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suggested intra- regional  processing was more associated with 
hemodynamic signals than with input, they did not dissociate 
the two and examine the accompanying hemodynamics. Therefore 
to test this idea directly it would be advantageous to manipulate 
a neural system to clearly disassociate the input from the cortical 
processing. To further this aim, we measured the hemodynamic 
and neural responses to 16s electrical whisker pad stimuli in rat 
barrel cortex using 2-dimensional optical imaging spectroscopy 
(2D-OIS) and multi-channel electrophysiology both before and 
after inactivation of cortical processing by local cortical injection 
of the γ-aminobutyric acid type A (GABA

A
) receptor agonist mus-

cimol. As based on previous work (Higley and Contreras, 2007) 
cortical muscimol infusion would not be expected to affect the 
thalamocortical input into the cortex but inhibit subsequent intra-
cortical processing. This pharmacological manipulation allowed 
assessment of the separate contributions of cortical input and 
subsequent processing to the accompanying evoked hemodynamic 
response. Intra cerebral infusions of this agonist have recently 
been successfully used to assess the contribution of inhibitory 
cortical activity to “paired-pulse” whisker inhibition (Higley and 
Contreras, 2007) and to study the effect of GABAergic tone on neu-
rovascular coupling in the cerebellum (Caesar et al., 2003, 2008). 
Our data suggest, that although the quantitative neurovascular 
coupling relationships for cortical input and intra-cortical process-
ing are similar, intra-cortical processing accounts for a the majority 
of the neurovascular response evoked by sensory stimuli.

IntroductIon
To produce maps of cortical activation modern neuroimaging 
techniques such as fMRI rely on changes in hemodynamic vari-
ables occurring in close proximity to localized increases of neu-
ral activity. This relationship, termed neurovascular coupling, is 
still not completely understood. Following experiments both in 
anesthetized (Lauritzen, 2001; Jones et al., 2004; Logothetis, 2007; 
Rauch et al., 2008) and awake animals (Goense et al., 2008), the 
predominant view is that the hemodynamic response is more 
closely associated with synaptic activity rather than with spik-
ing output (Lauritzen, 2001; Jones et al., 2004; Logothetis, 2007; 
Rauch et al., 2008). However, an unresolved issue is whether the 
hemodynamic response is more representative of the synaptic 
activity associated with the direct input into an area of cortex or 
subsequent intra-cortical processing (Mangia et al., 2009). Recent 
studies in the anesthetized rat have suggested that in both corti-
cal (Radhakrishnan et al., 2007; Franceschini et al., 2008) and 
sub-cortical (Angenstein et al., 2009) structures, intra-regional 
processing could be more important than the initial evoked input 
to a brain region in generating accompanying hemodynamic 
responses. This has important consequences for the interpreta-
tion of data from neuroimaging techniques such as the Blood 
Oxygen Level dependent (BOLD) fMRI signal as it would allow 
accurate interpretation of cerebral hemodynamics in terms of 
stimulus processing. Although these studies (Radhakrishnan et al., 
2007; Franceschini et al., 2008; Angenstein et al., 2009) strongly 
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MaterIals and Methods
anIMal preparatIon and surgery
All procedures were performed in accordance with the 1986 Animal 
(scientific procedures) Act, under approval from the UK Home 
Office. Female Hooded Lister rats of 230–330 g were kept in a 12-h 
dark/light cycle at a temperature of 22°C, with food and water 
supplied ad libitum. Animals were anesthetized with urethane at 
1.25 g/kg i.p., additional doses of 0.1 ml urethane were administered 
if required. Atropine was administered at 0.4 mg/kg s.c. to lessen 
mucous secretions during surgery. Temperature was maintained at 
37°C using a homoeothermic blanket (Harvard Apparatus) through 
rectal temperature monitoring during surgery and experimental 
procedures. The animals were tracheotomized, allowing artificial 
ventilation and recording of end-tidal CO

2
. Blood gas measure-

ments and end-tidal CO
2
 measurements were taken to allow cor-

rect adjustment of ventilator parameters to keep the animal within 
physiological limits. Femoral arteries and veins were cannulated to 
allow the measurement of mean arterial blood pressure (MABP) 
and drug infusion. Phenylephrine was infused at 0.13–0.26 mg/h 
to maintain MABP between 100–110 mmHg (Golanov et al., 1994; 
Nakai and Maeda, 1999). Animals were placed in a stereotaxic frame 
(Kopf instruments). The skull overlying the somatosensory cortex 
was thinned to translucency with a dental drill, with the skull surface 
cooled with saline. A circular plastic ‘well’ (20-mm diameter) was 
attached over the thinned area of the skull using dental cement. 
The well was filled with saline, to reduce specularities from the 
skull surface.

2-dIMensIonal spectroscopy (2d-oIs) IMagIng
A Dalsa 1M30P camera operating in 4 × 4 binning mode recorded 
images of the cortical surface and each image pixel represented 
75 × 75 um The camera has a quantum efficiency of 28% at 
500 nm. The cortical surface was illuminated with four wave-
lengths of light using a Lambda DG-4 high-speed filter changer 
(Sutter Instrument Company, Novato, CA, USA) and light source 
that was synchronized to camera image capture. The four wave-
lengths were specifically chosen as two pairs (495 nm ± 31 FWHM 
and 559 nm ± 16 FWHM; 575 nm ± 14 FWHM and 587 nm ± 9 
FWHM). The wavelengths in each pair were chosen such that 
they had a similar total absorption coefficient and thus sample 
the same tissue volume but have specific absorption coefficients 
for oxyhemoglobin (HbO

2
) and deoxyhemoglobin (Hbr) that are 

as different as is possible to maximize signal to noise ratio. The 
frame rate of the camera was 32 Hz, which was synchronized 
to the filter switching, thereby giving an 8 Hz effective frame 
rate for each wavelength and therefore the subsequent estimates 
of hemodynamics. To create spatio-temporal “maps” of cortical 
hemodynamics the data were subject to Spectral analysis using 
a path length scaling algorithm (PLSA) described in detail pre-
viously (Berwick et al., 2005, 2008). Briefly the algorithm uses 
modified Beer-Lambert Law with a path length correction factor. 
We estimated the concentration of hemoglobin in tissue at a con-
centration 104 μM based on previous measurements (Kennerley 
et al., 2005) and the saturation was calculated on a pixel by pixel 
basis (Berwick et al., 2008). The spectral analysis produced 2D 
images over time, of oxyhemoglobin (HbO

2
), deoxyhemoglobin 

(Hbr), and total hemoglobin (Hbt).

experIMental procedures
Subcutaneous stainless steel stimulation electrodes insulated 
to within 2 mm of the tip were inserted in a posterior direction 
between rows A/B and C/D of the left whisker pad of the rat ensur-
ing the whole whisker pad was stimulated when electrical stimuli 
were applied. Stimuli produced no change in MABP, pCO

2
 or heart 

rate suggesting that electrical whisker pad stimuli did not pro-
duce any systemic changes that could affect cortical hemodynamics 
of interest.

Localization of whisker region for electrode placement
An initial 2D-OIS experiment was performed to localize whisker 
barrel cortex for accurate placement of a multi-channel electrode. 
Brief whisker pad stimuli (2 s) were presented to localize whisker 
barrel cortex. Electrical whisker pad stimuli (1.2 mA, 2 s, 5 Hz) 
were presented for 30 trials with a 26 s inter-stimulus interval. Data 
from individual trials were averaged and subjected to the spectral 
analysis. Images of hemodynamic changes were co-registered with 
images of the cortical surfaces to guide electrode placement. A 
very small whole in the thinned skull directly above the selected 
location was made with a dental drill and the bone removed. The 
dura was then pierced with a 27 gauge needle. A 16-channel elec-
trode coupled with a fluidic probe loaded with Muscimol (75-μm 
spacing, Neuronexus technologies Inc, concentration of Muscimol 
0.125 μg per μl), was inserted normal to the cortical surface, to a 
depth of 1200 μm. The probe was coupled to a pre-amp and data 
acquisition device (Medusa Bioamp, TDT, Florida); using a custom 
written script in MATLAB (Mathworks).

Experimental paradigm
Following accurate electrode placement, concurrent electrophysi-
ological measures of neural activity were recorded while accompa-
nying cortical hemodynamics were measured simultaneously with 
2D-OIS. Once the electrode was inserted a control experiment was 
performed which consisted of 30 trials with an inter-stimulus inter-
val of 70 s. Stimulation occurred after 19 s in each trial (1.2 mA 16 s 
at 5 Hz). Data was trial averaged and then subjected to the same 
spectroscopy analysis as described above. Simultaneously neural 
activity was collected across all 16 channels of the multi-electrode at 
a sampling frequency of 6.1 KHz for a period of 26.7 s starting 5.2 s 
before stimulation onset within each trial. After this experiment 
1 μl of muscimol was infused over a period of 1 min using a 10-μl 
Hamilton syringe and syringe pump (World Precision Instruments 
Inc). After the muscimol had been allowed to take effect the long 
stimulation 2D-OIS and simultaneous neural activity paradigm 
was repeated.

Electrophysiological data analysis
The 16-channel neural data was analyzed by performing current 
source density (CSD) analysis. Recordings were averaged over trials, 
with stimulus onset “jittered” within a 20-ms window to reduce 
effects of 50 Hz mains noise. The resultant evoked field potential 
recordings were sampled at 6 kHz with 16-bit resolution. The CSD 
analysis has been described in detail previously (Martindale et al., 
2003). The field potentials were used to obtain spatio-temporal 
estimates of the current sources and sinks within the cortical layers 
(Nicholson and Freeman, 1975; Mitzdorf, 1985). The current sink 
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veins. Examination of the time series of the response for the two 
ROI selected (Figure 1D) demonstrates that the response in the 
anterior barrels (dotted lines) distal to the electrode is only slightly 
larger than from the region immediately surrounding the elec-
trode tip (solid lines). Following infusion of muscimol the spa-
tial extent and magnitude of the hemodynamic response elicited 
by whisker stimuli was altered compared to that observed prior 
to muscimol infusion. By observation of spatial images calcu-
lated by averaging images collected during stimulus presentation 
(Figure 1E), Hbt, HbO

2
 and Hbr around the electrode tip were 

attenuated compared to those elicited prior to muscimol infu-
sion and with respect to the ROI distal to the electrode. This can 
also be observed in the time series responses from the two ROI 
(Figure 1F) which demonstrate that the hemodynamic response 
around the electrode tip has been substantially reduced following 
muscimol infusion whereas the response from the distal region 
of interest being relatively unaffected.

tIMe serIes of anIMal averaged cortIcal heModynaMIc 
responses (n = 8)
A region of interest was selected around the electrode tip in each 
animal Hemodynamic data was pixel averaged to create a time 
series for each animal and then data was subsequently averaged 
across animals (Figure 2). The “control” hemodynamic response 
elicited by 16 s whisker stimuli prior to muscimol infusion was 
similar to that described previously (Berwick et al., 2005). It con-
sisted of an immediate large increase in Hbt and HbO

2
 that peaked 

after ∼5 s, follow by a decrease to an elevated plateau that lasted 
for the remainder of stimulus presentation before returning to 
baseline. The Hbr response was characterized by a small increase 
within the first second of stimulation, usually referred to as the 
“deoxy dip” followed by a large decrease below baseline reaching a 
minima at ∼5 s slowly returning to baseline after stimulus cessation. 
Despite displaying a similar time course to that elicited by whisker 
stimuli prior to muscimol infusion, following muscimol infusion 
all aspects of the hemodynamic were substantially attenuated in 
magnitude (Figure 2).

Neural activity assessed by current source density analysis (CSD)
By using a combined multi-channel electrode and infusion flu-
idic port we were able to monitor the neural response locally at 
the site of muscimol infusion. CSD analysis converts laminar 
field potentials evoked by whisker stimuli into current sinks and 
sources as a function of cortical depth (Nicholson and Freeman, 
1975; Mitzdorf, 1985). The neural response to whisker stimuli for 
a representative animal in the pre-muscimol infusion “control” 
condition (Figure 3A) showed the characteristic evoked super-
ficial source with an accompanying underlying sink centered at 
Layer IV. The ‘heat map’ representation of the CSD analysis was 
derived by averaging of all 80 impulses (16 s stimulation at 5 Hz) 
of the electrical whisker pad stimulus train presented. This cur-
rent sink in layer IV represents active excitatory post synaptic 
potentials in response to each electrical whisker pad impulse. We 
selected this current sink as our measure of neural activity and 
averaged across animals. (Figure 3B). It can be seen the largest 
neural response was elicited by the first impulse of the stimulus 
train with responses to subsequent impulses of the train being at 

with the greatest amplitude was located ∼500 μm below the surface 
of the brain. This corresponds to layer IV, which receives direct som-
atosensory input from the ventral posterior thalamus. The main 
current sink in layer IV, which is believed to be a result of excitatory 
post synaptic activity (EPSP) in the barrel, was taken as our neural 
activity measure and will be referred to as the CSD Sink.

Post-mortem cytochrome oxidase histology to confirm location of 
somatosensory cortex
Following most experiments post-mortem brain tissue was pre-
pared for subsequent histological analysis. The histological methods 
have been explained previously (Zheng et al., 2001) and as such is 
only described briefly here. Rats were transcardially perfused with 
saline, followed by 4% paraformaldehyde and finally photographic 
emulsion (Jessops Ltd) to enable visualization of surface cortical 
vessels in histogical sections. Brains were removed and the right 
cortex was separated from the rest of the cerebrum and compressed 
to a thickness of 2 mm. A cryostat was used to section the cor-
tex into slices tangential to its surface. An initial surface slice of 
200 μm was sectioned to ensure visualization of the surface blood 
vessels, and then subsequent 50-μm sections were taken. The slices 
were placed into an incubation medium in a dark room at 37°C 
to allowing stain for cytochrome oxidase to visualize barrel repre-
sentations; this is a modified version of the procedure described 
by Wong-Riley and Welt (1980). The photographic emulsion in 
the vessels in histological sections was developed after staining. 
Photomicrographs of the resultant histological sections of cortex 
were taken and the images were linearly warped to each other by 
locating corresponding features by eye.

results
spatIal analysIs of the heModynaMIc response before and 
after MuscIMol InjectIon
Hemodynamic responses were recorded from the right soma-
tosensory whisker barrel cortex of urethane anesthetized rats 
following presentation of 16 s electrical stimulation of the left 
whisker pad. The electrode (with fluidic port attached) place-
ment was accurately placed into the cortex as demonstrated by 
an in vivo CCD camera “gray-level” image of the cortical surface 
(Figure 1A). An image of combined photomicrographs of post-
mortem histology of the cortical surface and the underling cortical 
barrels is shown for comparison (Figure 1B). It can be seen the 
electrode and fluidic port have been inserted into the cortex in 
the region of whisker barrel B1. For this representative animal 
two regions of interest (ROI) were chosen from which to exam-
ine the resultant time series of cortical hemodynamics following 
pixel averaging. One ROI was selected near to the electrode tip 
and a second from anterior whisker barrels distal to electrode 
placement. To assess the spatial extent of the hemodynamic 
response prior and post muscimol infusion, an average response 
image was created by averaging all images collected during the 
entire stimulus presentation period (16 s) for Hbt, HbO

2
 and Hbr 

(Figures 1C,E). For the whisker-evoked hemodynamics collected 
prior to muscimol infusion (control, Figure 1C) a large increase 
over the whole whisker barrel cortical region can be observed for 
both Hbt and HbO

2
; whereas Hbr showed a large decrease over 

the whole whisker region particularly in the “draining”  cortical 
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Statistical analysis
The sum (Σ) of the time series of Hbt and the layer IV CSD-sink 
were calculated for each animal (Table 1). As total hemoglobin 
concentration (Hbt) is the sum of oxyhemoglobin and deoxyhe-
moglobin concentration and during the hemodynamic response 
function the increases in Hbo and decreases in Hbr are corre-
lated (Jones et al., 2001, 2002) it was decided to select the mag-
nitude of Hbt changes as the dependent variable for statistical 
analysis of hemodynamics. A one-way repeated measures (pre 
or post muscimol injection) MANOVAs with two dependent 
variables (Hbt and CSD magnitude) suggested that the injec-
tion of muscimol caused a significant change in response size 
(size: Wilks’ Lambda = 0.15, hypothesis df = 2, error df = 6, 
F = 16.93, P = 0.003). Subsequent univariate’s ANOVA suggested 
that both Hbt and CSD responses were significantly reduced 

a lower but similar magnitude. Following infusion of muscimol 
the spatial profile of the results of CSD analysis are similar to that 
observed prior to muscimol infusion but are greatly reduced in 
magnitude (Figure 3C). The sink in layer IV appeared to be less 
broad in time than the control response. Examination of the ani-
mal averaged time series of the layer IV sink (Figure 3D) showed 
that the response to the first impulse of the stimulus train was 
reduced compared to that elicited prior to muscimol infusion. 
There was also a large reduction in magnitude of responses to 
subsequent impulses of the stimulus train compared to the con-
trol condition. When these “CSD-sink time series” were averaged 
across each impulse of the stimulus train (Figure 3E) it can be 
seen that the size of the sinks elicited were smaller and displayed 
more of a temporally transient nature compared those elicited 
prior to muscimol infusion.

Figure 1 | Hemodynamic responses in a representative animal before and 
after local cortical infusion of muscimol. (A) In vivo gray level CCD camera 
image of the somatosensory cortical surface. The electrode with drug infusion 
probe attached is visible on the right hand side of the image. (B) An image of 
combined photomicrographs of post-mortem histological sections of the cortical 
surface and the underling cortical barrels from Layer IV. (C) Total blood volume 
(Hbt), Deoxyhemoglobin (Hbr) and Oxyhemoglobin (HbO2) responses to 16-s 
electrical stimulation of the whisker pad. Each image represents an average 

change in micromolar concentration from baseline over the 16-s stimulation 
period. (D) Time series of hemodynamics response prior to muscimol infusion 
from a region of interest around the electrode tip (solid lines) and an additional 
ROI distal to the electrode in the more anterior whisker barrels (dotted lines). (e) 
Hemodynamic response images post muscimol injection. (F) Time series of 
hemodynamics response post muscimol infusion from a region of interest 
around the electrode tip (solid lines) and an additional ROI distal to the electrode 
in the more anterior whisker barrels (dotted lines).
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Figure 2 | Average hemodynamic responses across animals (n = 8) from a region of interest proximal to electrode tip pre (solid lines) and post (dashed 
lines) muscimol infusion. (Error bars = SEM).

Figure 3 | The results of current source density (CSD) of multi laminar 
local field potential responses elicited by electrical whisker pad 
stimuli pre and post muscimol infusion. (A) Representative animal 
impulse averaged CSD response prior to muscimol infusion. (B) Time 
series of layer IV CSD-sink averaged across animals before muscimol 

infusion. (C) Averaged CSD response post muscimol infusion for the same 
animal as in (A). (D) Time series of layer IV CSD-sink averaged across 
animals post muscimol infusion (e) Time series of impulse averaged layer 
IV CSD-sink response pre (blue) and post (red) muscimol injection  
(error bars = SEM).
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The data suggests that although the neurovascular  relationships 
were similar between input and processing a vast majority of the 
magnitude of the response was due to processing. Most studies 
investigating neurovascular coupling with fMRI or other tech-
niques have concluded that the hemodynamic response is due 
to synaptic input and cortical processing but have not tried to 
disassociate the two. Two recent findings have, like this study sug-
gested that the hemodynamic response is due to the processing 
of information rather than the input. Franceschini et al. (2008) 
measured the somatosensory evoked potentials (SEPs) evoked 
by forepaw stimuli and accompanying cortical hemodynamics 
with diffuse optical imaging tomography. They found that the N1 
and P2 aspects of the field potential predicted the evoked hemo-
dynamics better than did the P1. As P1 is more associated with 
synaptic input than the N1 and P2 measures of the field potential 
they suggested that the hemodynamic response was more associ-
ated with cortical processing than synaptic input. Angenstein et al. 
(2009) directly electrically stimulated the perforant pathway of 
the hippocampus in anesthetized rats and measured spiking out-
put and the accompanying BOLD fMRI signal. They found that 
perforant pathway stimuli that evoked the same spiking output 
in hippocampus had variable accompanying BOLD responses 
and thus the variability in the BOLD response must have been 
due to differences in intra-regional processing. They therefore 
concluded that the evoked BOLD response depended more on 
the local processing of neural activity than the output or input 
activity. The current study confirms and extends these recent find-
ings by measuring more local changes of neurovascular coupling 
(Layer IV current sink and local changes in hemoglobin), and by 
actively disassociating between the synaptic activity associated 
with input and intra-cortical processing with the use of musci-
mol infusion.

The results of the present investigation differ from those obtained 
in studies performed in rat cerebellum (Caesar et al., 2003, 2008) 
following local muscimol infusion. In these studies muscimol appli-
cation had little effect on field potential magnitude whereas the 
blood flow responses were reduced at superficial cerebellar cortical 
depths. These authors suggested that GABAergic tone, at least in 
the cerebellum, plays a role in the relay of excitatory input into 
blood flow responses. Comparison of these results and those of the 
current study highlight the potential differences in neurovascular 
responses between different brain areas.

lIMItatIons of current study
The main limitation of the current study is the assumption that 
the input from the thalamus is not affected by cortical applica-
tion of muscimol. This is an important issue because there are 
far greater corticothalamic descending projections than the 
thalamocortical projections ascending into the cortex. Recently 
Higley and Contreras (2007) investigated whether effective cor-
tical neural inhibition following presentation of stimuli to two 
whiskers was generated in the cortex or a property of sub-cortical 
interactions. Their experiment was similar that conducted here 
in that, CSD analysis of neural responses to whisker stimulus 
were observed before and after cortical application of musci-
mol (CSD responses also very similar cf Figure 2A, Higley and 

even if Bonferroni corrected. (Hbt: F = 39.487, P = < 0.0001; 
CSD: F = 8.694, P = 0.021). The reductions in neural and hemo-
dynamics responses were similar (79 and 72% respectively). 
Therefore even though the magnitude of response has reduced, 
the quantitative relationships of neurovascular coupling were 
similar before and after muscimol infusion suggesting the 
neurovascular coupling mechanisms are conserved for input 
and processing.

dIscussIon
The aim of the current study was to assess the neurovascular rela-
tionships for input and cortical processing and whether they had 
equal contributions to the overall neurovascular response elicited 
by sensory stimuli. We first performed a 16 s whisker stimulation 
in control conditions and then repeated the same stimulation 
following local cortical infusion of the GABA

A
 receptor agonist 

muscimol. Muscimol was infused to prevent the whisker stimulus 
driven thalamocortical information being processed by further by 
the cortex (Higley and Contreras, 2007).

The time series of current sink in layer IV following musci-
mol infusion (Figure 3 far right panel) was far more transient 
than that elicited by whisker stimuli prior to infusion. It has been 
shown that, in addition to the synaptic activity due to thalamic 
input, whisker stimuli also evoke longer latency synaptic activity 
in layer IV due to cortical interactions. Thus, it appears that it is 
this longer latency synaptic activity associated with intra-cortical 
processing that is (Ebner and Armstrong-James, 1990) absent 
from the time series of CSD-sink following muscimol infusion. 
Furthermore, Higley and Contreras (2007) showed a similar 
change in time series of CSD from layer IV evoked by whisker 
stimuli following intra-cortical musicmol infusion. They made 
recordings from thalamus and suggested that the thalamocorti-
cal input was unchanged by intra-cortical muscimol infusion. 
This is also suggestive the sink at layer IV provides a measure of 
intra-cortical processing and thalamic input, the former being 
disrupted by muscimol infusion.

Table 1 | Magnitude of hemodynamic and neuronal responses before 

and after muscimol infusion.

Animal Hbt Hbt CSD-sink CSD-sink 

 control muscimol control muscimol

1 416.1 117.0 0.09 0.01

2 262.6 106.3 0.09 0.04

3 217.5 95.7 0.20 0.04

4 347.6 77.4 0.17 0.03

5 417.9 42.4 0.24 0.03

6 325.8 116.6 0.11 0.07

7 375.2 73.1 0.57 0.10

8 136.8 57.3 0.08 0.02

Mean  312.4 87.5 0.19  0.04 

(%  (72%)   (79%) 

Reduction)

SEM 35.2 9.8 0.06 0.01
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