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Editorial on the Research Topic

Dopaminoceptive forebrain regions: a search for structural
and functional organization underlying normal and impaired
social adaptation

This Research Topic explored the structural and functional organization of forebrain

dopaminergic (DAergic) systems. These systems encompass multiple cell groups and

pathways involved in reward, motivation, motor control, homeostasis, and social behavior

modulation. It comprises six articles spanning various vertebrate species, addressing novel

aspects of DAergic cell group evolution, development, and neuromeric organization, along

with functions of specific mesocortical and olfactory subsystems along with alterations due

to gestational valproic acid (VPA) exposure that lead to autism-like traits.

The ventral tegmental area (VTA) and the substantia nigra (SN) are the most studied

DAergic groups in mammals and other amniotes due to their critical roles in reward and

motor control (Smeets and Reiner, 1994; Björklund and Dunnett, 2007). While these are

classically viewed as midbrain structures, developmental research suggests a segmental

organization involving both diencephalic and mesencephalic origins (Puelles and Medina,

1994). Ferran et al. used the updated prosomeric model to examine the segmental

origin of VTA and SN DAergic neurons during development in rodents, non-human

primates, and humans. By combining tyrosine hydroxylase (TH) immunohistochemistry

with gene expression and morphological landmarks, they identified six segments (five

in the forebrain and one in the isthmic r0) giving rise to these neurons. Such multi-

neuromeric origin may underlie functional specialization, and different connectivity and

target patterns, with potential implications for vulnerability to degeneration, hypoxia, and

neurodevelopmental disorders.

VTA and SN DAergic neurons project to the telencephalon, targeting the striatum

and, via mesocortical and mesolimbic pathways, the cortex and extended amygdala

(Reiner et al., 1998; Björklund and Dunnett, 2007). Messore et al. focused on cortical

dopamine modulation by manipulating layer 6 neurons expressing dopamine receptor 1

in the mouse somatosensory cortex. These cells are considered remnants of the subplate,
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which is essential for the establishment of thalamocortical

connections. Messore et al. demonstrated that these

dopaminoceptive cells also play a critical role in the activation of

cortico-thalamo-cortical loops, possibly participating in stimulus

representation and sensory processing.

In tetrapods, the majority of DAergic axons targeting the

striatum and pallium arise from the perikarya of the VTA and/or

SN (Smeets and González, 2000; except in the olfactory bulb,

which contains intrinsic DAergic neurons in all vertebrates). In

fish, however, at least part of the telencephalic innervation comes

from locally-born DAergic neurons (Rodríguez-Moldes et al.). The

presence of these cells in the telencephalon was once thought to be

specific for fish, but minor subsets of catecholaminergic (CAergic)

cells were later found in the cerebral cortex/pallium and/or the

striatum of mammals and birds (Marín et al., 2005; Bupesh et al.,

2014; Fujita et al.). Tracing the evolution of dopaminoceptive

regions of the telencephalon, Rodríguez-Moldes et al. studied

the development of area superficialis basalis in the catshark (a

cartilaginous fish closely related to ancestral jawed vertebrates),

using neuronal phenotypic markers and transcription factors of

the pallium or the subpallium. The authors showed that this

area is subpallial with cells derived from striatal and pallidal

subdivisions; however, it becomes quite complex due to tangential

migrations during development. In catsharks, some cells from

the pallidal embryonic domain migrate into the striatum, giving

rise to an ectopic globus pallidus that resembles the situation

observed in birds. Rodríguez-Moldes et al. suggested that the area

superficialis basalis of Chondrychtians contains precursor cells

for the striatum, pallidum, and extended amygdala, which may

represent a forerunner of these regions in later tetrapods, opening

new avenues for research.

In vertebrates, the medial extended amygdala and several

preoptic and hypothalamic centers that are involved in the

modulation of social behavior and/or homeostasis also contain

subpopulations of CAergic neurons (Bupesh et al., 2014; Vicario

et al., 2014; Smeets and González, 2000; Fujita et al.). These

cells are morphologically and functionally diverse. Some of

them are DAergic (expressing TH and the aromatic amino

acid decarboxylase enzyme), while others only express TH

(Ahmed et al., 2012; Ugrumov, 2024). The heterogeneity and

manifold functions of these CAergic cells reflect their origin from

molecularly distinct progenitors (Romanov et al., 2020), located

in different embryonic divisions with precise topological locations

along the rostrocaudal (neuromeric) and dorsoventral axes of the

forebrain (Puelles and Medina, 1994; Bilbao et al., 2022; Ferran

et al.). Using Otp-eGFP mice, Morales et al. showed that some

subsets of CAergic neurons in the extended amygdala, preoptic

area and different nuclei of the hypothalamus derive from cells

that express the transcription factor Otp. However, these centers

also contain non-Otp CAergic neurons that appear to derive

from different progenitors that express other transcription factors

(Romanov et al., 2020; Zhang et al., 2021), raising questions on

the function of different Otp and non-Otp CAergic neurons in the

modulation of social behavior and homeostasis.

In vertebrates, olfactory information that reaches the medial

extended amygdala directly or indirectly plays a critical role

in social behavior. In this Topic, Fujita et al. showed that

the main projection neurons of the olfactory bulb in chickens,

including mitral cells, selectively express the dopamine receptor 4

(DRD4), indicating that their activity is modulated by dopamine

through this specific receptor. In mammals and birds, DRD4

polymorphisms are associated with animal personality traits, a

feature that contributes to the shaping of social behavior. The

authors’ findings prompt further investigation into the role of

dopaminoceptive mitral cells of the olfactory bulb in relation to

personality and social behavior.

CAergic systems start to form early in development, and

they appear to act as morphogens, modulating axonal growth

and the phenotype of target cells (Ugrumov, 2024). The study

by Finszter et al. pointed out that DAergic projections may

determine the formation of synaptic patterns in target regions

during development. Following gestational VPA treatment of mice

(leading to autistic-like traits), an overall reduction in DA input to

the ventral striatum (olfactory tubercle, OT; nucleus accumbens,

NAc) was observed, together with a decrease in DAergic synaptic

contacts with calbindin (in the OT) or calretinin (in the NAc)

expressing interneurons. These findings indicate that the shaping of

the social and reward systems is affected by prenatal VPA exposure

through alteration of DAergic pathways. Future studies are needed

to better understand the role of other dopaminoceptive regions,

including those modulating social behavior, in autism.

Overall, the articles presented in this Research Topic improve

our understanding of the evolution, development, segmental

organization and function of DAergic and dopaminoceptive

forebrain centers, and open new avenues for future DAergic

system research.
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