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Editorial on the Research Topic

Dopaminoceptive forebrain regions: a search for structural
and functional organization underlying normal and impaired
social adaptation

This Research Topic explored the structural and functional organization of forebrain
dopaminergic (DAergic) systems. These systems encompass multiple cell groups and
pathways involved in reward, motivation, motor control, homeostasis, and social behavior
modulation. It comprises six articles spanning various vertebrate species, addressing novel
aspects of DAergic cell group evolution, development, and neuromeric organization, along
with functions of specific mesocortical and olfactory subsystems along with alterations due
to gestational valproic acid (VPA) exposure that lead to autism-like traits.

The ventral tegmental area (VTA) and the substantia nigra (SN) are the most studied
DAergic groups in mammals and other amniotes due to their critical roles in reward and
motor control (Smeets and Reiner, 1994; Bjorklund and Dunnett, 2007). While these are
classically viewed as midbrain structures, developmental research suggests a segmental
organization involving both diencephalic and mesencephalic origins (Puelles and Medina,
1994). Ferran et al. used the updated prosomeric model to examine the segmental
origin of VTA and SN DAergic neurons during development in rodents, non-human
primates, and humans. By combining tyrosine hydroxylase (TH) immunohistochemistry
with gene expression and morphological landmarks, they identified six segments (five
in the forebrain and one in the isthmic r0) giving rise to these neurons. Such multi-
neuromeric origin may underlie functional specialization, and different connectivity and
target patterns, with potential implications for vulnerability to degeneration, hypoxia, and
neurodevelopmental disorders.

VTA and SN DAergic neurons project to the telencephalon, targeting the striatum
and, via mesocortical and mesolimbic pathways, the cortex and extended amygdala
(Reiner et al., 1998; Bjorklund and Dunnett, 2007). Messore et al. focused on cortical
dopamine modulation by manipulating layer 6 neurons expressing dopamine receptor 1
in the mouse somatosensory cortex. These cells are considered remnants of the subplate,
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which is essential for the establishment of thalamocortical
that  these
dopaminoceptive cells also play a critical role in the activation of

connections. Messore et al.  demonstrated
cortico-thalamo-cortical loops, possibly participating in stimulus
representation and sensory processing.

In tetrapods, the majority of DAergic axons targeting the
striatum and pallium arise from the perikarya of the VTA and/or
SN (Smeets and Gonzalez, 2000; except in the olfactory bulb,
which contains intrinsic DAergic neurons in all vertebrates). In
fish, however, at least part of the telencephalic innervation comes
from locally-born DAergic neurons (Rodriguez-Moldes et al.). The
presence of these cells in the telencephalon was once thought to be
specific for fish, but minor subsets of catecholaminergic (CAergic)
cells were later found in the cerebral cortex/pallium and/or the
striatum of mammals and birds (Marin et al., 2005; Bupesh et al,,
2014; Fujita et al.). Tracing the evolution of dopaminoceptive
regions of the telencephalon, Rodriguez-Moldes et al. studied
the development of area superficialis basalis in the catshark (a
cartilaginous fish closely related to ancestral jawed vertebrates),
using neuronal phenotypic markers and transcription factors of
the pallium or the subpallium. The authors showed that this
area is subpallial with cells derived from striatal and pallidal
subdivisions; however, it becomes quite complex due to tangential
migrations during development. In catsharks, some cells from
the pallidal embryonic domain migrate into the striatum, giving
rise to an ectopic globus pallidus that resembles the situation
observed in birds. Rodriguez-Moldes et al. suggested that the area
superficialis basalis of Chondrychtians contains precursor cells
for the striatum, pallidum, and extended amygdala, which may
represent a forerunner of these regions in later tetrapods, opening
new avenues for research.

In vertebrates, the medial extended amygdala and several
preoptic and hypothalamic centers that are involved in the
modulation of social behavior and/or homeostasis also contain
subpopulations of CAergic neurons (Bupesh et al., 2014; Vicario
et al., 2014; Smeets and Gonzalez, 2000; Fujita et al.). These
cells are morphologically and functionally diverse. Some of
them are DAergic (expressing TH and the aromatic amino
acid decarboxylase enzyme), while others only express TH
(Ahmed et al, 2012; Ugrumov, 2024). The heterogeneity and
manifold functions of these CAergic cells reflect their origin from
molecularly distinct progenitors (Romanov et al., 2020), located
in different embryonic divisions with precise topological locations
along the rostrocaudal (neuromeric) and dorsoventral axes of the
forebrain (Puelles and Medina, 1994; Bilbao et al., 2022; Ferran
et al.). Using Otp-eGFP mice, Morales et al. showed that some
subsets of CAergic neurons in the extended amygdala, preoptic
area and different nuclei of the hypothalamus derive from cells
that express the transcription factor Otp. However, these centers
also contain non-Otp CAergic neurons that appear to derive
from different progenitors that express other transcription factors
(Romanov et al., 2020; Zhang et al., 2021), raising questions on
the function of different Otp and non-Otp CAergic neurons in the
modulation of social behavior and homeostasis.

In vertebrates, olfactory information that reaches the medial
extended amygdala directly or indirectly plays a critical role
in social behavior. In this Topic, Fujita et al. showed that
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the main projection neurons of the olfactory bulb in chickens,
including mitral cells, selectively express the dopamine receptor 4
(DRD4), indicating that their activity is modulated by dopamine
through this specific receptor. In mammals and birds, DRD4
polymorphisms are associated with animal personality traits, a
feature that contributes to the shaping of social behavior. The
authors’ findings prompt further investigation into the role of
dopaminoceptive mitral cells of the olfactory bulb in relation to
personality and social behavior.

CAergic systems start to form early in development, and
they appear to act as morphogens, modulating axonal growth
and the phenotype of target cells (Ugrumov, 2024). The study
by Finszter et al. pointed out that DAergic projections may
determine the formation of synaptic patterns in target regions
during development. Following gestational VPA treatment of mice
(leading to autistic-like traits), an overall reduction in DA input to
the ventral striatum (olfactory tubercle, OT; nucleus accumbens,
NAc) was observed, together with a decrease in DAergic synaptic
contacts with calbindin (in the OT) or calretinin (in the NAc)
expressing interneurons. These findings indicate that the shaping of
the social and reward systems is affected by prenatal VPA exposure
through alteration of DAergic pathways. Future studies are needed
to better understand the role of other dopaminoceptive regions,
including those modulating social behavior, in autism.

Opverall, the articles presented in this Research Topic improve
our understanding of the evolution, development, segmental
organization and function of DAergic and dopaminoceptive
forebrain centers, and open new avenues for future DAergic
system research.
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