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has been established from physiological and anatomical studies 
(Figure 1). Subplate neurons are a diverse neuropil encompassing 
glutamatergic and GABAergic neurons and receiving glutamater-
gic, GABAergic, cholinergic and glycinergic inputs (Wahle et al., 
1987, 1994; Chun and Shatz, 1989a,b; Cobas et al., 1991; Meinecke 
and Rakic, 1992; Matute et al., 1993; Zecevic and Milosevic, 1997; 
Hanganu et al., 2002; Hanganu and Luhmann, 2004; Hirsch and 
Luhmann, 2008; Kilb et al., 2008).

Subplate neurons receive glutamatergic input from the thala-
mus before these thalamic axons grow to their targets in layer 4 
(Friauf et al., 1990; Allendoerfer and Shatz, 1994; Hanganu et al., 
2002; Higashi et al., 2002; Molnar et al., 2003; Torres-Reveron and 
Friedlander, 2007). Subplate axons mainly project to cortical layer 
4 (Friauf and Shatz, 1991; Allendoerfer and Shatz, 1994; Pinon 
et al., 2009), thus there is a time period when subplate neurons are 
in a key position to relay thalamic input to layer 4 (Figure 1 left) 
(Valverde and Facal-Valverde, 1987, 1988; Robinson and Dreher, 
1990; Catalano et al., 1991; Friauf and Shatz, 1991; Allendoerfer 
and Shatz, 1994; Molnar and Blakemore, 1995; Clancy et al., 2001; 
Pinon et al., 2009). After thalamic axons grow into layer 4, tha-
lamocortical synapses and GABAergic circuits in layer 4 undergo 
refi nement and maturation and over this time are particularly 
infl uenced by sensory experience (defi ning the “critical period”) 
(Friauf and Shatz, 1991; Allendoerfer and Shatz, 1994; Clancy et al., 
2001; Chen et al., 2001a; Kanold et al., 2003; Kanold and Shatz, 
2006). During this time subplate neurons are still present, receive 

INTRODUCTION
Subplate neurons are among the earliest generated neurons in the 
cerebral cortex of mammals and are located in the developing white 
matter of all cortical regions (Luskin and Shatz, 1985; Valverde and 
Facal-Valverde, 1987, 1988; Mrzljak et al., 1988; Kostovic and Rakic, 
1990; Allendoerfer and Shatz, 1994; Reep, 2000; Kostovic et al., 
2002; Kostovic and Judas, 2006; Perkins et al., 2008). In humans 
subplate neurons comprise up to 50% of the cortical neurons in 
the second trimester and are present in the fi rst few years of life 
(depending on cortical area) (Luskin and Shatz, 1985; Valverde and 
Facal-Valverde, 1987, 1988; Mrzljak et al., 1988; Kostovic and Rakic, 
1990; Allendoerfer and Shatz, 1994; Reep, 2000; Kostovic et al., 
2002; Kostovic and Judas, 2006; Perkins et al., 2008). In rodents 
some subplate neurons can remain into adulthood forming layer 
6b (Woo et al., 1991; Wood et al., 1992; Price et al., 1997; Arias 
et al., 2002; Torres-Reveron and Friedlander, 2007). Subplate neu-
rons thus comprise additional cortical circuits that are only present 
during cortical development, and these circuits appear to play a 
major role in development and early cortical function, but are only 
beginning to be characterized.

CONNECTIVITY OF SUBPLATE NEURON AND RELATIONSHIP 
WITH CORTICAL CELLS
The cell bodies of subplate neurons are located in the cerebral white 
matter (Mrzljak et al., 1988; Kostovic and Rakic, 1990). A diagram 
of the early cortical circuitry that the subplate participates in 
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direct thalamic input, and project to layer 4 (Figure 1 middle). The 
majority of subplate neurons are gradually eliminated postnatally 
by programmed cell death (Figure 1 right) and remaining neu-
rons are retained as interstitial neurons (Allendoerfer and Shatz, 
1994; Arias et al., 2002; Kanold et al., 2003; Torres-Reveron and 
Friedlander, 2007).

Functional evidence for these changing circuits was provided by 
current source density analysis in developing cat visual cortex (V1) 
(Friauf and Shatz, 1991). White matter stimulations in V1 at early 
ages (P0) show short latency sinks in the subplate and long latency 
sinks in layer 4. The difference in latencies suggests that subplate 
neurons make excitatory connections to layer 4 neurons and drive 
their activity (Friauf and Shatz, 1991). The presence of a disynaptic 
sink in layer 4 also implies that subplate to layer 4 connections are 
relatively strong. At later ages short latency sinks emerge in layer 4 
after white matter stimulation. Thus now thalamic activity could 
directly activate layer 4 neurons indicating that thalamocortical 
circuits had matured. Similar results were obtained from recordings 
in rodent somatosensory system (Higashi et al., 2002; Molnar et al., 
2003). These recordings show that thalamic stimulation activates 
subplate neurons by E18-19 while cortical plate activation is seen 
at E21. The difference in timing (prenatal in rodent vs. postnatal in 
cat) might refl ect the early maturation of the somatosensory system 
relative to the visual systems or a difference between rodent and cat. 
Retrograde labeling studies show that most of the subplate neurons 
projecting to layer 4 are glutamatergic (Finney et al., 1998). Thus, 
subplate neurons are thought to provide excitatory input to layer 
4. Since subplate neurons receive GABAergic, cholinergic and gly-
cinergic inputs (Wahle et al., 1987, 1994; Chun and Shatz, 1989a,b; 
Cobas et al., 1991; Meinecke and Rakic, 1992; Matute et al., 1993; 
Zecevic and Milosevic, 1997; Hanganu et al., 2002; Hanganu and 

Luhmann, 2004; Hirsch and Luhmann, 2008; Kilb et al., 2008) this 
feed-forward excitation to layer 4 can be modifi ed by processing 
within the subplate.

SUBPLATE NEURONS ENABLE THALAMOCORTICAL 
TARGET FINDING
Subplate neurons can be selectively ablated in early development 
by excitotoxic kainic acid injections (Ghosh et al., 1990; Ghosh 
and Shatz, 1992, 1993, 1994). Ablation of subplate neurons before 
thalamic axons invade layer 4 (Figure 1 left) causes these axons to 
bypass the ablated area and grow into layer 4 at areas that contain 
subplate neurons (Ghosh et al., 1990). Thus subplate neurons seem 
to provide a guidance role in targeting thalamic axons to layer 4. 
Since subplate neurons project radially to layer 4 they might provide 
a scaffold that enables thalamic axons, which travel tangentially 
below their eventual target layer, to fi nd their targets.

SUBPLATE NEURONS ENABLE THALAMOCORTICAL 
MATURATION
After thalamic axons grow into layer 4 they make synaptic connec-
tions with layer 4 neurons and build up these connections over time 
to adult strength. The strengthening of the thalamocortical synapses 
from an initially weak state occurs while there is already strong 
input from subplate neurons (Friauf and Shatz, 1991) (Figure 1) 
and possibly intracortical connections.

Recent experiments indicate that subplate neurons play a major 
role in the developmental strengthening of thalamocortical projec-
tions. Subplate ablation after thalamic afferents have grown into 
layer 4 but before these afferents have made a strong synapse with 
layer 4 neurons prevents the strengthening of thalamocortical con-
nections (Kanold et al., 2003). In addition, the frequency – but not 

FIGURE 1 | Subplate neurons and their connectivity during 

development. Early: subplate neurons (green) receive inputs from thalamus 
and subplate neuron axons project to layer 4, but precise targets are 
unknown (‘?’). Onset of critical period (coincides with time of subplate ablation 
in lesion studies): Both subplate neurons and thalamus project to layer 4. 

Adult: SPNs have been eliminated by programmed cell death and 
layer 4 neurons receive inputs from thalamus. Subplate neurons can 
depolarize layer 4 neurons via two pathways: directly via excitatory inputs and 
indirectly via exciting GABAergic neurons (red) and driving GABAergic 
depolarization.
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amplitude – of spontaneous excitatory synaptic events in layer 4 
cells is increased (Kanold et al., 2003), which is consistent with 
a lack of functional refi nement of cortical connections. Together 
these data indicated that without subplate neurons, there is a failure 
of appropriate synapses to strengthen and others to weaken, and 
the visual cortex becomes functionally decoupled from its thalamic 
inputs.

SUBPLATE NEURONS CONTROL INHIBITORY MATURATION
The maturation of intracortical inhibition is central to normal 
cortical function. In addition GABAergic activity is thought to be 
involved in the maturation of glutamatergic circuits (Ben-Ari, 2002; 
Ben-Ari et al., 2004). Despite this importance of inhibition, the cells 
and circuits that control inhibitory development are unknown.

Key processes of inhibitory maturation occur postsynaptically 
by changes in the subunit composition of the GABA

A
 receptor 

(Figure 2A) and the intracellular Cl−-concentration (which affects 
the ion fl ow through the GABA

A
 receptor). The Cl−-reversal poten-

tial (E
Cl

) controls if GABA
A
-ergic activity is depolarizing or hyper-

polarizing. E
Cl

 is mediated by Cl− transporters such as KCC2 and 
NKCC1 that control Cl− levels in the cytosol (Shimizu-Okabe et al., 
2002, 2007; Yamada et al., 2004; Blaesse et al., 2009). KCC2 levels are 
low (E

Cl
 high) in early development, thus GABA can be depolarizing 

(Rivera et al., 1999; Ganguly et al., 2001; Owens and Kriegstein, 
2002; Kanold and Shatz, 2006; Blaesse et al., 2009). Depending on 
the amount of depolarization, depolarizing GABA can be excita-
tory or have a shunting inhibitory infl uence (Blaesse et al., 2009). 
Over development, KCC2 levels increase (decreasing E

Cl
), rendering 

GABA inhibitory (Rivera et al., 1999; Ganguly et al., 2001; Owens 
and Kriegstein, 2002; Shimizu-Okabe et al., 2002; Yamada et al., 
2004; Kanold and Shatz, 2006; Blaesse et al., 2009). The strength-
ening of both excitatory and inhibitory circuits while maintain-
ing “appropriate” activity levels might be achieved by wiring up 
GABAergic circuits fi rst (Ben-Ari et al., 2004) and then utilizing 
depolarizing GABA to aid in maturing glutamatergic connections 
(Ben-Ari, 2002; Ben-Ari et al., 2004).

The maturation of inhibition depends on normal sensory expe-
rience. Sensory deprivations (i.e. dark rearing, deafness, whisker 
trimming) prevent inhibitory maturation and high expression lev-
els of BNDF, which is involved in inhibitory maturation (Fuchs 
and Salazar, 1998; Huang et al., 1999; Lein and Shatz, 2000; Chen 
et al., 2001b; Morales et al., 2002; Gianfranceschi et al., 2003; Vale 
et al., 2003; Jiang et al., 2005; Kotak et al., 2005; Jiao et al., 2006; 
Huang, 2009). Because subplate neurons form a crucial relay of 
sensory information, and because subplate neurons provide excita-
tion to developing circuits, subplate neurons are in a key position 
to regulate the maturation of cortical GABAergic inhibition. In 
particular since subplate neurons are driven by thalamic afferents, 
strong synaptic inputs between subplate neurons and cortical neu-
rons might amplify the action of sensory inputs.

Removal of subplate neurons at early ages, when inhibition 
is immature, prevents both the developmental increase in KCC2 
expression and the expression of a mature complement of GABA

A
 

receptor subunits (Kanold and Shatz, 2006) (Figure 2B). Consistent 
with these molecular abnormalities, electrophysiological recordings 
showed that GABAergic circuits remain depolarizing (Kanold and 
Shatz, 2006). How then is KCC2 regulated, and how are subplate 

neurons involved? Recent experiments have led to the hypothesis 
that KCC2 expression can be regulated by GABAergic  depolarization 
(Ganguly et al., 2001; Leitch et al., 2005), while others report no 
infl uence of GABAergic signaling on KCC2 expression (Ludwig 
et al., 2003; Titz et al., 2003; Sipila et al., 2009). However, there are 
other sources for depolarization. Blocking glutamatergic signaling 
during early ages in vivo is suffi cient to prevent the developmental 
increase in KCC2 (Kanold and Shatz, 2006). Thus early glutamater-
gic activity might be required for GABAergic maturation in layer 4 
(Kanold and Shatz, 2006). There are three sources of glutamatergic 
inputs to cortical layer 4: intracortical, thalamus and subplate neu-
rons. Subplate removal by itself prevents inhibitory development 
despite the presence of intracortical and thalamic inputs (Kanold 
and Shatz, 2006). Thus, together these data suggest that glutama-
tergic excitation from subplate neurons is needed for inhibitory 
maturation (Figure 1). Such a role of subplate neurons in inhibitory 
maturation would require that subplate neurons depolarize layer 
4 neurons, which can be achieved either by exciting GABAergic 
neurons and increasing early depolarizing GABAergic activity or 
by exciting the targets of GABAergic neurons directly. Thus by 

FIGURE 2 | Maturation of GABA(A)ergic circuitry. (A) Normal development 
with subplate present. Early in development (left) GABAergic inputs to 
neurons are depolarizing due to the lack of KCC2. As development progresses 
(middle) glutamatergic synapses appear and further depolarize neurons. 
Glutamatergic synapses strengthen and at a certain point in development a 
critical threshold of depolarization is reached (right) and KCC2 levels are 
increased, rendering GABA hyperpolarizing (inhibitory). In addition, mature 
GABAergic receptor subunits are expressed. (B) Abnormal development with 
subplate absent. KCC2 levels remain low and immature GABA receptor 
subunits remain expressed, while levels of mature subunits remain low.
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providing feed-forward excitation to the developing cortical circuits 
subplate neurons can regulate both the maturation of glutamatergic 
thalamocortical and GABAergic intracortical synapses.

By controlling cortical inhibition, subplate neurons might also 
play a role in regulating cortical activity levels after GABAergic 
circuits have matured. Since subplate ablation prevents inhibi-
tory maturation, maybe by directly activating GABAergic circuits, 
subplate activation is likely able to dampen cortical activity levels. 
Thus even temporary depression of subplate activity could lead to 
cortical hyperexcitability, which might underlie pathophysiological 
conditions (see below).

SUBPLATE NEURONS ENABLE THE FUNCTIONAL 
MATURATION OF CORTICAL RESPONSES AND 
SENSORY MAPS
Lesioning subplate at a time when thalamocortical axons are present 
in layer 4 (Figure 1 middle), but before these projections have 
refi ned into a mature pattern, revealed a role for subplate neurons 
in thalamocortical patterning. The organizational pattern observed 
in the visual cortex is that of the ocular dominance columns (ODCs). 
These columns are formed by the segregation of thalamic afferents 
innervated by either eye into alternating bands of left eye or right 
eye dominance. In cat ODCs form during the postnatal period from 
an initially non-segregated state (see Figure 3A left). Analysis of the 
ODCs following ablation of subplate neurons in V1 with either kai-
nic acid injections (Ghosh et al., 1990; Ghosh and Shatz, 1992, 1993, 
1994) or immunoablation (Kanold et al., 2003) shows that subplate 
ablation prevents the formation of ODCs (Ghosh and Shatz, 1992, 
1993, 1994; Kanold et al., 2003). This defi cit in thalamocortical pat-
terning is present even though both thalamic axons and their target 
neurons are present in layer 4 (Ghosh and Shatz, 1992, 1993, 1994; 
Kanold et al., 2003). Thus subplate neurons are necessary for the 
patterned organization of the cerebral cortex.

Activity dependent mechanisms have been known to be required 
for normal ODC formation (Shatz and Stryker, 1978; Chapman 
et al., 1986; Reiter et al., 1986; Stryker and Harris, 1986; Reiter and 
Stryker, 1988; Cang et al., 2005; Huberman et al., 2006). Indeed 
failure of thalamocortical strengthening after subplate removal is 
paralleled by decreased visual responsiveness and the lack of func-
tional refi nement of visual responses (Kanold et al., 2003). Thus, 
the fi delity of visual evoked responses in visual cortex is severely 
impaired and it is likely that these functional defi cits in cortical 
processing subsequent to subplate ablation underlie the lack of 
ODCs consequent to subplate ablation (Ghosh and Shatz, 1992, 
1993, 1994; Kanold et al., 2003).

In addition to thalamocortical and intracortical inhibitory cir-
cuits, long-range excitatory intracortical circuits also refi ne with 
sensory experience (Innocenti and Frost, 1980; Frost et al., 1990; 
Callaway and Katz, 1991; Sur et al., 1999). Thus, while the status of 
intracortical excitatory connections following subplate lesions has 
not been investigated, it is likely that subplate lesions, which abolish 
normal responses to patterned stimuli, will also affect the develop-
ment of long-range intracortical circuits. Cognitive defects present 
after subplate damage, as discussed below, might be due from both 
defi cits in thalamocortical and intracortical connections. A lack of 
refi nement in intracortical excitatory circuits might functionally 
be evident as a larger number of smaller synaptic contacts which 

would be consistent with the observation that rates of  spontaneous 
EPSC’s but not their amplitude were increased in ablated areas 
(Kanold et al., 2003). However, these recordings were performed 
in layer 4, thus the source of the spontaneous EPSCs could also be 
from non-refi ned thalamocortical projections.

SUBPLATE NEURONS CONTROL PLASTICITY IN THE 
CRITICAL PERIOD
The function of inhibitory circuits is crucial for critical period 
plasticity in the visual cortex (Hensch, 2004; Kanold and Shatz, 
2006). Sensory manipulations that alter inhibition also result in 
impaired synaptic plasticity mechanisms that underlie critical 
period plasticity. Thus, there is a co-regulation of inhibition and 
critical period plasticity (Kirkwood et al., 1995, 1996; Kotak et al., 
2007; Kanold et al., 2009). Because subplate neurons play a crucial 
role in maturation of inhibition, it is likely that they also mediate 
cortical plasticity during the critical period.

In normal animals, if visual experience is altered, for example 
by monocular eye closure (monocular deprivation, MD) during 
the critical period then the pattern of ODCs is perturbed (Wiesel 
and Hubel, 1963; Hubel and Wiesel, 1970; Shatz and Stryker, 1978). 
MD causes a rearrangement of thalamocortical projections such 
that projections representing the open eye occupy a larger territory 
in layer 4, while projections representing the deprived eye occupy 
a smaller area (Figure 3B left). There is also a matching shift in 
physiological ocular dominance in cortical neurons towards the 
open eye.

As described above, under normal visual experience, removal of 
subplate neurons prevents the formation of ODCs from initially 
non-segregated inputs (Ghosh and Shatz, 1992, 1993, 1994; Kanold 
et al., 2003) (Figure 3A right). These results could be interpreted as 
thalamocortical projections remaining in their early non-segregated 
projection pattern. However, after subplate ablation, following MD, 
there is a “paradoxical” form of OD plasticity (Kanold and Shatz, 
2006), meaning that the sign of the OD change is reversed. In these 
experiments subplate neurons were ablated before OD columns 
formed, meaning that projections from both eyes were present in 
all areas of the visual cortex. Eye closure is performed at the time of 
ablation, before the normal opening of the eyes. Transneuronal labe-
ling at later ages shows that, in subplate ablated cortex, the deprived 
eye projections occupy a larger area than in cortical areas where 
the subplate was intact while projections representing the open eye 
occupy a smaller area in ablated compared to non-ablated areas 
(Kanold and Shatz, 2006) (Figure 3B right). Thus, paradoxically 
projections representing the more active eye have been removed 
while those representing the less active closed eye have been spared 
removal. A similar paradoxical removal of the more active inputs 
has been observed when cortical activity was pharmacologically 
silenced (Hata and Stryker, 1994; Hata et al., 1999).

Genetic manipulations that decrease inhibitory effi cacy prevent 
OD plasticity entirely and it is thought that the maturation of inhi-
bition is a key process enabling critical period plasticity (Hensch, 
2004; Kanold and Shatz, 2006). Computational modeling studies 
(Kanold and Shatz, 2006) suggest that the outcome of OD plastic-
ity following MD might exist on a continuum between “normal” 
and “paradoxical” and that the levels of inhibition might control 
where on this continuum the circuit operates. By regulating both 



Frontiers in Neuroanatomy www.frontiersin.org August 2009 | Volume 3 | Article 16 | 5

Kanold Subplate neurons regulate cortical development

the  maturation of excitation and the maturation of inhibition, 
 subplate neurons seem to control processes in layer 4 that are 
required for normal plasticity.

The disappearance of subplate neurons might ensure that cer-
tain processes, such as critical period plasticity, occur only once. 
While critical period plasticity might be distinct from adult plastic-
ity by its extent and transience, the underlying mechanisms might 
be similar to processes underlying adult learning via attention 
based mechanisms (Hensch, 2004; Keuroghlian and Knudsen, 
2007). This attentional modulation of cortical circuits develops 
postnatally, thus subplate neurons could provide a circuit that 
enables large-scale cortical plasticity mechanisms before atten-
tion is functioning.

A MODEL FOR THE ROLE OF SUBPLATE NEURONS IN 
DEVELOPMENT
The three developmental defi cits observed after subplate abla-
tion might have a common explanation when considering that 
each of these processes can be driven by depolarization. Synaptic 
strengthening in the brain is governed by synaptic plasticity rules 
such as long-term potentiation (LTP) and long-term depression 
(LTD) (Bear and Malenka, 1994; Malenka and Bear, 2004). While 
LTP at a particular synapse can be evoked by the activity of that 
synapse (homosynaptic LTP), this strengthening requires that this 
synapse is already of suffi cient strength to modulate activity levels 
in the postsynaptic neuron. An alternative way of inducing LTP is 
associative LTP. Associative LTP of a weak synapse can be induced 
by simultaneous activation of another synapse, which is suffi ciently 
strong to induce activity increases in the postsynaptic neuron.

Subplate activity can infl uence layer 4 synapses and enable 
thalamocortical strengthening to occur. In particular, subplate 
input to layer 4 can strongly depolarize layer 4 cells. Since subplate 
neurons are driven by thalamic activity, this subplate mediated 
depolarization of layer 4 cells occurs at the same time as direct 
thalamocortical input to layer 4 and may lead to a strengthening 
of thalamocortical synapses by associative LTP. The strength of the 
subplate to layer 4 connection is evidenced by the evoked disyn-
aptic sinks in layer 4 during white matter stimulation (Friauf and 
Shatz, 1991). Therefore, subplate neurons can act somewhat like 
a “teacher” entraining layer 4 neurons to respond to appropriate 
thalamic inputs.

Formal implementation of this intuitive model using a compu-
tational simulation can replicate a large body of experimental data 
in normal development and after subplate removal (Kanold and 
Shatz, 2006). The topology of the computational model is based 
on the circuits present in development (Figure 1). A layer 4 neuron 
receives input from two LGN cells representing inputs from each 
eye. In addition the layer 4 neuron receives input from one subplate 
neuron. The subplate neuron receives input from the two LGN cells. 
All synapses on the layer 4 neuron can be modifi ed according to 
spike-time dependent plasticity (STDP) rules (Abbott and Nelson, 
2000; Bi and Poo, 2001) that are found at many synapses in the 
brain. In STDP synapses between neurons that are active within a 
certain time window prior to postsynaptic fi ring are strengthened 
while synapses that are active at other times are weakened.

At the start of the simulations LGN inputs to layer 4 are too 
weak to drive spiking in layer 4 and are not biased towards either 
eye. In contrast LGN inputs to subplate and subplate inputs to layer 

FIGURE 3 | Subplate neurons control the sign of OD plasticity. Shown are 
schematic diagrams of the ocular dominance columns in cat visual cortex under 
4 conditions. ODCs form from an initial non-segregated pattern at early stages 
of development. (A) With normal experience and with subplate present 
(+subplate), each eye is represented in equally large regions of visual cortex. If 

subplate is removed (−subplate), ODCs do not form and thalamic afferents 
representing both eyes are intermingled. (B) If one eye is closed (monocular 
deprivation) and if subplate is present then the open eye representation 
expands. If subplate is absent there is a paradoxical removal of open eye 
projections.
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4 are strong. The simulations show that subplate input to layer 4 
induces correlations between thalamic fi ring and layer 4 activity. 
Since subplate neurons fi re action potentials after thalamocortical 
synapses are active there is a positive time delay between the tha-
lamocortical EPSCs and layer 4 fi ring. This time delay falls within 
the LTP window of the STDP rule and over time weak thalamo-
cortical synapses are strengthened to adult strength (Kanold and 
Shatz, 2006).

Simulations of the effects of subplate removal show that correla-
tions between the thalamic and layer 4 activity are not present. Thus, 
thalamic input to layer 4 does not strengthen, and sensory driven 
activity is absent in layer 4 (Kanold and Shatz, 2006), which is also 
observed in physiological experiments (Kanold et al., 2003). This 
is because the STDP window for LTD is longer than that for LTP 
(Abbott and Nelson, 2000; Feldman, 2000; Bi and Poo, 2001) and 
therefore if pre- and postsynaptic activity are uncorrelated, synaptic 
weakening occurs. Since in these simulations the activity levels in 
both eyes are equal, no refi nement of ocular dominance is observed. 
In fact, these simulation results suggest that thalamic inputs will be 
weakened from their initial values over long periods of time.

Activity manipulations, such as MD reveal the explanatory 
power of this simple model. In MD the activity between the two 
eyes is unequal: the pathway driven by the open eye is more active 
while the pathway from the closed eye is less active. Simulations 
show that thalamic fi bers driven by the open eye have a larger 
amount of uncorrelated activity with layer 4 neurons than fi bers 
driven by the closed eye (Kanold and Shatz, 2006). Thus, in models 
with an asymmetric STDP rule, the more active inputs to layer 4 
are weakened at a much faster rate than the less active inputs. Thus 
over time the projections representing the open eye disappear while 
projections representing the closed eye will be retained (Kanold and 
Shatz, 2006). This parallels experimental observations (Kanold and 
Shatz, 2006). Additionally, homeostatic mechanisms known to be 
present in the cortex (Turrigiano, 1999), can infl uence inputs from 
both eyes and thereby amplify this difference.

These simulation results support the view that subplate neu-
rons can promote strengthening of thalamocortical connections 
by enabling correlations between thalamus and cortex that lead 
to synaptic strengthening. By this feed-forward mechanism, sub-
plate neurons could also impart their stimulus selectivity to layer 
4 neurons. Hence, cortical maps might be partially set up in the 
subplate and then transferred to and refi ned in layer 4 as has been 
proposed previously (Grossberg and Seitz, 2003).

SUBPLATE NEURONS IN DISEASE
Given the central role of subplate neurons in the maturation of 
cortical circuits, damage to subplate neurons at any point during 
development could lead to neurological diseases. Subplate neu-
rons are particularly prone to injury (especially hypoxic-ischemic 
injuries) during development and are especially vulnerable at time 
points when injuries are associated with many neurodevelopmental 
disorders (second trimester) (Volpe, 1996, 2000; du Plessis and 
Volpe, 2002; McQuillen et al., 2003; McQuillen and Ferriero, 2005). 
The enhanced vulnerability of subplate neurons may be due to 
their early maturation and therefore higher metabolic require-
ments. This vulnerability of subplate neurons might be more 
pronounced in infants born prematurely that are at a higher risk 

for  neurodevelopmental disorders disorders as a large period of 
development occur ex utero. In animals, neonatal hypoxia dam-
ages subplate neurons and prevents normal critical period plastic-
ity (McQuillen et al., 2003; McQuillen and Ferriero, 2004; Failor 
et al., 2006), supporting the idea that such injuries damage circuits 
needed for the development of normal tuning and plasticity. In 
humans, such hypoxic-ischemic injuries, especially in the second 
trimester are associated with various neurodevelopmental disor-
ders such as cerebral palsy and epilepsy (Volpe, 1996, 2000; Cioni 
et al., 1997; Schatz et al., 1997; Lanzi et al., 1998; Krageloh-Mann 
et al., 1999; Jacobson and Dutton, 2000; Deukmedjian et al., 2004; 
McQuillen and Ferriero, 2004; Meberg and Broch, 2004; Ozduman 
et al., 2004; Robinson, 2005; Robinson et al., 2006).

Subplate ablation in animals is followed by a period of seizures 
(Lein et al., 1999) indicating hyperactivity. These seizures develop a 
couple days after the time of ablation and thus are likely refl ecting 
adjustments of the cortical network (Lein et al., 1999). The origin of 
these seizures is unclear. Seizures could be generating by depolariz-
ing GABAergic activity (Kanold and Shatz, 2006) or alternatively be 
generated by glutamatergic activity that is not balanced appropriately 
by inhibitory GABAergic circuits. The different possible origins of sei-
zures after subplate lesion are of clinical relevance. GABA

A
 agonists can 

be used to treat seizures if they decrease fi ring probability. However, a 
GABAergic origin of seizures would also indicate that GABA

A
 agonists 

would increase seizures instead of preventing them.
Many neurodevelopmental disorders are characterized by abnor-

mal neuronal activity, hyperexcitability, and learning impairments 
due to impaired inhibition (Mathern et al., 2000; Lewis and Levitt, 
2002; Cepeda et al., 2003; Christ et al., 2003; Lewis et al., 2004; 
Robinson et al., 2006), suggesting that altered inhibitory devel-
opment underlies these disorders. Thus, a common outcome for 
early injuries and deprivations is that both alter inhibitory devel-
opment, which in turn might alter critical period plasticity and 
normal development.

In addition to subplate lesions, the activity of subplate neurons 
can be altered by neuromodulators such as GABA, acetylcholine 
and glycine (see above). The subplate is also innervated by seroton-
ergic fi bers (Nakazawa et al., 1992) and subplate neurons selectively 
express progestin receptor (Lopez and Wagner, 2009). Thus, mater-
nal or neonatal exposure to drugs (ranging from nicotine to seda-
tives and antidepressants) or hormones might alter subplate activity 
and thereby potentially disrupt cortical development. Therefore 
monitoring the status of subplate neurons in human infants is of 
high clinical relevance. Animal studies have shown that sensory 
activity can trigger cortical spindle bursts (Hanganu et al., 2006). 
While, the involvement of subplate neurons in the generation of 
spindle bursts is unclear, subplate neurons are thought to play a 
role in driving oscillatory activity in cortex (Dupont et al., 2006; 
Hanganu et al., 2009). In vitro MRI has been used to identify the 
subplate in humans (Rados et al., 2006), but functional MRI stud-
ies of subplate neurons have not been performed. However, such 
oscillatory activity can be detected using EEG, which has been used 
to monitor spontaneous and sensory evoked activity in human 
preterm and full-term infants (Vanhatalo et al., 2005; Vanhatalo 
and Kaila, 2006; Colonnese et al., 2008). These EEG studies iden-
tify the emergence of spontaneous activity transients (SATs) when 
thalamocortical fi bers start to innervate the cortical plate (∼30 GW) 
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(Vanhatalo and Kaila, 2006) and also show bipolar responses to 
early sensory stimuli (Colonnese et al., 2008). Thus by quantifying 
the emergence and characteristics of EEG features and studying the 
alteration of such features in subplate lesioned cortex one might 
be able to clinically assess the function of the early thalamocortical 
network of which the subplate is a key component.

WHY ARE THERE SUBPLATE NEURONS?
Subplate neurons are present in the cerebral cortex of all mammals 
(Luskin and Shatz, 1985; Valverde and Facal-Valverde, 1987, 1988; 
Allendoerfer and Shatz, 1994; Reep, 2000). Subplate neurons are 
more prominent in species with increased radial and tangential cor-
tical connectivity such as cat, monkey and human (Mrzljak et al., 
1988; Kostovic and Rakic, 1990; Kostovic et al., 2002; Kostovic and 
Judas, 2006), suggesting that subplate neurons might be needed 
for the establishment of more complex processing capabilities. 
The disappearance of subplate neurons over development suggests 
that their role is purely developmental. As discussed above, sub-
plate neurons enable the functional maturation of cortical circuits. 
However, other areas in the brain (such as subcortical areas) seem 
mature without neurons equivalent to subplate neurons. Thus one 
can speculate that the role of subplate neurons might have to do 
with unique properties of the cerebral cortex. One hallmark of 

the cerebral cortex is complex interconnectivity and its ability to 
adjust its connectivity during early development in response to 
altered patterns of spontaneous and sensory inputs. This capabil-
ity for rewiring of the cerebral cortex is greatly diminished after 
the critical period. Thus removing these enabling (or “teacher”) 
circuits is one way to ensure that plasticity occurs only once and 
only during early development and might allow the development 
of higher cognitive processes at later stages of cortical processing 
at later ages.

CONCLUSION
Subplate neurons are an integral part of the developing cerebral 
cortex but their role in cortical development has been enigmatic. 
Recent progress has shown that they are required for the functional 
maturation of cortical circuits and for cortical plasticity. Because of 
their vulnerabilities, subplate neurons provide a key link between 
early brain injury and altered cortical function in the adult.
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