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The interactive vasculo-neuro-glial system controlling energy supply in the brain is absent
in vitro where energy provision is determined by experimental conditions. Despite the fact
that neuronal activity is extremely energy demanding, little has been reported on the state
of energy metabolism in submerged brain slices. Without this information, the arbitrarily
chosen oxygenation and metabolic provisions make questionable the efficient oxidative
metabolism in slices. We show that in mouse hippocampal slices (postnatal day 19–44),
evoked neuronal discharges, spontaneous network activity (initiated by 4-aminopyridine),
and synaptic stimulation-induced NAD(P)H autofluorescence depend strongly on the oxy-
gen availability. Only the rate of perfusion as high as ∼15 ml/min (95% O2) provided
appropriate oxygenation of a slice. Lower oxygenation resulted in the decrease of both
local field potentials and spontaneous network activity as well as in significant modulation
of short-term synaptic plasticity.The reduced oxygen supply considerably inhibited the oxi-
dation phase of NAD(P)H signaling indicating that the changes in neuronal activity were
paralleled by the decrease in aerobic energy metabolism. Interestingly, the dependence
of neuronal activity on oxygen tension was clearly shifted toward considerably larger pO2
values in slices when compared to in vivo conditions.With sufficient pO2 provided by a high
perfusion rate, partial substitution of glucose in ACSF for β-hydroxybutyrate, pyruvate, or
lactate enhanced both oxidative metabolism and synaptic function. This suggests that the
high pO2 in brain slices is compulsory for maintaining oxidative metabolism, and glucose
alone is not sufficient in fulfilling energy requirements during neuronal activity. Altogether,
our results demonstrate that energy metabolism determines the functional state of neu-
ronal network, highlighting the need for the adequate metabolic support to be insured in
the in vitro experiments.
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INTRODUCTION
In the intact brain, complex machinery exists that coordinates
energy substrates delivery and adjusts energy substrate pool com-
position to the needs of neuronal energy metabolism (Abbott
et al., 2010; Pellerin, 2010; Turner and Adamson, 2011). In the
acute brain slices, such a sophisticated system does not exist and
the neuronal energy supply depends entirely on the experimen-
tal conditions. The primary requirement for the in vitro studies
is to provide experimental conditions, which would approximate
as close as possible the in vivo situation. One parameter of criti-
cal importance is the adequate slice oxygenation compulsory for
aerobic energy metabolism.

For instance, it has been demonstrated that neuronal synap-
tic function (Yamamoto and Kurokawa, 1970; Garcia et al., 2010;
Ivanov et al., 2011), networks’ ability to generate physiological-
like oscillations (Huchzermeyer et al., 2008; Hajos et al., 2009;
Kann et al., 2011), and efficiency of glucose utilization for sup-
porting neuronal activity (Schurr and Payne, 2007) all strongly

depend on the oxygen tension in slices. In the few available elec-
trophysiological studies with direct measurements of slice tissue
oxygenation, a strong dependence of neuronal functions on oxy-
gen was observed in the range of pO2 (100–400 Torr; Foster et al.,
2005; Hajos et al., 2009; Garcia et al., 2010; Ivanov et al., 2011;
Kann et al., 2011) that exceeded the physiological pO2 range
(10–60 Torr) in brain tissue in vivo (Erecinska and Silver, 2001;
Masamoto et al., 2003, 2007; Takano et al., 2007). This fact sug-
gests that the oxygen requirement for neuronal function is much
higher in slices than in vivo. In the majority of electrophysiolog-
ical studies performed on submerged slices, the oxygen tension
in tissue was not controlled while the solution flow rate (nor-
mally 2–4 ml/min) or chamber constructions were chosen from
the assumptions not substantiated by the direct measurements.
The adequacy of such approach may be especially questionable for
the interpretation of multicellular activity measurements related
to the functioning of neurons throughout the slice depth (Hajos
and Mody, 2009).
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Another important issue is the composition of energy substrate
pool in ACSF. Standard ACSF contains glucose as the only energy
substrate. Historically, the composition of ACSF was developed
for replacement of physiological fluids in clinics (see for review
Zilberter et al., 2010) but not for mimicking the extracellular neu-
ron environment. Glucose indeed is the main energy substrate in
blood circulating in the adult brain. However, the composition
of energy substrate pool in the brain extracellular fluid may be
complex and is defined by several factors such as network activity,
neuron–glia interactions, substrate delivery across the blood brain
barrier, and others. For instance, it has been recently demonstrated
that lactate is the preferable neuronal fuel during the intense brain
activity (Wyss et al., 2011). In slices, it is unclear whether glucose
itself is able to fully cover energy demands during network activ-
ity. We have shown recently in neonatal slices that supplementing
glucose in ACSF with other oxidative energy substrates enhances
both the aerobic metabolism and synaptic function (Ivanov et al.,
2011). These results suggest that the sole use of glucose in ACSF
may not be optimal in mature slices as well. In addition, it has
been demonstrated (Whittingham et al., 1984; Zur Nedden et al.,
2011) that the levels of adenine nucleotides in slices is about 50%
lower than those measured in vivo, indicating that some processes
underlying neuronal energy metabolism may be disrupted.

Therefore, the critical question is how close the experimental
conditions accepted for the electrophysiological studies on slices
approximate the natural neuronal environment in the brain and
thus with what confidence the data obtained in these experiments
extrapolate to the real in vivo situation.

In our previous study on neonatal brain slices (Ivanov et al.,
2011) we demonstrated the importance of oxidative metabolism
of glucose-alternative energy substrates for the neuronal function.
In the present study, we show that this conclusion is not limited
to neonates but is valid for mature animals as well. In addition,
we examine the influence of oxygen tension on neuronal popula-
tion/spontaneous activity, our data pointing to a much stronger
dependence of neuronal activity on oxygen tension in slices than
that seen in vivo.

MATERIALS AND METHODS
TISSUE SLICE PREPARATION
Brain slices were prepared from P19 to P44 Swiss mice of both
sexes. All animal protocols conformed to the French Public Health
Service policy and the INSERM guidelines on the use of labora-
tory animals. The mouse was rapidly decapitated and the brain
was removed from the skull and placed in the ice-cold ACSF oxy-
genated with 95% O2/5% CO2. The ACSF solution consisted of (in
mM/l): NaCl 124, KCl 2.50, NaH2PO4 1.25, NaHCO3 25, CaCl2
2.00, MgCl2 1.30, and dextrose 10, pH 7.4. Sagittal slices (350 μm)
were cut using a tissue slicer (Leica VT 1200 s, Leica Microsystem
Vertrieb GmbH, Germany). During cutting slices were submerged
in an ice-cold (<6˚C) cutting solution consisted of (in mM/l):
K-gluconate 140, HEPES 10, Na-gluconate 15, EGTA 0.2, NaCl 4,
pH adjusted to 7.2 with KOH. Slices were transferred immedi-
ately to a multi-well, dual-sided perfusion holding camera with
constantly circulating oxygenated (95% O2/5% CO2) ACSF main-
tained at room temperature (22–24˚C), and allowed to recover
for 2 h. The chamber was designed for minimizing the O2 escape

and providing rapid solution exchange during incubation (whole
volume renewal time <3 min). Slices were then transferred to a
recording chamber continuously superfused and oxygenated with
95% O2/5% CO2 (33–34˚C).

SYNAPTIC STIMULATION AND FIELD POTENTIAL RECORDINGS
Shaffer collateral/commissural pathway was stimulated using the
DS2A isolated stimulator (Digitimer Ltd., UK) with a bipolar
nichrome electrode situated in the stratum radiatum (SR) of
CA1 hippocampal region. Stimulus current was adjusted using
single pulses (170–240 μA, 200 μs, 0.15 Hz) to produce a local
field potential (LFP) of nearly 50% of maximal amplitude.
LFPs were recorded using glass microelectrodes filled with ASCF,
placed in stratum pyramidale at the 100- to 150-μm depth and
connected to the DAM-80 amplifier (WPI, FL, USA). Synap-
tic stimulation consisted of a 30-s stimulus train (200 μs pulses
at 10 Hz) was used to generate autofluorescence reduced pyri-
dine nucleotide (NAD(P)H) response. LFPs were quantified by
calculating their integral as described elsewhere (Ivanov et al.,
2011). Field postsynaptic potentials (fPSPs) were calculated by
subtracting population spikes from LFPs.

NAD(P)H FLUORESCENCE IMAGING
Reduced nicotinamide adenine dinucleotide phosphate (NADPH)
and reduced nicotinamide adenine dinucleotide (NADH) have
very similar optical properties, and therefore is expected that
NADPH also contributes to some extent to total autofluores-
cence signals (Klaidman et al., 1995; Shuttleworth, 2010). More-
over, recent reports suggest the importance of pentose-phosphate
pathway for neuronal glucose metabolism (Bolanos et al., 2010).
Changes in NAD(P)H fluorescence in hippocampal slices were
monitored using a 290- to 370-nm excitation filter and 420 nm
long pass filter for emission (Omega Optical, Brattleboro, VT,
USA). The light source was the Intensiligh C-HGFI illuminator
(Nikon Instruments Europe B.V., UK) equipped with a mer-
cury arc lamp. Slices were epi illuminated and imaged through
a Nikon upright microscope (FN1, Eclipse) with 4×/0.10 Nikon
Plan objective. Images were acquired using a linear, cooled 12-b
CCD camera (Sensicam, PCO AG, Germany) with a 640 × 480
digital spatial resolution. Because of a low level of fluorescence
emission for this fluorophore, NAD(P)H images were acquired
every 600–800 ms as 8 × 8 binned images (effective spatial resolu-
tion of 80 × 60 pixels). The exposure time was adjusted to obtain
fluorescence intensity between 2000 and 3000 optical intensity
levels. Images were stored in a computer as 12-b files (0–4096
dynamic range). Fluorescence intensity changes in SR near sites
of LFP and pO2 recordings were extracted in three to five regions
of interest using ImageJ software (developed by Wayne Rasband,
NIH, USA). Data were expressed as the percentage changes in
fluorescence over a baseline [(ΔF /F)·100%]. Signal analysis was
performed using IgorPro software (WaveMetrics, Inc., OR, USA).

OXYGEN MEASUREMENTS
A Clark-style oxygen microelectrode (OX-10, tip diameter 10 μm;
Unisense Ltd., Denmark) was used to measure slice tissue PO2.
The electrode was connected to a picoammeter (PA2000, Unisense
Ltd., Denmark) and the cathode was polarized at −800 mV in
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normal saline at 22˚C for up to 12 h before the first use. A two-
point calibration (in pA) was performed following polarization by
inserting the electrode in normal saline solution (at 33˚C) equili-
brated with either 95% O2–5% CO2 or ambient air. Calibrations
were repeated after each experiment to determine the PO2 values.
The oxygen electrode (response time 1–3 s) was positioned using
motorized micromanipulator (Scientifica Ltd., UK) in SR at the
proximity to field potential recording electrode (at 100–150 μM
slice depth).

PHARMACOLOGY
Drugs used were purchased from Sigma (racemic mixture of DL-
3-hydroxybutyric acid sodium salt, l-lactate sodium salt, pyruvate
sodium salt). Within the racemic mixture, D-BHB is the primary
mediator of the physiological effects of DL-BHB, and is the only
form that can function as a substrate for mitochondrial BHB
dehydrogenase. Consequently, only 50% of exogenous DL-BHB
is expected to be utilized (Tsai et al., 2006).

STATISTICAL ANALYSIS
Group measures were expressed as means ± SEM; error bars
also indicate SEM. Statistical significance was assessed using the
Wilcoxon’s signed paired test or Student’s paired t -test. The level
of significance was set at p < 0.05.

RESULTS
OXYGEN TENSION DEPTH PROFILE IN SUBMERGED SLICES DEPENDS
ON THE SOLUTION FLOW RATE
To evaluate the oxygen availability at different slice depths we mea-
sured the oxygen tension in submerged slices placed in a standard
round chamber (bottom diameter 17 mm, volume <1.5 ml) and
superfused with solution from the upper side. Figure 1Aa shows
the oxygen depth profile measured at 15 and 4 ml/min solution
flow rates (slice is depicted by the gray color bar). Similar to
our measurements on neonatal slices (Ivanov et al., 2011), pO2

began to decrease close (200–300 μm) to the slice surface. Impor-
tantly, on the slice surface, pO2 was already significantly lower than
that in the incoming solution (∼720 Torr) being 441 ± 11 Torr at
15 ml/min and 258 ± 53 Torr at 4 ml/min (n = 5). Note that the
solution outflow was located in the vicinity of slice surface since at
more distant input locations the oxygen distribution was signifi-
cantly worse. At 4 ml/min, pO2 steeply decreased within the slice
depth coming close to zero at ∼200 μm. The oxygen depth profile
was much better at 15 ml/min with pO2 of about 300 Torr in the
slice core.

Oxygen consumption by a quiescent brain slice may be eval-
uated from our measurements of pO2 at variable distance from
the slice surface (Figure 1). Above 400 μm from the surface, pO2

remains constant (∼700 Torr). Proximal to the slice, pO2 declines
rapidly to about 440 Torr at the slice surface (at 15 ml/min flow
rate). Therefore, we consider that the slice consumes O2 from
the volume defined as the slice surface (∼0.6 cm2) multiplied by
400 μm. Note that in the absence of the slice, oxygen is distributed
homogeneously and its concentration is 850 μM/l as calculated
from the pO2 of 700 Torr, temperature 33˚C, and ACSF salinity
12%. The total amount of O2 in this volume is 0.02 μM. The
amount of O2 with the slice present can be obtained by the

integration of O2 distribution over this volume, which results
in a value of 0.017 μM. Thus, the slice consumes 0.003 μM of
oxygen from the perfusion chamber volume. Since the cham-
ber volume is 1.5 ml and ACSF is completely renewed 10 times
per minute (at 15 ml/min flow rate), the O2 consumption is
0.003 × 10 = 0.03 μM/min. The mean wet weight of a 350-μm
thick brain slice from a P30 mouse is about 20 mg. Assuming that
the oxygen utilization is constant over the slice, the oxygen con-
sumption is 1.5 μM/min/g of wet weight. However, it is necessary
to take into account the extent of slice tissue integrity. Indeed,
due to the cutting procedure, the slice edges contain mainly dead
cells and the thickness of these edges has been estimated to be
35–50 μm from each side (Feig and Lipton, 1990; Frenguelli et al.,
2003). Therefore, the slice volume consuming oxygen should be
decreased by at least 20% (at 35 μm dead edges) and that in
turn increases the estimate of O2 consumption to 1.8 μM/min/g
wet weight. The reported whole brain oxygen consumption of
rats is 3.4–4.6 μM/min/g wet weight (Erecinska and Silver, 2001).
Therefore, even when exposed to a relatively high oxygen ten-
sion (440 Torr at the surface and 320 Torr in the core, blue curve
in Figure 1Aa), neuronal tissue in a “quiescent” slice consumes
lesser or comparable amount of oxygen to recorded consumption
in vivo.

In the same experiments, to examine the effect of perfusion
rate on neuronal electrical activity we also measured the LFPs in
CA1 region induced by single stimulation of Schaffer collaterals
(SC). In line with previous observations (Garcia et al., 2010; Ivanov
et al., 2011), LFPs were strongly dependent on the perfusion rate
(Figure 1Ab) with LFP integrals 53 ± 11% smaller at 4 ml/min
compared to those recorded at 15 ml/min rate (Figure 1Ac; n = 5,
p < 0.05).

In some previous studies, scientists used the dual laminar flow
slice perfusion chambers to provide better conditions for slice
functioning (Hajos and Mody, 2009). We examined whether at
different rates of solution flow such configuration can significantly
improve slice oxygenation and electrical activity (Figure 1B).
Indeed, dual laminar flow (chamber volume <1 ml) consider-
ably enhances oxygenation of deep slice layers at low perfusion
rates (Figure 1B, left) improving, therefore, the endurance of neu-
rons in these layers. Nevertheless, at 4 ml/min perfusion rate, such
an improvement in oxygenation did not appear to be sufficient
enough to augment the synaptic function, as LFPs were still much
smaller (by 45 ± 16%; n = 7, p < 0.01) at 4 ml/min than those at
15 ml/min (Figure 1B, right).

Another approach sometimes utilized for improving slice oxy-
genation is an exchange of air directly in contact with the bath
solution to oxygen. In three experiments (data not shown), such
approach did not change significantly neither the slice oxygen lev-
els nor LFP values (LFPs were by 41 ± 17% smaller at 4 ml/min
than at 15 ml/min).

To rule out a possibility that the high perfusion rate may result
in a washout of some active substances from slice tissue and thus
affect LFPs, we measured LFPs at the same 15 ml/min superfusion
with 95% O2 and ∼50% O2 oxygenation, partially substituting
oxygen for air (n = 3). Similar to the experiments with different
solution flow rates, lower solution oxygenation resulted in a strong
reduction of LFPs (not shown).
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FIGURE 1 | Rate of perfusion determines oxygen distribution

and LFP magnitude in a slice. (A) Measurements in a standard
round chamber (1.5 ml volume) with a submerged slice. (a) Oxygen
depth profile at 15 ml/min (blue) and 4 ml/min (red) perfusion rate.
A slice is depicted in gray; (b) LFPs recorded in CA1 in response to

0.15 Hz stimulation of SC; (c) statistical summary of LFP integrals.
(B) Oxygen depth profile in a custom chamber (<1 ml volume) with a
dual-sided perfusion of submerged slice. (C) Blockade of adenosine
receptors by DPCPX does not prevent reduction of LFPs following decrease
in the perfusion rate.

Finally, inhibition of neuronal energy metabolism may result
in an increase in extracellular adenosine concentration, activation
of the A1 type adenosine receptors and suppression of synaptic
function (Zhao et al., 1997; Coelho et al., 2000). Therefore, we
performed experiments with different perfusion rates in the pres-
ence of 100 nM DPCPX,an antagonist of A1 receptors (Figure 1C).
Blockade of adenosine receptors did not prevent the decrease of
LFPs at lower perfusion rates and this effect did not differ sig-
nificantly from that seen in ACSF: at 8 ml/min, LFPs decreased by
24 ± 9% in ACSF vs. 17 ± 9% in ACSF + DPCPX (n = 5, p = 0.16);
at 4 ml/min, LFPs decreased by 55 ± 11% in ACSF vs. 47 ± 17% in
ACSF + DPCPX (n = 5, p = 0.27).

Therefore, our results indicate that at low perfusion rates, the
decrease in slice oxygen tension underlies the decline of synap-
tic function. In addition we found no alternatives to a high rate
of perfusion for maintaining sufficient oxygenation in submerged
slices.

OXYGEN AVAILABILITY CONTROLS ENERGY METABOLISM AND
SYNAPTIC FUNCTION OF NEURONS IN SLICES
Figure 2A demonstrates the typical recordings of LFPs and oxy-
gen pressure during a stimulation protocol that we have used
for analyzing energy metabolism and electrophysiological char-
acteristics at prolonged neuronal population activity. Following a
series of single SC stimulations (1/7 s), neurons were activated by
a 30-s, 10 Hz train (15 ml/min perfusion rate in Figure 2). The
train stimulation-induced potent oxygen consumption by hip-
pocampal cells (Figure 2A, blue) as indicated by a fast decrease
in pO2 by 120 Torr during first 10 s of stimulation (mean rate

was 200 ± 40 Torr per 10 s, n = 7). LFPs in the train initially
increased, presumably due to synaptic facilitation (Pitler and
Landfield, 1987), but then declined strongly toward the end of
train in parallel with a drop of oxygen level (by about 130 Torr).
Interestingly, a slow recovery of LFPs started with a delay of
about 30 s after the train and followed closely the pO2 recovery
(Figure 2B).

We examined the energy metabolism parameters and electro-
physiological characteristics of neuronal population activity at
the perfusion rate of 15 ml/min and following its reduction to
4 ml/min (Figure 3). Note that in this and other experiments, the
presynaptic fiber volley component of LFPs did not change what-
soever, indicating that SC stimulation activated a constant number
of nerve fibers throughout the experiment. At high perfusion
rates, the stimulation train induced a strong oxygen consumption
by hippocampal cells (Figure 3A, blue) and NAD(P)H autoflu-
orescence revealed a biphasic transient characteristic for slices
(Foster et al., 2006) with the pronounced dip (oxidation phase)
and overshoot reflecting NAD(P)+ reduction. Slowing down the
rate of perfusion resulted in a considerable decrease of both oxy-
gen consumption and NAD(P)H oxidation phase (Figure 3A,
red). Meanwhile, the NAD(P)H overshoot did not change signifi-
cantly suggesting that the overshoot may relate to some anaerobic
(presumably glycolytic) part of the metabolic pathway (Kasischke
et al., 2004). Modification of energy metabolism correlated with
oxygen availability was also reflected in changes of neuronal elec-
trical activity (Figure 3B). At lower rates of perfusion, LFPs were
not only smaller throughout the train but revealed also different
dynamics. This is shown in Figure 3C, depicting LFP integrals in
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FIGURE 2 | Local field potentials and oxygen transient during

stimulation protocol. (A) Simultaneous recordings of oxygen tension and
LFPs (stimulation artifacts subtracted).(B) Time course of oxygen and LFP

recovery (averaged from five experiments) after the end of stimulation train.
Filled circles show the data range where LFP linearly correlates with pO2 (see
inset).

FIGURE 3 | Changes in oxygen transients, NAD(P)H signaling, and LFPs

during train stimulation at different perfusion rates. (A) Oxygen transients
and NAD(P)H autofluorescence recorded at different perfusion rates in the

same slice. (B) LFPs during the stimulation train. (C) LFP integrals during the
train stimulation calculated from original data (inset) and after normalization to
the first response.

the train obtained from raw data (Figure 3C inset) and from data
normalized to the first response. Distinctions in LFP dynamics

during the train stimulation at different oxygen availability con-
ditions indicate that modulation of energy metabolism induces
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not only a “scaling” of synaptic response but also the qualita-
tive changes in synaptic functioning. Figure 4Aa shows averaged
normalized LFP synaptic components – fPSPs (see Materials and
Methods) recorded at 15 and 4 ml/min solution flow rates in 15
slices. Note much stronger changes in synaptic responses at lower
perfusion rates. Figure 4Ab shows a relative change of the first
fPSPs in train: at 4 ml/min solution flow rate, the fPSP integral
was 34 ± 4% of that at 15 ml/min (p < 0.001). Figures 4B,C show
relative changes in the NAD(P)H profile and oxygen consumption
at 15 and 4 ml/min superfusion: the NAD(P)H oxidation phase
integral decreased by 88 ± 4% (p < 0.001) while the overshoot
integral by 17 ± 36% (not significant, p > 0.1); the oxygen tran-
sient integral decreased by 67 ± 6% (p < 0.001) and the oxygen
transient amplitude by 76 ± 4% (p < 0.001).

To rule out a possibility that the effect of solution flow rate
on neuron electrical activity is induced by washing out of some
substance(s) from slice tissue, we performed similar experiments
(n = 3; not shown) at 15 ml/min superfusion with 95 and ∼50%
oxygenation of ACSF. In line with previously published results
(Garcia et al., 2010), a partial oxygenation produced similar to a
slow perfusion effects on LFPs.

Therefore, a solution flow rate too low to provide the ade-
quate slice oxygenation disrupts neuronal energy metabolism
and induces the qualitative changes in neuronal properties,

which underlie the function of synaptic transmission and cellular
excitability.

SPONTANEOUS SYNCHRONIZED NEURONAL ACTIVITY STRONGLY
DEPENDS ON SLICE OXYGENATION
Since slice oxygenation causes a pronounced effect on synaptic
function, this may be also reflected in synchronous neuronal net-
work discharges. To explore this issue, we induced the interictal-
like neuronal activity by 100 μM of 4-AP and measured both field
potentials and pO2 in slices superfused at different rates (n = 5).
Figure 5 demonstrates the original traces from such experiment.
4-AP applied at the solution flow rate of 15 ml/min evoked spon-
taneous discharges within a few minutes. Induced LFPs were also
periodically recorded at different stages of experiment (Figure 5,
top). After stabilization of synchronous activity, the solution flow
rate was changed to 8 ml/min, inducing a significant reduction in
both the oxygen level and frequency of interictal discharges. Fol-
lowing the reduction of solution flow rate down to 4 ml/min, pO2

dropped further and the amplitude and frequency of discharges
decreased as well. Returning superfusion to 15 ml/min recovered
both pO2 and synchronous network activity. Similar scenario
was seen in five slices. Compared with 15 ml/min superfusion,
the mean frequency of synchronous discharges decreased by
76 ± 5% at 4 ml/min (p < 0.001, n = 5). Therefore, insufficient

FIGURE 4 | Short-term synaptic plasticity and oxidative

metabolism strongly depend on the rate of perfusion

(oxygen supply). (A, a) Integrals of fPSPs induced by the train
stimulation and normalized to the first response. Note much

stronger relative changes in consequent fPSPs at smaller perfusion rate; (b)

Integrals of the first fPSPs in the train. (B) NAD(P)H signaling parameters at
different perfusion rates. (C) Oxygen transient parameters at different
perfusion rates.
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FIGURE 5 | Synchronous network activity induced by 4-AP strongly depends on the rate of perfusion (oxygen supply). Original simultaneous recordings
of field potentials and oxygen tension during the 4-AP induced interictal-like network activity.

slice oxygenation strongly affects the ability of neuronal network
for spontaneous synchronous activity induced by 4-AP.

OXIDATIVE METABOLISM AND SYNAPTIC FUNCTION ARE ENHANCED
IN ACSF ENRICHED BY ENERGY SUBSTRATES
We have recently demonstrated in neonatal slices that supple-
mentation of glucose in ACSF with oxidative energy substrates
enhances both the oxidative metabolism and synaptic function
(Ivanov et al., 2011). In the present study, we explored this
issue using more mature brain slices. For this purpose, we uti-
lized the energy substrate-enriched ACSF (eACSF; 5 mM glucose
+5 mM pyruvate +4 mM DL-BHB). The composition of eACSF
has been discussed elsewhere (Holmgren et al., 2010; Zilberter
et al., 2010). Note that we did not attempt to reproduce the
composition of extracellular brain fluid but rather attempted to
provide sufficient oxidative energy substrates for neuronal energy
demands.

Figure 6Aa shows that compared to standard ACSF condi-
tions, oxygen consumption during train stimulation is increased
in eACSF and this is accompanied by a considerable augmentation
of the NAD(P)H oxidation phase as well as a decrease in NAD(P)H
overshoot. The enhancement of oxidative metabolism is paralleled
by a change in LFP dynamics throughout the train (Figure 6Ab,c).
In six slices (Figure 6B), the first LFPs in the train did not dif-
fer significantly while subsequent LFPs were significantly larger in
eACSF. Meanwhile, the oxygen consumption increased in eACSF
by 18 ± 3% (Figure 6C; p < 0.005), NAD(P)H oxidation phase
by 140 ± 33% (Figure 6D; p < 0.001) and NAD(P)H overshoot
decreased by 60 ± 7% (Figure 6D; p < 0.001). Therefore, in eACSF,

the aerobic energy metabolism is enhanced compared to standard
ACSF.

If the last statement is correct eACSF should lose its efficacy at
conditions of oxygen deficiency. In five experiments, we compared
the effects of ACSF and eACSF at lower slice oxygenation using the
8-ml/min superfusion. In contrast to the results obtained at high
perfusion rate (15 ml/min), LFPs did not differ significantly dur-
ing the stimulation train (Figure 7A). In addition, transition to
eACSF had no significant effect on the NAD(P)H oxidation phase
(integral increased by 37 ± 31%, n = 5, p > 0.3; not shown) indi-
cating that supplemental substrates were not as efficient at lower
perfusion rates when compared to their effect at 15 ml/min super-
fusion. This conclusion was further confirmed by comparison of
NAD(P)H signals recorded in eACSF at 15 and 8 ml/min flow rates
(Figures 7B,C). Lower perfusion rate (i.e., oxygenation) induced
a substantial decrease in NAD(P)H oxidation phase integral (by
77 ± 5%, n = 5; p < 0.001, Figures 7B,C) as well as an increase of
overshoot (by 58 ± 19%, n = 5; p < 0.01, Figures 7B,C). Impor-
tantly, these changes in the efficacy of aerobic metabolism occurred
in the range of basal pO2 (>150 Torr) considerably exceeding the
physiological pO2 levels in vivo (20–40 Torr; Erecinska and Silver,
2001; Masamoto et al., 2003, 2007; Takano et al., 2007), suggesting
divergent oxygen requirements of neurons in slices.

LACTATE-BASED eACSF INDUCES SIMILAR TO PYRUVATE-BASED
eACSF EFFECTS
Lactate has been suggested as a preferential fuel for cor-
tical neurons during intense network activity (Wyss et al.,
2011). We therefore examined the effects of a lactate-based

Frontiers in Neuroenergetics www.frontiersin.org December 2011 | Volume 3 | Article 9 | 7

http://www.frontiersin.org/Neuroenergetics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroenergetics/archive


Ivanov and Zilberter Energy metabolism and slice activity

FIGURE 6 | At sufficient oxygen supply, energy substrates

supplemented to glucose enhance both oxidative

metabolism and synaptic function. In all experiments slices were
superfused at 15 ml/min. (A) Original traces of (a) oxygen and NAD(P)H
transients and (b) LFPs during the train (stimulation artifact subtracted)

recorded in ACSF (red) and eACSF (blue). The normalized LFP integrals during
the train are shown in (c). (B) Statistical summary (six slices) of LFP integrals
during the train. The inset shows total LFP integrals (summation of all LFP
integrals in the train). (C,D) Show statistical summary of oxygen and NAD(P)H
parameters.

eACSF (5 mM glucose +5 mM l-lactate +4 mM DL-BHB).
Similar to the pyruvate-based eACSF, both aerobic metab-
olism and synaptic function were enhanced in the lactate-
based eACSF compared to standard ACSF (Figure 8). In
particular, the total LFP integral was by 27 ± 7.5% larger
(Figure 8A; n = 5, p < 0.005). The oxygen consumption induced
by stimulation train increased by 68 ± 22% (Figure 8B; n = 4,
p < 0.03); the NAD(P)H oxidation phase increased by 143 ± 12%
(Figure 8C; n = 5, p < 0.001) while the NAD(P)H overshoot
decreased by 64 ± 8% (Figure 8C; n = 5, p < 0.002). There-
fore, at sufficient oxygen supply, the supplementing glucose

in ACSF with different combinations of energy substrates
improves both oxidative metabolism and efficacy of synaptic
function.

DISCUSSION
Our results demonstrate that synaptic efficacy, synaptic plasticity,
and the neuronal network’s potential for synchronized activity all
strongly depend on oxidative energy metabolism. This conclusion
is specifically important for the studies on brain slices where the
oxygen delivery to neurons may be compromised by experimental
conditions.
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FIGURE 7 | Supplementary energy substrates are inefficient

at a low perfusion rate (low oxygen supply). (A) Left: summary
of LFPs recorded in ACSF and eACSF in five slices superfused
at 8 ml/min. Right: comparison of total LFP integrals at 15

and 8 ml/min perfusion rate. (B) Example of original traces
of NAD(P)H signaling recorded in eACSF at different perfusion rates. (C)

Summary of changes in NAD(P)H signaling recorded in eACSF at different
perfusion rates.

FIGURE 8 | At sufficient oxygen supply, lactate-based eACSF causes

similar effects as pyruvate-based eACSF. In all experiments slices were
superfused at 15 ml/min. (A) Total LFP integrals in the stimulation train (five
slices). (B,C) Oxygen and NAD(P)H signaling parameters.

OXYGEN DELIVERY TO NEURONS IN SLICES AFFECTS BOTH SYNAPTIC
EFFICACY AND SYNAPTIC PLASTICITY
Hippocampal LFPs revealed a strong dependence on oxygen dis-
tribution in a slice. Similar observations on P27–P40 rats (Garcia
et al., 2010) and on neonatal (P4–P7) mice (Ivanov et al., 2011)

have been reported previously although the underlying mecha-
nism of synaptic function reliance on oxygen is unclear. Severe
decrease in synaptic transmission was observed during slice expo-
sure to a complete hypoxia (Pena and Ramirez, 2005) and in such
cases a decline in cellular ATP level was suggested as one reason
for the failure of synaptic function (Kass and Lipton, 1982; Lipton
and Whittingham, 1982). It was also demonstrated that hypoxia
had a direct influence on the vesicular release mechanisms (Flei-
dervish et al., 2001). Indeed, multiple studies of glutamatergic
transmitter release from nerve terminals demonstrated promi-
nent dependence of the release machinery on energy metabolism
(Erecinska et al., 1996; Nicholls, 2003). Therefore, insufficient oxy-
gen availability leads to the lowered oxidative metabolism and
as the result may inhibit glutamate release from the pyramidal
cell terminals. Interestingly, synaptic plasticity (see Figure 4Aa) is
more striking at smaller perfusion rates (lower slice oxygenation).
One possible reason for this may be an enhanced accumulation of
Ca2+ in the nerve terminals due to its insufficient ATP-dependent
extrusion between pulses. The mechanism of this phenomenon,
however, requires further clarification.

SYNCHRONIZED SPONTANEOUS NETWORK ACTIVITY DEPENDS ON
OXYGEN DELIVERY
Deficiency in oxidative metabolism results not only in downreg-
ulation of synaptic function but also strongly affects the ability
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of neuronal network for synchronous discharges. Recently, Hajos
et al. (2009) reported that both spontaneously occurring sharp
wave–ripple oscillations and cholinergically induced fast oscilla-
tions in submerged hippocampal slices could be observed only
at the solution flow rates providing sufficient slice oxygenation
(about 6 ml/min in their custom dual-sided perfusion chamber).
Strong dependence of cholinergically induced gamma oscilla-
tions on oxygen pressure was also demonstrated on the organ-
otypic hippocampal slice cultures (Huchzermeyer et al., 2008).
The importance of appropriate slice oxygenation for the approx-
imation of physiological-like network properties was discussed
recently by Hajos and Mody (2009). In our experiments (see
Figure 4), both the amplitude and frequency of 4-AP induced
spontaneous discharges decreased sharply with the drop in slice
oxygenation (switch of perfusion from 15 to 4 ml/min). Therefore,
these results suggest that the inadequate oxidative metabolism,e.g.,
due to insufficient slice oxygenation, considerably modifies net-
work properties required for the synchronous neuronal activity,
either intrinsic or induced.

NEURONAL ACTIVITY VS. OXYGEN PRESSURE IN VIVO AND IN SLICES
Since mitochondrial oxidative phosphorylation is coupled to oxy-
gen reduction and is responsible for most of the cellular oxygen
consumption, the rate of respiration is a measure of the rate of
ATP synthesis. In brain, the respiratory rate may be controlled
within a wide dynamic range and in the normal steady-state of
cellular metabolism it provides ATP at precisely the rate needed
to cover cell energy demands (Wilson et al., 1979; Erecinska
and Silver, 2001). The ambient oxygen concentration in rat hip-
pocampus in vivo is about 20–30 Torr (Erecinska and Silver, 2001;
Kasischke et al., 2011). Therefore, although a relatively low oxy-
gen environment is natural for a significant fraction of cortical
neurons (Gjedde, 2002; Ndubuizu and Lamanna, 2007), this envi-
ronment is still capable of efficiently supporting normal cortical
function.

The obvious question therefore is how to reconcile the in vivo
observations with the apparent much stronger oxygen dependence
of neuronal activity in slices. Indeed, strong changes in LFP val-
ues occurred in slices in the range of oxygen tensions where the
lower level exceeded the normal oxygen levels in vivo (Garcia et al.,
2010; Ivanov et al., 2011). Garcia et al. (2010) observed that a sin-
gle stimulation-evoked population response nearly disappeared
after a switch of solution oxygenation from 0.95 ATA O2 to 0.60
ATA O2, although the minimal oxygen pressure in a slice core
was about 100 Torr. Hyperoxic conditions were required to obtain
physiological-like spontaneous gamma oscillations in acute slices
(Fisahn et al., 1998; Hajos et al., 2009; Kann et al., 2011). Huchz-
ermeyer et al. (2008) noted that gamma oscillations in cultured
(organotypic) hippocampal slices strongly decreased at 20% O2 in
perfusate (compared to 95%) despite the fact that the baseline pO2

was about 50 Torr in a slice core, decreasing during oscillations to
about 20 Torr and still being in the range of interstitial pO2 values
in air-respiring rodents (Erecinska and Silver, 2001; Takano et al.,
2007).

On the other hand, when oxygen tension in vivo is com-
parable to those required for neuronal function in slices, oxy-
gen is obviously toxic. For instance, O2 toxicity occurred in

awake rats breathing oxygen at >4.0 ATA O2 (>400 Torr in
the brain; Demchenko et al., 2005), manifesting in tonic clonic
seizures (Simon and Torbati, 1982). However, seizures were not
observed in hippocampal slices exposed to similar (>4 ATA) pO2

levels (Garcia et al., 2010). Contrary to LFPs recorded in slices
(Garcia et al., 2010), cortical LFPs induced by somatosensory stim-
ulation in anesthetized rats were similar at 1 (about 40 Torr pO2),
3, or 4 ATA (>400 Torr pO2) of breathing oxygen (Lindauer et al.,
2010b), indicating much lower oxygen dependence of neuronal
activity in vivo.

In agreement with previous reports, our results demonstrate
that LFPs induced by periodic single stimulations significantly
decreased with the reduction of pO2 to values higher than the
upper level of physiological range (see Figure 1). Spontaneous
synchronous network activity revealed a pronounced sensitivity
to oxygen above the physiological range (Figure 5).

Our data also indicate an uncoupling between oxygen pres-
sure measured in slice tissue and neuronal energy metabolism
(see also Turner et al., 2007). At oxygen tensions that might be
considered as “hyperoxic,” the prolonged synaptic stimulation-
induced NAD(P)H signal showed dynamics abnormal for the
in vivo observations (Rosenthal and Jobsis, 1971; Lothman et al.,
1975; Lamanna et al., 1984; Mayevsky and Chance, 2007), namely
the large overshoot and small oxidative phase (see Figure 3).
Interestingly, at such oxygenation levels, supplementation of glu-
cose with other oxidative energy substrates (pyruvate, lactate,
and BHB) increased the NAD(P)H oxidation phase substantially.
However, the effect of these substrates practically disappeared at
lower oxygenation levels (see Figures 6 and 7), indicating that
despite the pO2 being above the physiological range, the oxygen
supply was insufficient for oxidative phosphorylation. Therefore
there exists an apparent discrepancy in the definition of “nor-
moxic” tissue oxygen pressure between the in vivo and slice
conditions.

One possible reason for such a discrepancy may be compro-
mised metabolism in brain slices, presumably as a consequence
of traumatic cutting procedure (Rolleston and Newsholme, 1967;
Benjamin and Verjee, 1980; Whittingham et al., 1984; Zur Ned-
den et al., 2011). This results in a substantial decrease of high
energy phosphates, in particular, about 50% lower than in vivo
concentrations of ATP and PCr (Whittingham et al., 1984) or
40–60% smaller the total adenine nucleotide pool (Whitting-
ham et al., 1984; Zur Nedden et al., 2011). It was also reported
that the rate of glycolysis in brain slices (Rolleston and New-
sholme, 1967; Benjamin and Verjee, 1980) is 50% or less of that
in vivo.

In addition, the dynamics of pO2 variability during neuronal
activity differs radically between the intact brain and slices. In vivo,
changes in neuronal activity are tightly coupled to changes in
regional metabolism, local cerebral blood flow, and oxygena-
tion (Raichle and Mintun, 2006; Masamoto et al., 2008; Lin-
dauer et al., 2010b; Vazquez et al., 2010) although the factors
regulating changes in cerebral blood flow during physiological
activation remain the subject of debate (Raichle and Mintun,
2006; Verweij et al., 2007; Lindauer et al., 2010a,b). As the result,
after the onset of neuronal activity, the tissue pO2 can exceed
the required level by 1.5–2 times (Erecinska and Silver, 2001;
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Masamoto et al., 2003, 2007). Note also that the distance from
any neuron to the nearest blood vessel providing oxygen supply
does not exceed 25 μm (Erecinska and Silver, 2001; Masamoto
et al., 2004; Abbott et al., 2010). However, even at such a favor-
able for the oxygen delivery situation, the oxygen distribution in
cortical tissue is not homogenous and local regions of a minor
hypoxia can exist (Kasischke et al., 2011). In slices, oxygen is
delivered to neurons by diffusion from the superfusing solu-
tion. Compared to the rate of oxygen consumption by neurons,
the rate of oxygen diffusion in slice tissue is very slow. Indeed,
analysis of our data showed that at the beginning of train stim-
ulation, pO2 declines with a mean rate of about 20 Torr/s (see
pO2 transients in Figures 2A, 3A, and 6A). This value is likely
underestimated because the response time of oxygen probe could
be as long as 3 s. After the train, pO2 recovers up to the initial
level for longer than 100 s. The highest rate of recovery is about
4 Torr/s that is five times slower than O2 consumption at the begin-
ning of stimulation episode. Therefore, during neuronal activity,
the oxygen consumption in vicinity of neurons is not followed
by the oxygen recovery. Although during neuronal activity the
oxygen electrode in slice tissue registers a relatively high integral
oxygen pressure, the real oxygen levels in neuronal microenviron-
ment may be extremely inhomogeneous (see also Turner et al.,
2007; Huchzermeyer et al., 2008). Definitely, this issue requires
further investigation. It is evident, however, that there is a sub-
stantial discrepancy between functional effects of similar oxygen
levels in the brain and slices. This suggests that analyzing the
link between neuronal functions and pO2 in slices (e.g., “nor-
moxic” or “hyperoxic”), the direct reference to pO2 in vivo may be
inadequate.

One very attractive, although yet speculative, explanation of
the extremely high demands of slice neuronal activity for oxygen
is associated with the mitochondrial anion-carrier proteins that
are located on the inner mitochondrial membrane and are called
uncoupling proteins (UCPs; Mattson and Liu, 2003; Andrews et al.,
2005). UCPs provide a path for protons to return to the matrix
without passing through ATP-synthase and therefore the energy
derived from oxidation of substrates does not result in the produc-
tion of ATP but is instead released as heat. UCPs can be activated
by free radicals and free fatty acids. UCPs have been identified and
shown to be highly expressed in the CNS including cortex and
hippocampus (Andrews et al., 2005). Interestingly, strong activa-
tion of UCPs has been documented during acute brain trauma
and stroke/ischemia (Sullivan et al., 2004; Kim-Han and Dugan,
2005). From these facts, it is plausible to suggest that the acute
preparation of brain slices may lead to the activation of UCPs
in neurons. This would result in “shunting” of mitochondrial
oxidative phosphorylation and a subsequent strong increase in
the amount of oxygen required for the production of necessary
amount of ATP. In such a case, the dependence of neuronal activ-
ity in slices on oxygen tension would be shifted toward higher pO2

values.

GLUCOSE DOES NOT FULLY COVER ENERGY DEMANDS DURING
NEURONAL ACTIVITY
The use of high concentration (10 mM or above) of glucose as
the sole energy substrate in ACSF does not seem to be adequate

when mimicking in vivo extracellular neuronal environment (Bar-
ros et al., 2007; Hajos and Mody, 2009; Zilberter et al., 2010). For
instance, it is firmly established that the glucose concentration
in cortical ECF is about 1–2 mM and is comparable and even
lower (during intense neuronal activity) to the concentration of
lactate. A number of recent studies (Castro et al., 2009; Pellerin,
2010), including those in vivo (Suzuki et al., 2011; Wyss et al.,
2011), provide evidence that lactate is a key energy substrate for
neuronal aerobic metabolism. In the active brain, the energy sub-
strate pool in neuronal vicinity is the result of complex blood
vessel–astrocyte–neuron interaction (Abbott et al., 2010; Pellerin,
2010). Therefore, a priori suggestion that glucose alone is able
to cover fully energy requirements during neuron activation in
slices seems to be unsubstantiated. The importance of modifying
the ACSF composition to better approximate physiological con-
ditions has been highlighted in recent reviews (Hajos and Mody,
2009; Zilberter et al., 2010).

Our results demonstrate that oxidative metabolism and synap-
tic function are indeed both enhanced in the energy substrate-
enriched solution (eACSF). At high perfusion rates, both versions
of eACSF (pyruvate or lactate-based) significantly increased the
oxygen consumption, NAD(P)H oxidation phase, and efficacy of
synaptic transmission during prolonged stimulation (Figures 6
and 8). Glucose substitution also induced a decrease in NAD(P)H
overshoot. It is possible that the oxidation phase of NAD(P)H
enhanced in eACSF partially masks the actual reduction time
course. Clarification of the origin of NAD(P)H overshoot requires
further studies. We have previously observed similar effects of
energy substrates on neonatal slices (Ivanov et al., 2011). There-
fore, in slices as well as in vivo, the ability of glucose to maintain
energy metabolism is limited and neuronal energy supply should
be supported by other oxidative substrates.

CONCLUSION
Our results confirm that in acute brain slices, the basic neuronal
parameters underlying excitability strongly depend on oxidative
energy metabolism. We show that the state of energy metabolism
is highly sensitive to the availability of oxygen in slice tissue. The
pathway for ATP synthesis is apparently compromised in brain
slices and therefore the reliance of neuronal activity on oxygen
tension is clearly shifted toward considerably larger pO2 values.
In addition, during neuronal activity, glucose alone may not be
able to fully cover the neuronal energy demands and therefore
adequate support of oxidative metabolism by other energy sub-
strates complementary to glucose is required. Given the fact that
in a number of electrophysiological studies neither the oxygen ten-
sion in a slice nor the energy substrate composition in ACSF have
been controlled, our results call for the careful reconsideration of
experimental approaches to neuronal activity studies in vitro.
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