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Accumulating evidence suggests that different energy metabolites play a role not only in
neuronal but also in glial signaling. Recently, astroglial Ca2+ transients evoked by the major
citric acid cycle metabolite succinate (SUC) and gamma-hydroxybutyrate (GHB) that enters
the citric acid cycle via SUC have been described in the brain reward area, the nucleus
accumbens (NAc). Cells responding to SUC by Ca2+ transient constitute a subset of ATP-
responsive astrocytes that are activated in a neuron-independent way. In this study we
show that GHB-evoked Ca2+ transients were also found to constitute a subset of ATP-
responsive astrocytes in the NAc. Repetitive Ca2+ dynamics evoked by GHB suggested
that Ca2+ was released from internal stores. Similarly to SUC, the GHB response was also
characterized by an effective concentration of 50 μM.We observed that the number of ATP-
responsive cells decreased with increasing concentration of either SUC or GHB. Moreover,
the concentration dependence of the number of ATP-responsive cells were highly identical
as a function of both [SUC] and [GHB], suggesting a mutual receptor for SUC and GHB,
therefore implying the existence of a distinct GHB-recognizing astroglial SUC receptor in
the brain. The SUC-evoked Ca2+ signal remained in mice lacking GABAB receptor type 1
subunit in the presence and absence of the N -Methyl-d-Aspartate (NMDA) receptor antago-
nist (2R)-amino-5-phosphonovaleric acid (APV), indicating action mechanisms independent
of the GABAB or NMDA receptor subtypes. By molecular docking calculations we found that
residues R99, H103, R252, and R281 of the binding crevice of the kidney SUC-responsive
membrane receptor SUCNR1 (GPCR91) also predict interaction with GHB, further implying
similar GHB and SUC action mechanisms. We conclude that the astroglial action of SUC
and GHB may represent a link between brain energy states and Ca2+ signaling in astrocytic
networks.

Keywords: energy metabolites, succinate, gamma-hydroxybutyrate, astroglial calcium signaling,

nucleus accumbens

INTRODUCTION
Using Ca2+ imaging in combination with immunohistochemistry,
we have recently demonstrated significant co-localization of ATP-
stimulated Ca2+ bursts with the glial marker protein connexin43
(Cx43) in slices containing the brain reward area (Berridge and
Kringelbach, 2008), the nucleus accumbens (NAc) of juvenile rats
(Molnár et al., 2011). Store-dependent Ca2+ bursting triggered by
ATP was significantly reduced by an antibody raised against the
Cx43 carboxy-terminal segment and by gap junction inhibitors
such as carbenoxolone hemisuccinate (CBX) and flufenamic acid
as well as the purinergic G protein-coupled receptor (GPCR) P2Y1

subtype-selective antagonist MRS2179, but not by blocking neu-
ronal activity with tetrodotoxin. The effect of MRS2179 implied
that intercellular Ca2+ signaling was triggered by the activation
of P2Y1 receptors. Neurons within the domain of ATP-activated
astrocytes did not show Ca2+ transients and exhibited invariant
postsynaptic currents (Molnár et al., 2011). We also observed for

the first time the activation of repetitive astroglial Ca2+ transients
in response to the major intermediate of the citric acids cycle suc-
cinic acid (SUC). The apparent EC50 (50–60 μM) of SUC effect
is within the range of physiological plasma SUC concentration
(Molnár et al., 2011), since the concentration of SUC in plasma
increases from 5 up to 125 μM with exercise, metabolic acidosis
or hyperglycemic metabolic states (Krebs, 1950; Nordmann and
Nordmann, 1961; Hochachka and Dressendorfer, 1976; Kushnir
et al., 2001; Forni et al., 2005; Sadagopan et al., 2007). These data
suggest that SUC-responsive Ca2+ transients may also have a reg-
ulatory role for cellular energy supply. SUC-responsive cells also
participated in the ATP induced concerted Ca2+ bursts (Molnár
et al., 2011). These findings conclusively suggest that astroglial
Ca2+ bursting evoked by SUC couples astroglial activation to
cerebral energy resources.

A common binding site for SUC and gamma-hydroxybutyrate
(GHB), that enters the citric acid cycle via SUC (Rumigny et al.,
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1981) has been disclosed previously (Molnár et al., 2006, 2008a,b).
Additionally, intracellular Ca2+ store-reliant astroglial Ca2+ tran-
sients evoked by GHB have been described in the NAc (Molnár
et al., 2009). We have shown that this action of GHB is GABAB

receptor independent, since it remains in mice lacking func-
tional GABAB receptors unlike the majority of GHB-mediated
physiological and pharmacological actions including “rape drug
effects” that were demonstrated to be dependent on GABAB recep-
tors (Kaupmann et al., 2003; Wong et al., 2004). Only a few
study addressed GHB receptor dependent GHB actions (Mol-
nár et al., 2006, 2009), although high-affinity GHB binding sites
were demonstrated in mice lacking GABAB receptors (Kaupmann
et al., 2003) and the function of endogenous GHB has never been
clearly defined. A number of studies indicate that in addition to
its neurotransmitter/neuromodulatory role, GHB may function
in the control of physiological states, like sleep and hibernation.
Moreover, it is an endogenous protective agent when tissue energy
supplies are limited (MacMillan, 1980a,b; Mamelak, 1989; refer-
ences cited). The molecular identity of the GHB receptor has not
been identified yet satisfactorily, the putative GHB receptor mRNA
showed different brain distribution than the native GHB receptors
(Andriamampandry et al., 2003, 2007). A binding site recognizing
GHB and SUC has been disclosed in the NAc (Molnár et al., 2006,
2008a,b), its relationship with the G protein-coupled heptahelical
kidney SUC receptor (SUCNR1:GPCR91, He et al., 2004) has not
previously been conjectured.

ATP induced functional coupling of Cx43 hemichannels is
known to evoke store-mediated repetitive Ca2+ transients trig-
gered by activation of purinergic GPCRs in vitro (Stout et al.,
2002; Anderson et al., 2004; Beierlein and Regehr, 2006; Piet and
Jahr, 2007) and in vivo (Hirase et al., 2004; Takata and Hirase,
2008; Hoogland and Kuhn, 2010; Hoogland et al., 2009; Nimmer-
jahn, 2009; Nimmerjahn et al., 2009). Different in vitro paradigms,
including locally administered ATP stimuli (100 μM) were found
effective (Barry and Cheek, 1994; Li et al., 2001; Zur Nieden
and Deitmer, 2006; D’Ascenzo et al., 2007; Fischer et al., 2009).
In awake, behaving animal, three types of glial Ca2+-excitation
were distinguishable according to the number of networking
cells and the dependence on neuronal stimulation (Nimmerjahn
et al., 2009): flares (involving large networks of astrocyte fibers),
sparkles (restricted to individual fibers), and bursts (expanding
radial waves). Spontaneous bursting can be contrasted to sparks
and flares as being independent of neuronal activity (Nimmer-
jahn et al., 2009). Thus, the question may also come up, how
ATP-responsive glial Ca2+ bursting proceeds and what functions
it perform in cellular communication?

In order to better understand these issues, we used differ-
ent models and/or approaches to compare the effects of GHB
with those of SUC and/or ATP: (i) rat brain slice containing the
NAc studied by combined application of confocal Ca2+ imag-
ing and Cx43 immunohistochemistry to explore and compare
GHB-responsive and ATP puff-evoked astroglial Ca2+ bursting;
(ii) evaluation of SUC/GHB- and ATP-evoked Ca2+ transients to
disclose mechanistic clues; (iii) homology model of SUCNR1 (He
et al., 2004) to simulate binding interactions between SUC/GHB
and SUCNR1; (iv) slices containing the NAc from mice lacking
GABAB receptor type 1 subunit in combination with confocal

Ca2+ imaging to distinguish SUC-responsive Ca2+ transients
and to compare with GHB-evoked Ca2+ signals (Molnár et al.,
2009). We report on astroglial Ca2+ bursting linked to endoge-
nous metabolites GHB and SUC performing similar function that
might possibly be related to cellular energy states.

MATERIALS AND METHODS
BUFFERS AND TEST COMPOUNDS
Slice preparing buffer contained in mM: 250 sucrose, 2 KCl, 1.25
KH2PO4, 10 MgSO4, 2 CaCl2, 16 NaH2CO3, and 10 glucose. Artifi-
cial cerebrospinal fluid (ACSF) contained in mM: 129 NaCl, 2 KCl,
1.25 KH2PO4, 1 MgSO4, 2 CaCl2, 16 NaHCO3, and 10 glucose.

The following drugs, applied via the ACSF perfusion including
SUC, GHB, and adenosine 5′-triphosphate disodium salt (ATP)
were obtained from Sigma-Aldrich (Budapest, Hungary). Fluo-
rescence indicators Fluo-4 acetoxymethyl ester (Fluo-4 AM) was
purchased from Molecular Probes (Eugene, OR, USA). Stock solu-
tions of ester fluorescence indicators prepared in DMSO were
diluted to 0.2% DMSO in the staining solution.

ANIMALS
Animal care and preparation were in accordance with the Helsinki
declaration, European Council Directive of 24 November 1986
(86/609/EEC), Hungarian Animal Act 1998 and associated insti-
tutional guidelines, as approved by the local authority. BALB/c
GABAB1 (−/−) mice exhibit spontaneous seizures (Prosser et al.,
2001; Schuler et al., 2001) thus BALB/c GABAB1 (−/+) mice were
bred, their offspring genotyped at the seventh day and used by
the tenth day before seizure could develop in (−/−) mice. All
efforts were made to minimize animal suffering and the number
of animals used.

ACUTE SLICE PREPARATION AND DYE-LOADING
Coronal slices from the forebrain containing the NAc and the cau-
date putamen (CP) were prepared for the imaging experiments.
Ten to 14-day-old male Wistar rats or 10 day-old mice were decapi-
tated and the forebrain blocks were sliced into 300 μm thin coronal
slices by a vibratome (Vibratome,Technical Products International
Inc., St. Louis, MO, USA) in ice-cold preparation buffer. Slices were
incubated for 1 h under humidified gas-mixture carbogen (5%
CO2 + 95% O2) atmosphere in an interface-type holding cham-
ber containing warmed (35˚C) ACSF. After preincubation in 2%
pluronic acid containing ACSF for 2 min, slices were incubated
with 5 μM Fluo-4 AM in ACSF for 1 h at 35˚C in the dark under
humidified carbogen (5% CO2 + 95% O2) atmosphere (Molnár
et al., 2009). In order to monitor cell death, several slices were
exposed to double dye-loading protocol, performed by adding
7.5 μM propidium iodide (PI excitation: 534 nm, emission: 570–
600 nm) to the Fluo-4 AM containing ACSF. In order to allow for
cleavage of the AM ester group of Fluo-4, slices were transferred
to dye-free ACSF at least 30 min before the start of the experiment
(Porter and McCarthy, 1996).

CONFOCAL IMAGING AND DRUG TESTING PROTOCOL
Fluorescence recordings of changes in the intracellular Ca2+
ion level in cells loaded with Fluo-4 AM were performed as
described (Molnár et al., 2009) with an upright epifluorescent
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microscope (Olympus BX61WI, Olympus, Budapest, Hungary)
equipped with the FluoView300 confocal laser-scanning system
(Olympus, Budapest, Hungary) using 20× (0.5 numerical aper-
ture) or 60× (0.9 numerical aperture) water immersion objectives.
Image acquisition rate was controlled by a computer running
FluoView 5.0 software (Olympus, Budapest, Hungary).

Freshly isolated slices were transferred to the submerge-type
recording chamber mounted on the stage of the microscope and
were superfused with carbogenated (5% CO2 + 95% O2) ACSF
(3 ml/min, room temperature). Serial scanning of slices were made
at 488 nm excitation wavelength and emitted green fluorescence
was collected through a 510–530 nm bandpass filter. Ca2+ tran-
sients were initiated by application of SUC or GHB in the perfusion
or by pressure-ejection of 100 μM ATP in ACSF through a glass
micropipette (5–10 μM diameter) on the slice surface. Fluores-
cence intensity changes within a 355 μm × 355 μm field contain-
ing approximately 100 Fluo-4 AM loaded cells around the area of
the ATP puff, were followed over a 10-min interval (2 s/image).

Two 10-min-long recordings were made from each slice with a
20-min resting time between the two recordings. ATP was applied
3 min after the beginning of each 10-min-long recording period.
The cells showing Ca2+ increase after ATP applications at approx-
imately 15–30 μm below the surface were counted (approximately
45 cells in response to the ATP stimulus) and fluorescence changes
of cells that responded to ATP applications were measured. The
observation threshold was 5× of the variance of the baseline
fluorescence.

N denotes the number of slices in a given experimental condi-
tion. Statistical analysis was performed using the non-parametric
Mann–Whitney test with Bonferroni post hoc test (OriginLab
Corporation, Northampton, UK) and p < 0.05 was considered sta-
tistically significant. Unless otherwise stated, the effects of different
treatments were compared to the control. Images recorded by the
FluoView300 software were processed using the free ImageJ 1.41
image analysis software (http://rsbweb.nih.gov/ij/).

POST-CALCIUM IMAGING IMMUNOHISTOCHEMISTRY PROTOCOL FOR
CX43 AND GFAP
In order to identify the cell types involved in Ca2+ bursts, we
followed our recently described protocol (Molnár et al., 2011).
The brain slices were immunostained with antibodies for astrocyte
marker proteins (Cx43 and GFAP). However, Fluo-4 signal could
not be preserved through fixation with either 0.4% paraformalde-
hyde or 40 mg/ml EDAC (1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide, Sigma-Aldrich). Therefore co-localization between
SUC/ATP-responsive cells and cell type markers could not be
resolved. Hence we opted to perform the in situ immunostain-
ing in non-fixed slices directly after the Ca2+ imaging protocol.
Slices used previously to measure Ca2+ changes in response to
SUC/ATP application were treated as follows: upon completion
of the calcium-imaging experiments, each slice was kept in its
original position in the recording chamber (using a ballast) and
incubated with Cx43 (1:300) and GFAP (1:200) primary antibod-
ies for 30 min, at room temperature. After 3 min× 10 min washing
in ACSF, the slice was incubated with Chromeo 546 goat anti-
rabbit (1:100 Abcam, Cambridge, UK, catalog number: ab60317)
secondary antibody and Alexa-488 donkey anti-mouse (1:100,

Molecular Probes) secondary antibody in ACSF for 30 min at
room temperature. This was followed by 3 × 10 min washing in
ACSF. Serial Z-scans of Cx43 – (excitation: 543 nm, emission:
570–600 nm) and GFAP – (excitation: 488 nm, emission: 510–
530 nm) labeled slices were acquired between the slice surface and
the maximal penetration depth of the antibodies (approximately
60–70 μm from the surface) through a 20× objective (1 μm/step).
Since the fluorescence emission of both Fluo-4 and Alexa-488
dyes are collected in the 510–530 nm range, GFAP-specific stain-
ing was obtained by subtracting the Fluo-4 fluorescence from the
GFAP immunolabeling signal at each Z depth. Optical sections
from identical depths of Fluo-4 and Cx43 images were merged
along the Z axis. Single cells, glia filaments, or blood vessels that
showed double immunolabeling were recorded through a 60×
objective and Z-scans were performed by alternating the exci-
tation wavelengths between 543 nm (Cx43) and 488 m (GFAP)
using FluoView 5.0 software at each depth (0.1 μm/step). Images
were processed using ImageJ 1.41 and Adobe Photoshop 8.0 image
analysis softwares.

SIMULATIONS
The sequence of the human kidney SUC receptor1 (SUCNR1;
accession code: Q9BXA5) was downloaded from the UniprotKB
database. The SUCNR1 receptor model was built based on the
bovine rhodopsin (RHO) structure (PDB code 1f88; Palczewski
et al., 2000). The alignment was adopted from He et al. (2004),
with one manual adjustment: Asn253 of SUCNR1 was aligned
to Ala269 of RHO by reducing the five residue gap of He et al.
(2004). The alignment continued according to He et al. (2004),
from and Ser275 of SUCNR1, and Ile286 of RHO. The model
was built by Modeller9v3 (Sali and Blundell, 1993), and pre-
pared in SYBYL8.0 (Tripos Inc., St. Louis, MO, USA). Hydrogen
atoms were added to the protein, and chains were terminated
by N -methyl and acetyl groups by the Analyze Protein menu
of the Biopolymer module. His103 was protonated at both N
atoms, corresponding to an acidic environment. SUC and GHB
ligands were prepared from the PDB database (SUC ligand of
2WBP; Helmetag et al., 2009) in their protonated form accord-
ing to the acidic pH of the receptor binding (Molnár et al., 2006,
2008a,b). Ligands were minimized in SYBYL until the RMS gradi-
ent reached 0.01 kcal/mol/Å. Docking was performed by GOLD5.1
(Cambridge Crystallographic Data Center). A cavity of 10 Å was
searched in the docking studies containing the predicted binding
crevice residues of SUCNR1 (Arg99, His103, Arg252, Arg281), see
Figure 4 GoldScore was used for evaluating the results. Figures
were prepared by Pymol.

RESULTS
GHB-RESPONSIVE CELLS CONSTITUTE A SUB-POPULATION OF
ASTROCYTES RESPONDING TO ATP
As outlined in the Section “Introduction,” we tested the hypothesis
that similarly to SUC (Molnár et al., 2011), GHB also acts on a sub-
population of ATP-responsive cells. Indeed, the presence of GHB
(50 μM) in the superfusion evoked Ca2+ transients (Figure 1A),
covering some astroglial Ca2+ bursts occurred in response to the
ATP puff (100 μM, Figure 1B, see also Movie S1 in Supplemen-
tary Material). The ATP-evoked Ca2+ signal propagated circularly
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FIGURE 1 | GHB and ATP evoke overlaying Ca2+ transients in the rat NAc

slice. Representative confocal image of GHB-responsive cells [(A) circled]
participated in ATP-stimulated concerted Ca2+ burst [(B) circled]. Arrow
indicates the direction of the superfusion buffer. Arrowhead indicates the
location and direction of the ATP puff. Scale bar is 50 μm. (C) Pseudo-color
depiction of the spatiotemporal characteristics of the astroglial Ca2+ transients
evoked by GHB and ATP shown in (B) (see also Movie S1 in Supplementary

Material). (C) Representative dF/F 0-time plots showing effects of 50 μM GHB
alone (A) and with 100 μM ATP puff (B). (D) Color traces correspond to the
GHB-responsive cells circled in (A) and (B) while gray traces show the
fluorescence changes of ATP-responsive cells. (E) Summary plot of the
effects of increasing (GHB) on the number of cells showing GHB-responsive
Ca2+ transients. N = 32 (control), N = 13 (0.05 mM), N = 9 (0.2 mM), N = 9
(2 mM). ∗p < 0.05 and ∗∗p < 0.01 compared to control.

from the point of application, independent of the perfusion direc-
tion (Figure 1C) with the speed of approximately 10 μm/s, 1.5
times slower than the speed of ATP diffusion as monitored by
addition of the fluorescent dye sulforhodamine 101 in the ATP-
containing pipette (Molnár et al., 2011). The waveform and speed
of the signal propagation conclusively exclude the possibility that
Ca2+ bursts were triggered by merely the exogenously applied
ATP. Comparing the GHB- and ATP-evoked signals, the responses
in the presence of GHB and ATP appeared relatively more robust
than responses evoked by GHB only (Figure 1D). Summary plot
of the effects of increasing (GHB) on the number of cells showing
GHB-responsive Ca2+ transients indicated that similarly to SUC
(Molnár et al., 2011) GHB had an EC50 value of approximately
50 μM, however smaller number of cells responded to GHB than
to SUC, indicating lower efficacy (Figure 1E).

GHB AND SUC SHAPED ATP-EVOKED CA2+ SIGNALS IN THE SAME WAY
We observed that the number of ATP-responsive cells decreased
with increasing concentration of either SUC or GHB (Figure 2A).
Moreover, the concentration dependence of the number of ATP-
responsive cells were highly identical as a function of both (SUC)
and (GHB; Figure 2A), suggesting a mutual target for SUC and
GHB actions. Increasing [SUC] may activate this mutual target, a
presumable GHB-responsive astroglial SUC receptor and conse-
quently reduce ATP-responsiveness of astrocytes (Figures 2A,B).
Furthermore, increasing [SUC] resulted in a rise of the relative
abundance of SUC- and shared SUC/ATP-responsive astroglial

Ca2+ transients (Figure 2B) as well as in an increase in the
number of cells showing repetitive Ca2+ dynamics (Figure 2C).
The SUC-evoked repetitive Ca2+ transients (Figure 3A; Molnár
et al., 2011) mimicked the GHB response dynamics described
above (Figure 1D; Movie S1 in Supplementary Material), fur-
ther suggesting the existence of a GHB-responsive astroglial
SUC receptor. In a previous work we provided evidence on
store-dependent astroglial Ca2+ transients evoked by ATP acting
through the G protein-coupled purinergic P2Y1 receptor sub-
types in the NAc slice (Molnár et al., 2011). Therefore, SUC- and
shared SUC/ATP-responsive astroglial Ca2+ transients may sug-
gest co-localization of GHB-responsive SUC and P2Y1 receptors
on astrocytes.

THE PRESUMED GHB-RESPONSIVE ASTROGLIAL SUC RECEPTOR WAS
CLASSIFIED AS BEING INDEPENDENT OF BOTH GABAB AND
N -METHYL-D-ASPARTATE RECEPTORS
We supposed that similarly to GHB, its metabolite SUC also
acts independently from GABAB receptors in the NAc. To verify
this hypothesis we tested the effect of SUC (2 mM) on astroglial
Ca2+ transients in the NAc slice prepared from mice lacking the
GABAB receptor functional subunit 1 (GABAB KO). We found
that similarly to GHB (Molnár et al., 2009), SUC-responsive Ca2+
transients were preserved in NAc slices isolated from GABAB KO
mice (Figure 3A). Next we asked, if NMDA receptors of the NAc
slice were involved in the SUC action mechanisms. We observed
that SUC responses remained unaltered in the presence of NMDA
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FIGURE 2 | GHB and SUC shaped ATP-evoked Ca2+ signals in

the same way. (A) Average number of cells showing Ca2+ transients in
response to ATP (100 μM) puff-application in the presence of different
concentrations of SUC or GHB. (B) Average number of cells showing Ca2+

transients during SUC or SUC plus ATP (100 μM) application as a percent of

the total number of cells showing Ca2+ transients during SUC or ATP
application. (C) Average number of cells showing multiple Ca2+ transients
during application of different SUC concentrations. N = 32 (control), N = 13
and 9 (0.05 mM), N = 9 and 21 (0.2 mM), N = 9 and 16 (2 mM) for GHB and
SUC, respectively, ∗p < 0.05.

FIGURE 3 |The presumed GHB-responsive astroglial SUC receptor was

classified as being independent of both GABAB and

N -methyl-D-Aspartate (NMDA) receptors. (A) Pseudo-color images
showing fluorescence in NAc astrocytes during control and SUC (2 mM)
application in wild type and GABABR type 1 subunit KO mice. Astrocytes
showing SUC-evoked Ca2+ transients are circled and color-coded and the

change in fluorescence is shown in dF/F 0-time plots below the images. (B)

Summary plots show that SUC-evoked Ca2+ transients, similarly to
GHB-evoked Ca2+ transients were preserved in GABABR1 KO mice. (C)

Summary plots indicate that SUC/GHB-evoked Ca2+ transients were unaltered
by the presence of NMDA receptor antagonist (2R)-amino-5-phosphonovaleric
acid (APV, 20 μM).
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FIGURE 4 | Modeling predicted interaction of GHB with the

presumed astroglial SUC receptor. (A) Stick-representation of
the binding crevice residues Arg99, His103, Arg252, and Arg281 of SUCNR1
shown as gray cartoon (after He et al., 2004). (B) Residues forming the
binding crevice of SUC (orange) and GHB (cyan). Residues in the 4 Å vicinity

of the ligands together with Arg281 are shown in stick representation. H-bond
interactions between ligands and the protein are shown as dotted lines,
orange for SUC, and cyan for GHB. (A,B) Carbon atoms are gray, nitrogens,
and oxygens are colored according to atom type. H atoms are not shown for
clarity.

FIGURE 5 | Positioning of SUC/ATP – [(A) circles] and

ATP-responsive [(A) arrows] Ca2+ transients along a vessel, identified by

the appearance of Cx43 gap junction plaques [(A) middle and right

panels). Scale bar is 50 μm. Higher magnification in (B) displays
Cx43-immunoreactive plaques (red) interconnecting astrocytic GFAP-positive
(green) end feet.

receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV,
20 μM; Figure 3C). Therefore, both SUC and GHB effect on
astroglial Ca2+ signals could be classified as being independent
of GABAB and NMDA receptors. These data further strengthen
the possibility that SUC and GHB act through a common target
protein, the presumed GHB-responsive astroglial SUC receptor in
the NAc.

MODELING PREDICTED INTERACTION OF GHB WITH THE PRESUMED
ASTROGLIAL SUC RECEPTOR
To explore the possibility of a shared target protein for SUC
and GHB actions, we used the kidney-type SUC receptor
(SUCNR1:GPCR91) model structure (He et al., 2004) and sim-
ulated interactions of SUC and GHB with this protein. Dock-
ing of SUC and GHB into SUCNR1 resulted in similar ligand
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conformations occupying the same binding site. The predicted
binding crevice was formed by residues R99, H103, R252, and
R281 (Figure 4) in accordance with previous studies (He et al.,
2004). In addition, residues T107, N173, H249, and M251 were also
found to be involved in the binding of SUC and GHB (Figure 4B).
Agonist SUC participated in more extensive H-bond interactions
(Figure 4B) enabling higher docking score value (35 for SUC vs.
31 for GHB). In addition, we also disclosed a previously unrecog-
nized binding site appearing near to the entrance of the receptor,
showing preference to GHB over SUC. However, being more dis-
tal to the agonist binding crevice, preferential GHB binding into
this “vestibular” binding site is expected to be less effective in
forming active receptor conformations, explaining the previously
experienced lower efficacy of GHB.

DISCUSSION
Our previous (Molnár et al., 2006, 2008a,b, 2009, 2011) and
recent (this work) findings conclusively suggest the existence of
a SUC receptor in brain tissue that also recognizes GHB. Acti-
vation of the presumed brain type SUC receptor (as an analogy
to SUCNR1 we reference this putative receptor as SUCBR1) by
agonists SUC or GHB evokes repetitive Ca2+ transients in astro-
cytes independently of neuronal signaling (Molnár et al., 2009,
2011). A sub-population of SUCBR1-triggered repetitive Ca2+
transients can also be activated by ATP making Ca2+ signal-
ing more robust. We conjecture physiological significance for
the detection of these endogenous metabolites and ATP per-
forming energy supply dependent regulation of astroglial Ca2+
bursting.

SUC shaped the astroglial Ca2+ bursting activity in differ-
ent ways. Both the absolute and relative abundance of astrocytes
showing ATP-evoked, P2Y1 receptor-mediated Ca2+ release from
internal stores tended to decay with increasing [SUC]. By contrast,
the astroglial SUC- and SUC/ATP-responsive Ca2+ signals were
enhanced with increasing [SUC]. These findings suggest the occur-
rence of distinct ATP-responsive astrocytic sub-populations that
can be distinguished by their responsiveness to SUC. These find-
ings imply several mechanistic clues reasoning reduced responsive-
ness to ATP: (i) refilling of Ca2+ stores may take longer after activa-
tion by SUC and/or (ii) SUCBR1 may desensitize slower than P2Y1.
These mechanistic clues, however, does not rationalize why the rel-
ative abundance of cells responsive to both SUC and ATP increases
with [SUC]. Such a unique phenomenon can be explained by
supposing that the presence of SUCBR1 may make desensitiza-
tion of P2Y1 slower, also implying co-localization of SUCBR1
and P2Y1 receptors in the SUC/ATP-responsive sub-population
of astrocytes.

Identity of SUC-sensitive GHB (Molnár et al., 2006) and GHB-
sensitive SUC (Molnár et al., 2008a) binding sites in rat forebrain
and human NAc membrane homogenates has previously been dis-
closed (Molnár et al., 2008b). We have shown that drug of abuse
(Wong et al., 2003, 2004), dietary supplement for body builders
(Camacho et al., 2005) and brain metabolite (Bessman and Fish-
bein, 1963) GHB also activates store-dependent astrocytic Ca2+
transients in the brain reward area NAc (Molnár et al., 2009).
Moreover, binding of GHB and SUC can be characterized by inter-
action with CBX (Molnár et al., 2006, 2008a,b), a blocker of gap

junctions that are major players in astroglial Ca2+ wave propaga-
tion (Finkbeiner, 1992). In spite of their disclosure, molecular and
cellular characterization of binding effects (Molnár et al., 2006,
2008a,b, 2009, 2011), the functional significance of astroglial SUC
receptor recognizing GHB was less appreciated. Thus metabolic
actions of GHB may be explained by the activation of the SUCBR1
signaling route.

Understanding of the role of Ca2+ signaling in astrocytes at
neuronal and vascular interfaces through specific intercellular
communication mechanisms has grown considerably in recent
years (Newman and Zahs, 1997; Scemes et al., 2000; Parri et al.,
2001; Matthias et al., 2003; Verkhratsky, 2006; Fiacco et al., 2007;
Iadecola and Nedergaard, 2007; Sadaogopan et al., 2007; Barres,
2008; Gordon et al., 2008; Hall and Attwell, 2008; Li et al., 2008;
Doengi et al., 2009; Hoogland and Kuhn, 2010; Hoogland et al.,
2009; Koehler et al., 2009; Nimmerjahn, 2009; Nimmerjahn et al.,
2009; Agulhon et al., 2010; Hamilton and Attwell, 2010; Xi et al.,
2010). It may have significance in this respect that we observed
SUC/GHB and ATP-responsive cells around NAc vessels at the end
feet of astroglial processes. Representative image indicating SUC-
evoked Ca2+ transient in a sub-population of ATP-responsive
astrocytes (Figure 5A circles and arrows, respectively) along with a
vessel contoured by Cx43 positive plaques (Figure 5A middle and
right panels). GFAP and Cx43 expression in cerebrocortical astro-
cyte end feet plastered at the vessel wall has previously been charac-
terized (Simard et al., 2003). Accordingly, double immunolabelling
for Cx43 and GFAP showed large Cx43-immunoreactive plaques
interconnecting astrocytic GFAP-positive end feet along with ves-
sels in the NAc (Figure 5B). Co-localization of SUC-responsive
astrocytes and vessel wall may provide a mechanistic clue for cel-
lular energy metabolite-responsive Ca2+ signaling activity around
vessels, at the end feet of astrocyte processes interconnected by
gap junctional plaques. The setting can possibly imply a role for
Ca2+ signaling at the glio-vascular interface. Regulation of Ca2+
bursting through cellular energy metabolites may in turn pro-
vide a mechanism for the control of astrocyte activation and will
therefore benefit from further study in awake, behaving animal.

ACKNOWLEDGMENTS
This work was supported by TECH-09-A1-2009-0117 and CRC-
HAS-2009-Nanotransport grants. The authors thank Erzsébet
Kútiné-Fekete for excellent technical assistance.

SUPPLEMENTARY MATERIAL
The Movie S1 for this article can be found online at http://
www.frontiersin.org/neuroenergetics/10.3389/fnene.2011.00007/
abstract

Movie S1 | File name: 3-31-29_PM-diff.avi. Ca2+ signaling evoked by GHB and
ATP in the acute NAc slice from the rat brain. Movie of time measurement
showing GHB (50 μM) and ATP (100 μM) application onto a Fluo-4 AM loaded
acute, 300 μm thick NAc slice. GHB was applied between 0 and 2 min in the
perfusion buffer. ATP was applied for 60 s starting from 1.5 min through a glass
micropipette right above the tissue surface. Image acquisition frequency was
2 s in depth of ∼25 μm from the slice surface. The background fluorescence
(first frame) was subtracted from all subsequent frames in the image stack. The
resulting images were false colored (more red pixels represent higher dF/F 0

values) and converted to avi file by ImageJ 1.44 image processing and analysis
software.
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