal adopted Golgi’s method and in 1888 published his first major work using this 
technique, titled “Estructura de los Centros Nerviosos de las Aves” (“Structure of the Nerve 
Centers of Birds”). In this article, he described for the first time the presence of small protrusions 
on the dendrites of certain nerve cells, which he called “dendritic spines”—structures that 
remain a focus of research today. Furthermore, while confirming Golgi’s conclusion that 
dendrites end freely, Cajal also added the decisive observation that the same applies to axons 
and their branches. This “free” (without anastomosis) and “varicose” (with axonal dilations) 
arborization led Cajal to declare that “each element [nerve cell] is a physiologically absolutely 
autonomous canton.” This observation represented a radical shift in the understanding of brain 
function, moving from the idea of a continuous neural network to that of an “infinitely 
fragmented” brain. This raised the critical question of how the nerve impulse is transmitted 
from one nerve cell to another across a physical gap. Cajal continued to collect extensive 
evidence supporting neuron theory across many regions of the nervous system and in different 
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species. Between his initial use of the Golgi method in 1887 and his 
formal statement of the Neuron Doctrine in 1891, Cajal published 
more than 30 articles. The strength of these studies formed the 
foundation of a classic and influential review in 1891 by Waldeyer-
Hartz, who officially introduced the term “neuron” for the nerve cell.

Cajal’s contributions—including the neuron theory, the 
principle of dynamic polarization, his ideas on brain plasticity as 
the basis for memory and learning, and the concept of avalanche 
conduction (in which a single stimulus can activate many neurons 
across multiple brain regions)—represent a profound legacy that 
endures into the digital era. These concepts were published in 
numerous articles and summarized in his seminal book, Textura 
del sistema nervioso del hombre y de los vertebrados (1899–1904), 
which was later more widely disseminated in a French edition by 
Leon Azoulay that included additional texts and figures (Cajal, 
1909/1911). The following section describes how these ideas have 
inspired artificial neural networks.

2 Cajal’s foundational concepts in 
neuroscience

Cajal’s neuron theory, which established that neurons are individual 
cells that communicate through synapses, represents a foundational 
principle in neuroscience that has significantly influenced the 
development of artificial intelligence (AI). As Cajal stated (Cajal, 1889):

We have never been able to see a mesh of such a network [Golgi’s 
axonal network], neither in the cerebrum, nor in the spinal cord, 
nor in the cerebellum, nor in the retina, nor in the olfactory bulb, 
etc. We believe that it is time now to disengage histology from any 
physiological commitment, and simply adopt the only opinion 
that is in harmony with the facts, namely: that nerve cells are 
independent elements never anastomosed either by their 
protoplasmic expansions [dendrites] or by the branches of their 
Deiters’ prolongation [axon], and that the propagation of nerve 
action occurs by contacts at the level of certain apparatuses or 
gearing arrangements, whose purpose is to fix the connection.

A major outcome of Cajal’s neuron theory was the formulation of 
the Law of Dynamic Polarization in nerve cells. At the time, the 
mechanisms by which nerve impulses traveled within neurons were 
largely unknown. The prevailing belief was that dendrites served a 
primarily nourishing function, while axons transmitted nerve 
impulses away from the cell body (cellulifugal direction)—a notion 
mainly derived from observations of axonal conduction in spinal 
motor neurons. Nevertheless, the specific role of dendrites in 
processing information remained unclear, and there was no 
widespread agreement or definitive explanation at the time (DeFelipe, 
2018). Cajal (1889) believed it was clear that the dendrites played a 
role in receiving currents, at least in certain cases, and 2 years later 
he tried to generalize this idea in the Law of Dynamic Polarization 
(Cajal, 1891). Cajal inferred the principle of impulse directionality by 
studying systems such as the visual and olfactory pathways, where the 
flow of neural signals was particularly clear (Figure 1A):

If in such inquiry, the [dendritic] arborization is always shown as 
a receptor apparatus and the [axonal arborization] as an apparatus 

for the application of the [impulses], then by analogy we would 
have attained a rule to judge the direction of the currents in the 
[nerve cells within the central nervous system].

Cajal proposed that neurons could be divided into three functionally 
distinct regions: a receptor apparatus (formed by the dendrites and 
soma), an emission apparatus (the axon) and a distribution apparatus 
(terminal axonal arborization). He later realized that the soma does not 
always intervene in the conduction of the impulses and that sometimes 
impulse activity goes directly from the dendrites to the axon (Figure 1B; 
Cajal, 1897). Thus, the law of dynamic polarization became the theory of 
axipetal polarization:

The soma and dendrites display axipetal conduction, whereby 
they transmit the nervous waves towards the axon. Conversely, the 
axon or cylinder-axis has somatofugal or dendrifugal conduction, 
propagating the impulses received by the soma or dendrites 
towards the terminal axonal arborizations. […]. This formula can 
be  applied universally without exception, both in vertebrates 
and invertebrates.

Cajal argued that if dendrites consistently function as receptive 
structures and axons as transmitting elements, this organizational 
model could be applied broadly to determine the direction of impulse 
transmission across the central nervous system, regardless of neuron 
type or brain region, as depicted in Figures 1, 2. As we will discuss 
below, Cajal’s theory of dynamic polarization was fundamental in 
mapping and understanding how information flows through the 
brain’s complex microcircuits. This principle enabled Cajal and his 
contemporaries to determine and interpret the direction of 
information flow within the intricate networks of the nervous system.

However, the concept of inhibition as a neurophysiological 
process that reduces the activity of other neurons was absent from 
Cajal’s description of network function. Our current understanding of 
inhibitory mechanisms emerged later, following John Eccles’ 
demonstration of chemical synaptic transmission (Eccles, 1961). As 
discussed in Herreras (2025), during the 1930s and 1940s single cell 
recordings were common, and the first intracellular recordings were 
made. These studies were critical in forging many of the basic concepts 
of neuronal physiology that conformed to the doctrine of dynamic 
polarization—namely, the concept of spatiotemporal integration of 
excitatory and inhibitory synaptic currents, the electrotonic (passive) 
propagation of synaptic currents within dendrites (i.e., with 
pronounced decay), and the attribution of the role of spike trigger 
zone to the axon initial segment (AIS) (Lorente de Nó, 1935; Eccles, 
1957; Rall, 1967). Thus, dendrites were assigned the role of a synaptic 
input zone and the neuron was globally considered a passive integrator 
of inputs.

In many of Cajal’s illustrations, he  mapped how axons from 
different functional regions of the brain connect with neurons in 
specific areas, demonstrating the integration of inputs from diverse 
sources (Figure  2C). He  also depicted how these neurons then 
distribute the ‘processed’ information both within the region where 
they are located and to other parts of the brain. Furthermore, Cajal’s 
theories, along with his ideas on plasticity and hierarchical processing 
of brain circuits, have provided biological inspiration for key concepts 
in artificial neural networks, which are fundamental to AI: (i) The 
concept that neurons transmit signals in a structured network serves 
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as a fundamental principle in designing artificial neurons in AI 
models; (ii) Cajal’s observations suggesting that neural structures 
change with experience have parallels in AI learning algorithms, 
particularly in adaptive and self-improving systems; and (iii) his 
descriptions of how different brain regions process information in 
layers influenced deep learning (DL) architectures, where multiple 
layers of artificial neurons process data hierarchically.

3 Rafael Lorente de Nó and the 
concept of reverberating circuits

Another early and significant contribution to this field was made 
by Lorente de Nó (1902/1990), one of Cajal’s most distinguished 
disciples, who in 1938 described in greater detail than previous 
authors the direction of impulse transmission in the cerebral cortex 
based on Cajal’s law of dynamic polarization, and introduced the novel 
and key concept of local reverberating circuits (Lorente de Nó, 1938a; 
Lorente de Nó, 1938b; Figure 3).

As outlined in Herreras (2025), this concept of reverberating circuits 
laid the foundation for contemporary perspectives regarding brain 
function, with profound implications extending well beyond 
neuroscience. Lorente’s exchange of ideas on looping circuits with 
Norbert Wiener and his contemporaries gave rise to cybernetics and 
control theory (Wiener, 2019) and also anticipated Hebb’s concept of cell 

assembly (Espinosa-Sánchez et  al., 2019). The concept of recurrent 
circuits introduced a fundamental principle in neuroscience: feedback. 
This notion marked a decisive departure from the classical reflex arc 
paradigm, wherein neural responses were viewed as immediate, 
automatic, and unidirectional. By contrast, recurrent circuits, 
characterized by reciprocal neuronal connections that form closed-loop 
pathways, allow signals to cycle back within a network. This reverberatory 
activity enables neural responses to be modulated, sustained, or stored, 
thereby providing the substrate for complex cognitive processes. 
Functions such as working memory maintenance, temporal sequence 
processing, feedback regulation, sustained attention, and decision-
making critically depend on these dynamic recurrent interactions.

4 Definition of artificial intelligence

Although Artificial Intelligence (AI) has shown great potential for 
solving problems across various fields and disciplines throughout its 
nearly 70-year history, it is the advances of recent decades that have 
brought this technology closer to society and made it more widely 
used. The widespread enthusiasm for AI’s achievements is not always 
matched by a clear understanding of the technology and its scope. The 
definitions offered by relevant organizations and the scientific 
community are often vague and disconnected from the reality of the 
field. AI is frequently described as a technology that enables machines 

FIGURE 1

(A) Cajal’s scheme showing the current flow in the visual and olfactory systems. This drawing was reproduced in his article Significación fisiológica de 
las expansiones protoplásmicas y nerviosas de las células de la substancia gris (Cajal, 1891). The legend states: “Fig. 1. Scheme of cellular connections 
in the olfactory mucosa, olfactory bulb, tractus, and olfactory lobe of the cerebrum. The arrows indicate the direction of the currents. A, olfactory bulb; 
B, mucosa; C, olfactory lobe. a, b, c, d, one-way or centripetal pathway through which sensory or olfactory excitation passes. e, f, g, centrifugal 
pathway through which the [nervous] centers can act on the elements of the bulb, granules and nerve cells, whose protoplasmic processes penetrate 
the glomeruli. Fig. 2. Scheme of the visual excitation pathway through the retina, optic nerve and optic lobe of birds. A, retina; B, optic lobe. a, b, c, 
represent a cone, a bipolar cell and a ganglion cell of the retina, respectively, the order through which visual excitation travels. m, n, o, parallel current 
emanating from the rod also involves bipolar and ganglion cells. g, cells of the optic lobe that receive the visual excitation and transfer it to j, the 
central ganglion. p, q, r, centrifugal currents that start in certain fusiform cells of the optic lobe and terminate in r, in the retina at the level of the 
spongioblasts; f, a spongioblast. Arrows indicate the direction of current flow”. (B) The directional flow of the nervous current within the neuron. Cajal’s 
drawing reproduced in his article Leyes de la morfología y dinamismo de las células nerviosas (Cajal, 1897). The legend states: Left, “Crosier cell of the 
optic lobe of the sparrow. A, soma; B, fibers arriving from the retina; c, central white matter; C, axon. Arrows indicate the direction of the current 
[flow].” Right, “Scheme showing the current flows in a sensory ganglion cell of mammals. A, soma; B, shaft; D, axipetal or peripheral process that 
provides currents; C, axon that carries the impulses to the spinal cord; E, fiber constituent of the pericellular arborization; M, spinal cord; [P, skin]”.

https://doi.org/10.3389/fnana.2025.1672016
https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org


García-Lorenzo et al.� 10.3389/fnana.2025.1672016

Frontiers in Neuroanatomy 04 frontiersin.org

and computers to simulate or display human intelligence—an idea 
closely tied to the original concept of the field. Today, the body of 
knowledge is so broad and diverse that it is difficult to define AI 
precisely without excluding certain technologies that fall within its 
scope. On the other hand, making the definition too general would 
blur the lines with traditional computing. Evidence of this difficulty 
can be  found in the multiple attempts made by the European 
Commission to establish and refine a definition (European 
Commission: High-Level Expert Group on Artificial Intelligence, 
2018; Samoili et  al., 2020; Regulation (EU), 2024/1689; European 
Commission, 2025). In its first attempt to delineate both the academic 
field and the technological scope, the European Commission: High-
Level Expert Group on Artificial Intelligence (2018) requested a report 
from a group of experts from academia and industry. This group drew 
on the proposal by Russell and Norvig (2009), which replaces the 
concept of intelligence with that of rationality.

Artificial intelligence (AI) systems are software (and possibly also 
hardware) systems designed by humans […] that, given a 
complex goal, act in the physical or digital dimension by 
perceiving their environment through data acquisition, 
interpreting the collected structured or unstructured data, 
reasoning on the knowledge, or processing the information, 

derived from this data and deciding the best action(s) to take to 
achieve the given goal. AI systems can either use symbolic rules 
or learn a numeric model, and they can also adapt their behavior 
by analysing how the environment is affected by their previous 
actions. As a scientific discipline, AI includes several approaches 
and techniques, such as machine learning […], machine 
reasoning […], and robotics […].

This definition of AI highlights two key aspects: the broad scope of 
the field and the collective effort by technicians and scientists to move 
away from the traditional concept of human intelligence. The attempt 
to redefine intelligence in terms of rationality and efficiency reflects a 
clear focus on problem-solving capabilities, setting aside the historical 
associations with biological intelligence. While artificial intelligence 
was originally closely linked to neuroscience, the boundaries between 
the two disciplines are now clearly defined. The exponential growth 
and increasing specialization of each area have led many AI researchers 
to focus exclusively on algorithmic and mathematical methods, leaving 
aside contributions from the study of the brain (except for the field of 
neuromorphic computing). This separation, although understandable 
in the context of rapid evolution, raises questions about the potential 
loss of synergies that could enrich both fields, as was highlighted in an 
excellent article by Hassabis et al. (2017).

FIGURE 2

(A,B) Cajal’s drawing to illustrate the participation of different types of cells in the transmission of impulses in the cerebellum based on the theory of 
dynamic polarization. A, The legend states: “Diagram that reveals the flow of the current contributed by the mossy fibers and the role of the Golgi cells in 
it. A, mossy fibers; B, Purkinje cell axons; a, granule cells; b, parallel fibers; c, Golgi cell; d, side view of Purkinje cell”. Taken from Cajal (1899/1904). B, The 
legend states: “Diagram destined to show the participation of basket cells in the transmission of the afferent impulses. A, mossy fiber; B, Purkinje cell 
axons; C, climbing fiber; a, granule cells; b, basket cell; c, [side view of] Purkinje cell.” Taken from Cajal (1899/1904). (C) Diagram of the afferent and 
efferent pathways of the mammillary body, habenular nuclei, and anterior and medial thalamic nuclei. The legend states: “A, medial mammillary nucleus; 
B, anterior medial nucleus of the thalamus; C, anterior ventral nucleus; D, habenular nuclei; E, interpeduncular nucleus; F, dorsal tegmental nucleus; J, 
optic chiasm; K, tegmental bundle of the interpeduncular nucleus; T, tuber cinereum; P, pons; a, cerebral aqueduct of Sylvius; b, habenular commissure; 
c, posterior commissure; d, fasciculus retroflexus (or Meynert’s fasciculus); e, peduncle of the mammillary body; f, mammillothalamic tract (or Vicq 
d’Azyr’s bundle); g, mammillotegmental tract (or Gudden’s tegmental fasciculus); h, stria terminalis; i, stria medullaris; m, thalamocortical fibers; n, 
corticothalamic fibers; o, fiber of the stria medullaris traveling to the habenular commissure to arborize within habenular nuclei of the contralateral side; ñ, 
anterior commissure; p, fiber originating from the opposite side. The arrows indicate the direction of the currents. Taken from Cajal (1903).
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One of the most prolific areas of artificial intelligence today is 
machine learning (ML), a discipline whose goal is to enable 
algorithms to learn functions that approximate solutions to complex 
problems based on data. ML techniques mainly differ in the type of 
functions they can automatically learn from data (Alpaydin, 2020). 
Within this wide range of methods, the most promising techniques 
at present are those based on artificial neural networks (ANN), 
regarded by many as potential candidates for achieving artificial 
general intelligence (AGI) and artificial superintelligence (ASI). AGI 
refers to systems capable of performing any cognitive task at a human 
level, going beyond the narrow specialization of current models 
(Goertzel, 2014). ASI describes systems that would surpass human 
cognitive abilities across virtually all domains (Bostrom, 2014). 
ANNs take inspiration from the organization of the human brain and 
rely on the idea that the coordinated action of simple units—nodes 
or “neurons”—can produce complex emergent behavior (Russell and 
Norvig, 2009). The early conceptualization of brain circuits proposed 
by Cajal and Lorente de Nó changed the understanding of brain 
function and introduced principles that later served as a foundation 
for ANN design. The principle of dynamic polarization supports 
directed connectivity and layered organization in artificial models. 
Lorente de Nó’s description of reverberating circuits provided the 
basis for classifying ANNs into two groups: feedforward and 
recurrent architectures. In feedforward networks, information moves 
in one direction from input to output, which suits tasks without 
temporal dependence; examples include multilayer perceptrons 

(MLPs; Rumelhart et  al., 1986), autoencoders (Hinton and 
Salakhutdinov, 2006), and convolutional neural networks (CNNs; 
LeCun et al., 1998). In recurrent neural networks (RNNs; Hopfield, 
1982), feedback connections create an internal state and enable the 
processing of sequences, supporting the modeling of time and 
memory; examples include vanilla RNNs, long short-term memory 
networks (LSTMs; Hochreiter and Schmidhuber, 1997), and gated 
recurrent units (GRUs; Cho et al., 2014). It should be noted that not 
all architectures fit within this scheme; Boltzmann machines (Ackley 
et al., 1985) and self-organizing maps (Kohonen, 1982) are notable 
examples that are both designed to find hidden patterns in data 
without human supervision. Building a complete and consistent 
taxonomy of neural models remains a difficult task and is beyond the 
scope of this article (Samoili et al., 2020; Sarker, 2021). The concept 
of neural plasticity also influenced early progress in training 
methods. The idea of neural plasticity also influenced early 
approaches to training, suggesting that connection strengths could 
be modified through learning. These principles continue to shape 
contemporary models in neuroscience and in artificial intelligence. 
Nevertheless, although present in the formative period of the field, 
the contributions of Cajal and Lorente de Nó were not made explicit 
in the first publications on ANNs. The aim of this article is to 
exemplify these early contributions and to show how their underlying 
ideas remain relevant today. For a comprehensive historical survey 
of the field, readers are referred to the overview by 
Schmidhuber (2015).

FIGURE 3

(A) Diagram of some of the intracortical chains of neurons taken from Lorente de Nó (1938b). The legend states: “The number on the cells and the 
letters a and e on the fibers are the same as in figures 63, 64 and 65. The axons of the cortical cells are marked with a. Note that only a few dendrites 
and axonal branches have been included in the diagram. The synaptic junctions are indicated with the letter s (s1, s2, etc.) and with a thickening of the 
axon. It is assumed that the synapses marked with an arrow are passed by the impulses. The small diagram at the right is a simplification of the diagram 
at the left. The afferent fiber af. activates the large pyramid which is the origin of an efferent fiber ef. and also a system of cortical internuncial cells (i1, 
i2, i3); the recurrent collateral of ef delivers impulses again to the internuncial system. This diagram summarizes the plan upon which the central 
nervous system is built.” The small diagram has been colored by the authors of the present work for greater clarity. (B) Lorente de Nó’s diagrams to 
illustrate the two types of chains formed by internuncial cells that he distinguished between—M, multiple and C, closed chain. Modified from Lorente 
de Nó (1938a).
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5 From biological networks to AI

Although pioneering works that laid the foundations of 
modern AI already existed—such as Turing (1950) paper, which 
discussed the possibility that machines could think, or McCulloch 
and Pitts’s (1943) study, which introduced the first mathematical 
model of neurons and established a theoretical framework for 
neural processing—it is generally agreed that the 1956 Dartmouth 
workshop marked the beginning of modern research in this area. 
No formal proceedings were published at that event; however, the 
original proposal (McCarthy et al., 1955) by the four organizers—
John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude 
Shannon—is still available. This proposal outlined lines of research 
that remain valid to this day. It is striking to see how, at such an 
early stage of the technology, this project defined areas that would 
later prove fundamental to the field: complexity and computation 
theory; search algorithms; the study of natural language; self-
improvement and machine learning; creativity and randomness; 
and artificial neural networks. Right from the opening paragraph, 
the text emphasizes the need to understand human intelligence as 
a reference for the development of thinking machines:

The study is to proceed on the basis of the conjecture that every 
aspect of learning or any other feature of intelligence can in 
principle be so precisely described that a machine can be made to 
simulate it.

Among the four research lines described in the Dartmouth 
proposal, the analysis of the neuron, the study of its 
interrelationships, and the exploration of the human brain were 
core pillars. From the outset, it was assumed that the simulation of 
neural networks could generate, from simple interactions, 
emergent behaviors that might be considered intelligent. Several 
works prior to the Dartmouth workshop laid the foundation for 
progress in this direction.

The aforementioned study by McCulloch and Pitts (1943) 
presents a first formulation of neuronal activity and neural 
networks in terms of propositional logic. The authors argue that 
the “all-or-none” nature of nerve activity allows neuronal events 
and their relationships to be modeled using logic. Although not 
mentioned explicitly, this approach builds on Cajal’s view of the 
nervous system as a network of discrete elements, in which the 
neuron serves as the logical unit of that network. The essential 
features Cajal described—a soma receiving signals from prior 
synapses, and an axon transmitting impulses—are reflected in 
McCulloch and Pitts’s framework. Essentially, their theory assumes 
that each neuron’s activity can be  represented as a logical 
proposition, and that the physiological relationships between these 
activities correspond to relationships between these propositions. 
The article further introduces concepts such as the excitation 
threshold, the latent addition period, and the synaptic delay, 
translated into logical terms.

In his doctoral dissertation (Minsky, 1954), Marvin Minsky—
one of the Dartmouth conference organizers—continued the 
legacy of Cajal’s neuronal theory. His work explored analog neural 
networks, incorporating temporal quantization and generalizing 
the notion of the neuron through the idea of the cell. Information 
flows according to dynamic polarization, so that a cell’s state at 
time t  depends on the state of preceding cells at the previous 
instant ( −1t ). Although this neural network model was and 

remains one of his main contributions, the core goal was to 
propose a new approach to studying processes such as learning, 
memory, recognition, and attention. Minsky also describes a 
reinforcement operator that relates closely to neuronal plasticity 
and that considers the influence of past states on the system’s future 
behavior. This reflects how Cajal’s observations—namely, that 
neuronal structures change with experience—are manifested in 
adaptation and learning mechanisms (DeFelipe, 2006).

Later, in 1958, Frank Rosenblatt introduced the perceptron as 
a probabilistic learning model, marking a decisive break with the 
logical, rule-based networks of McCulloch and Pitts (1943) and the 
early work of Minsky (1954). Although Rosenblatt did not cite 
either Cajal or Lorente de Nó, their influence is evident in his 
design. The photo-perceptron (Figure 4A) mirrored Cajal’s concept 
of layered processing (Figure  1) and differentiated cell types 
(Figure 2) by organizing sensory (S-points), association (A-units) 
and response (R-units) elements. In this framework, Cajal’s 
principle of dynamic polarization—information flowing from 
dendrite to axon—was recast as adjustable synaptic weights that 
embody neural plasticity (Rosenblatt, 1958). Echoing Lorente de 
Nó’s idea of reverberating circuits, Rosenblatt incorporated 
bidirectional connections between A- and R-units, adding feedback 
loops, potential inhibitory signals and an early glimpse of 
recurrence. The perceptron was more than a theoretical construct: 
Rosenblatt implemented it on an IBM 704 and subsequently built 
the Mark I Perceptron, demonstrating that biologically inspired 
learning algorithms could be embodied in hardware, revealing the 
true potential of this approach.

The feed-forward version examined in Perceptrons (Minsky 
and Papert, 1969) removed Rosenblatt’s feedback connections, 
simplifying the original model and bringing it closer to today’s 
definition of a perceptron. This restriction formalized linear 
classification theory and provided the mathematical basis for the 
first supervised-learning algorithms. At the same time, the analysis 
exposed the severe performance limits of single-layer classifiers 
and temporarily slowed progress in the field. These limitations 
were overcome with multi-layer networks and the back-
propagation algorithm (Rumelhart et  al., 1986), which tunes 
synaptic weights in a manner consistent with Cajal’s plasticity. 
Meanwhile, the feedback present in Rosenblatt’s original design 
inspired later developments in recurrent networks and associative 
memories (Hopfield, 1982). Today, multi-layer perceptrons remain 
the fundamental building block of advanced models—including 
transformer-based systems (Vaswani et  al., 2017) shown in 
Figure 4—highlighting how Rosenblatt’s probabilistic, biologically 
grounded perspective continues to shape modern DL.

Another interesting point to consider is Cajal’s vision of the 
functional organization of neuronal networks when he addressed 
the question of whether each perception has one or more nerve 
cells as its substrate (Cajal, 1895). To explain this, he proposed 
what he called “avalanche conduction.” In Cajal’s own words:

Research in recent years on the structure of the nervous system 
has revealed that between the sense organs and the nerve centers 
there is a fixed chain of conductors or neurons, in which the 
impression received in the periphery by a single sensory cell is 
propagated in an avalanche—that is, by an increasing number of 
cells—to the brain.
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In other words, simple units (neurons) can generate increasingly 
complex emergent behavior as the network size grows. Cajal’s 
avalanche conduction concept laid the groundwork for our modern 
understanding that both biological and artificial neural networks 
achieve complex, emergent behaviors through the collective activity 
of many simple units. This aligns with numerous studies confirming 
that artificial neural networks improve their performance as the 
number of layers increases (Hornik et al., 1989; Kidger and Lyons, 
2020). In this regard, the introduction of the term deep learning and 
pretrained deep neural networks (Hinton et al., 2006) marked a 
milestone in the designing of more capable models. Among these 
architectures, transformers currently stand out due to their 
significant scalability. While training them requires large amounts 
of data, there are no clear limits to their potential when network 

size and training data volume increase (Cordonnier et al., 2020; 
Ravfogel et  al., 2019). Many studies have analyzed their scaling 
properties (Hoffmann et al., 2022; Kaplan et al., 2020; Pearce and 
Song, 2024). Today, models with very large numbers of parameters 
are being trained—for example, Llama 4, with over one trillion 
parameters1—on massive and diverse datasets, resulting in what are 
known as “foundation models” (Bommasani et al., 2021). These 
models can be reused and adapted to tasks beyond their original 
training sets (Brown et al., 2020; Liu et al., 2019). Although they 
originated in natural language processing (Devlin et  al., 2019; 

1  https://ai.meta.com/blog/llama-4-multimodal-intelligence/

FIGURE 4

The perceptron across three generations of neural models. Together, panels (A–D) show how the perceptron—conceptually rooted in Cajal’s 
anatomical description of the neuron and his claim that learning materializes as circuit plasticity—remains a fundamental computational element, from 
early neurobiological analogies to present-day transformer models. (A) Schematic of the perceptron architecture adapted from Rosenblatt (1958). 
Stimulus-receiving S-cells (Retina) activate projection-area association cells (AI ), which in turn excite higher-order association cells (AII); bidirectional 
synapses connect AII to response cells (R-units). Learning proceeds through the formation and adjustment of these synapses, embodying the 
connectionist hypothesis that memory is stored in connections. (B,C) Feed-forward linear-threshold formulation analyzed by Minsky and Papert 
(1969). A predicate ( )ψ X  takes the value 1 when the weighted sum of basic predicates ( )ϕ X  exceeds a fixed threshold θ , i.e., ( ) ( )ψ α ϕ θϕ = ∑ >  .X X  
Removal of feedback highlights the perceptron as a device that realises linear decision boundaries and exposes its logical limitations. (D) Encoder–
decoder architecture introduced in Attention Is All You Need (Vaswani et al., 2017). Each transformer block contains a position-wise multi-layer 
perceptron that follows the self-attention sub-layer, illustrating the perceptron’s role as the basic feed forward unit in contemporary deep-learning 
stacks. (A) Reproduced from Rosenblatt (1958). Reprinted with permission from the American Psychological Association. © 1958 American 
Psychological Association. (B,C) Reproduced from Minsky and Papert (1969). Reprinted with permission from MIT Press. © 1969 Massachusetts 
Institute of Technology. (D) Reproduced from Vaswani et al. (2017). Used under permission granted by Google for journalistic and scholarly works. © 
2017 Google LLC.
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Radford et al., 2018), the models are now applied in domains such 
as audio (Agostinelli et  al., 2023; Radford et  al., 2023), images 
(Dosovitskiy et al., 2020; Kirillov et al., 2023), and video (Ravi et al., 
2024). There is also growing interest in developing models that 
integrate different information modalities, such as text, images, and 
audio, or even depth or thermal data (Agrawal et al., 2024; Girdhar 
et al., 2023; Liu et al., 2025; OpenAI et al., 2023; Xu et al., 2025). 
Recently, we have seen a shift in model scaling from the pre-training 
phase to the post-training phase (El-Kishky et al., 2025; Guo et al., 
2025), where reinforcement learning with verifiable rewards and 
methods to increase inference computation (test-time compute) 
(Akyürek et al., 2024; Snell et al., 2024) have shown their potential. 
This has led to new models with reasoning abilities, capable of 
tackling problems that were, until recently, reserved for human 
expertise (El-Kishky et al., 2025; Guo et al., 2025).

Scaling up these models requires increasingly powerful hardware 
resources, leading to an increase in training and inference costs. 
Although research is being conducted on model distillation to reduce 
the size of the set-ups (Guo et al., 2025), there is another solution 
inspired by Cajal’s observations on how different brain regions 
organize information in layers: Mixture of Experts (MoE) 
architectures. Originally conceived in the 1990s (Jacobs et al., 1991; 
Jordan and Jacobs, 1994), these architectures are now adopted by 
many leading language models. They include several ‘experts,’ each 
specializing in a specific knowledge area, along with a router or gate 
network that determines which expert processes the information 
(Fedus et al., 2022; Jiang et al., 2024; Liu et al., 2024). For instance, the 
recent multimodal model Llama 4 has two trillion parameters in total, 
but only 17 billion are activated at each inference.

6 Conclusions

The links between neuroscience and AI are evident, particularly 
in DL, which draws heavily on early discoveries regarding the brain’s 
structure and function. In the early days of AI, the two fields shared 
advances, and the boundaries between them were not clearly defined. 
Over time, however, the divide has become more pronounced, and 
many AI specialists work with little consideration for advances in 
neuroscience, despite their fundamental role in understanding 
intelligence and learning. Given that DL is currently one of the most 
promising approaches to achieving AGI and ASI, resuming 
collaboration between AI and neuroscience could offer new valuable 
perspectives. The work by Hassabis et al. (2017) provides an excellent 
overview of how neuroscience has inspired AI in the past, highlighting 
parallels with the present, and discussing future challenges that could 
be addressed jointly. Their conclusions make it clear that strengthening 
ties and synergies between the two fields would benefit both 
neuroscience and AI alike.

Although neuroscience played a key role the early development of 
ANNs, Cajal and Lorente de Nó received little to no recognition when 
the field first emerged. Their theories on the structure, function, and 
adaptability of neural circuits shaped our understanding of the brain 
and provided the conceptual groundwork for ANNs. Many of these 
ideas—already present in their early work of these two scientists—
have endured and remain central to modern DL. The perceptron is a 
clear example: from Rosenblatt’s original recurrent formulation to its 
later feedforward version, it evolved into the multilayer perceptron, a 

backbone of today’s leading models, including transformers (see 
Figure 4). The fact that concepts first articulated by Cajal and Lorente 
de Nó—dynamic polarization, plasticity and recurrent circuits—
remain central today underscores the foundational influence that 
these two pioneering neuroscientists have had on modern DL.
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