ORIGINAL RESEARCH ARTICLE
published: 30 March 2010
doi: 10.3389/fneng.2010.00003

{romtiers in
NEUROENGINEERING

=

Long-term asynchronous decoding of arm motion using
electrocorticographic signals in monkeys

Zenas C. Chao, Yasuo Nagasaka and Naotaka Fujii*

Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute, Saitama, Japan

Edited by: o _ Brain—machine interfaces (BMls) employ the electrical activity generated by cortical neurons
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v I . ) )
Reviewed b cognitive or sensory-motor functions. The dominant approach in BMI research has been to
eviewe y:

decode motor variables based on single-unit activity (SUA). Unfortunately, this approach suffers
from poor long-term stability and daily recalibration is normally required to maintain reliable
performance. A possible alternative is BMIs based on electrocorticograms (ECoGs), which
measure population activity and may provide more durable and stable recording. However,
the level of long-term stability that ECoG-based decoding can offer remains unclear. Here we
propose a novel ECoG-based decoding paradigm and show that we have successfully decoded
hand positions and arm joint angles during an asynchronous food-reaching task in monkeys
when explicit cues prompting the onset of movement were not required. Performance using
our ECoG-based decoder was comparable to existing SUA-based systems while evincing far
superior stability and durability. In addition, the same decoder could be used for months without
any drift in accuracy or recalibration. These results were achieved by incorporating the spatio-
spectro-temporal integration of activity across multiple cortical areas to compensate for the
lower fidelity of ECoG signals. These results show the feasibility of high-performance, chronic
and versatile ECoG-based neuroprosthetic devices for real-life applications. This new method
provides a stable platform for investigating cortical correlates for understanding motor control,
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INTRODUCTION

Recent scientific and technological advances have accelerated the
development of brain—machine interfaces (BMIs), particularly as a
means for assisting or repairing human cognitive or sensory-motor
functions (Donoghue, 2002; Mussa-Ivaldi and Miller, 2003; Nicolelis,
2003; Lebedev and Nicolelis, 2006; Patil and Turner, 2008). However,
there are still many serious concerns about the stability, durability,
and maintenance that significantly diminish their real-life applicabil-
ity (Kipke et al., 2008; Hatsopoulos and Donoghue, 2009; Stieglitz
etal., 2009). Noninvasive BMIs mainly exploit electroencephalo-
grams (EEGs) to control computer cursors or other simple devices,
but such systems may ultimately be limited in their capabilities and
also usually require extensive training. Invasive BMIs, which use pri-
marily single-unit activity (SUA) and local field potentials (LFPs),
can acquire the highest brain signal fidelity for fine-grained control.
However, this method suffers from poor long-term stability, where
daily recalibration is normally required to maintain reliable per-
formance because of deterioration in signal quality or variability in
recorded neuronal ensembles (Chestek et al., 2007). One possible
alternative that could reduce these concerns is semi-invasive BMIs
based on electrocorticograms (ECoGs) using subdural electrodes.
Compared with the EEG, the ECoG has higher spatial resolution,
broader bandwidth, higher amplitude, and less sensitivity to arti-
facts such as electromyographic (EMG) signals (Freeman et al., 2003;
Schwartz et al.,2006). In contrast to SUA, ECoG measures population

activity, which might offer a better prospect for long-term record-
ing stability. Furthermore, since ECoG recording does not penetrate
the cortex, signal-prohibitive encapsulation, an obstacle in chronic
SUA recording, is less likely to occur during long-term implantation
(Szarowski et al., 2003; Vetter et al., 2004; Bjornsson et al., 2006).
ECoG signals have been used to decode a limited set of discrete
hand movements (Levine etal.,2000; Leuthardt et al., 2004; Mehring
et al., 2004; Ball et al., 2009) and continuous movements, such as
hand-controlled cursor movements for periodic circular motion
(Schalk etal., 2007) and target reaching (Pistohl et al., 2008; Sanchez
etal.,2008), flexion of fingers (Kubanek et al.,2009),and upper limb
movements (Chin et al., 2007). The applicability of online ECoG-
based BMIs has also been demonstrated (Leuthardt et al., 2004;
Leuthardt et al., 2006; Schalk et al., 2008). However, little is known
about the level of long-term stability that ECoG-based decoding
can offer, even though chronic implantation of ECoG electrodes has
been conducted previously in animals and humans (Loeb et al., 1977;
Bullara et al., 1979; Yuen et al., 1987; Pilcher and Rusyniak, 1993;
Margalit et al., 2003). Moreover, only few ECoG studies attempted
decoding intended motion during asynchronous tasks (Schalk et al.,
2007; Pistohl et al., 2008), where no explicit cues were provided to
initiate movement, which could enable more naturalistic control in
BMI applications. Here, we simultaneously recorded multiple motor
parameters for high degree-of-freedom (DOF) arm motion and
ECoG signals from multiple cortical areas during an asynchronous
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food-reaching task in monkeys, and we demonstrated successfully
that ECoG carried sufficient information for predicting continuous
high-DOF arm motion with performance similar to that of SUA-
based decoding systems (Wessberg et al.,2000; Carmena et al., 2003;
Lebedev et al.,2008). We also compared decoding performance over
months and showed that a single decoding model could be used for
months without recalibrating or sacrificing predictive accuracy. The
observed high accuracy and long-term stability show the advantages
of ECoG-based decoding in implementing chronic neuroprosthetic
devices for real-life applications.

MATERIALS AND METHODS

SUBJECTS AND MATERIALS

Customized multichannel ECoG electrode arrays (Unique Medical,
Japan) containing 2.1 mm diameter platinum electrodes (1 mm
diameter exposed from a silicone sheet) with an inter-electrode dis-
tances of 3.5 mm were chronically implanted in the subdural space
in two Japanese macaques (monkeys A and K) (Figure 1A). Thirty-
two electrodes were implanted in the right hemisphere, covering

from the prefrontal cortex (PFC) to the primary somatosensory
cortex in monkey A, and 64 electrodes were implanted in the left
hemisphere, covering from the PFC to the parietal cortex in mon-
key K. The reference electrode was also placed in the subdural
space, and the ground electrode was placed in the epidural space.
Electrical cables leading from the ECoG electrodes were connected
to Omnetics connectors affixed to the skull with an adaptor and
titanium screws. Monkey A had two implants that covered almost
the same cortical area during the study. The initial implant had
been working well, but the monkey damaged the connectors a few
weeks after the firstimplantation, and we implanted the ECoG array
again. Monkey A’s data in this study were collected from the second
implant (see details in Supplementary Methods in Supplementary
Material).

ELECTROPHYSIOLOGICAL AND BEHAVIORAL RECORDINGS

For monkey A, 13 experiments were performed with a Neuralynx
Digital Lynx data acquisition system (Neuralynx, USA) dur-
ing the initial 3-month period (corresponding data are denoted
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FIGURE 1 | Experimental design and decoding performance to detect 3D
hand positions. (A) Locations of the 32 electrodes in monkey A and the 64
electrodes in monkey K, which were identified by computed tomography (CT)
and magnetic resonance imaging (MRI). Reference electrodes are shown as

gray circles. (B) In the asynchronous food-reaching task, each monkey was
trained to reach for food offered by the experimenter in 3D space without explicit
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cues. The body-centered coordinates for measuring 3D hand positions from the
top-down viewpoint are shown. (C) Schematic diagram depicting the prediction
of a motor parameter M(1) from simultaneously recorded ECoG signals.
Examples of 1.1 s of raw ECoG signal from one electrode, the corresponding
scalogram, down-sampled scalogram matrix, and normalized scalogram matrix
are shown (bottom row).
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as A-DL), followed by 10 experiments with a Neuralynx Digital
Falcon telemetry data acquisition system during the following 5-
month period (A-DF). For monkey K, 12 experiments were per-
formed with a Cyberkinetics data acquisition system (Cyberkinetics
Neurotechnology Systems, USA) for 2 months (K-C). ECoG signals
were recorded at a sampling rate of 1 kHz per channel. The mon-
keys’ movements were captured at a sampling rate of 120 Hz by an
optical motion capture system (Vicon Motion Systems, USA). For
all experiments (1 = 23 for monkey A and n = 12 for monkey K),
each monkey wore a custom-made jacket with reflective markers
for motion capture affixed to the left and right shoulders, elbows,
and wrists. Each monkey’s head was restrained by a custom-made
helmet that fit perfectly and held the head in place. For some experi-
ments (n =5 for A-DF and n = 4 for K-C), five additional mark-
ers were placed on the reaching hand to determine the arm joint
angles (see below). All experimental and surgical procedures were
performed in accordance with protocols approved by the RIKEN
ethics committee.

EXPERIMENTAL PROCEDURE

In each experiment, the monkey was seated in a primate chair facing
the experimenter with head movement restricted. Each monkey was
trained to retrieve food (reaching duration ranged from 0.83 to
8.57 s in all experiments) fed by the experimenter 4.6 + 1.5 times/
min (mean * SD, n = 35 experiments, two monkeys) in 3D space
using the hand contralateral to the implanted hemisphere while the
monkey’s movement was captured by an optical motion capture
system (Figure 1B, also see Movie S1 in Supplementary Material).
The length of each experiment was 15 min: the first 10 min of data
were used for training the decoding model (training data) and the
last 5 min of data were used for validation (validation data).

DECODING PARADIGM AND DATA ANALYSIS

Signal preprocessing

ECoG signals of 1 kHz were band-pass filtered from 0.1 to 600 Hz,
and re-referenced using a common average reference (CAR) mon-
tage (see Figure 1C). Motion marker locations were down-sampled
to 20 Hz because the position data, which contained the charac-
teristics of the reaching motion, showed only negligible variance
in the spectra above 15 Hz. Body-centered 3D hand trajectories
(X: left-right, Y: forward—backward, Z: up—down) were calculated
by referencing the wrist position of the reaching hand with the
sagittal plane (Soechting and Flanders, 1992) (Figure 1B). Arm
motion was determined by transforming the eight markers into
7-DOF joint angles (shoulder adduction, shoulder internal rota-
tion, shoulder flexion, elbow flexion, pronation, wrist flexion, and
wrist abduction) based on a 3D-7DOF computational model for
primates (Chan and Moran, 2006). The time course of each motor
parameter was then normalized, to produce a standard z-score by
subtracting its mean and then dividing by its standard deviation.

Wavelet transformation

Time—frequency representation, or the scalogram, of the ECoG
signals for each electrode was generated by Morlet wavelet
transformation at 10 different center frequencies (10-150 Hz,
arranged in a logarithmic scale) with the half-length of the

Morlet analyzing wavelet set at the coarsest scale of seven sam-
ples (see schematics of decoding paradigm in Figure 1C). The
scalogram of time t was calculated from the ECoG signals from
t—1.1 s to t. The scalogram was then resampled at 10 time lags
(t— 100 ms, t — 200 ms,...,and t — 1 s) to form a 10 X 10 scalo-
gram matrix of time ¢. Considering edge effects in the scalogram
calculation, ECoG signals from 100 ms before t — 1 s to 100 ms
after + — 100 ms were used to avoid distorted data at time lags
t—1sand r— 100 ms. The 10 X 10 scalogram matrix of time t
was then normalized by calculating the standard z-score at each
frequency bin; thus, the same scale was shared across different
frequency bins.

Partial least squares regression

To predict a normalized motor parameter at time ¢, M(?), the nor-
malized scalogram matrices from all electrodes, were pooled to
form a high-dimensional predictor vector, Scaloch,ﬁﬁq‘lag( t), which
described the spatio-spectro-temporal information of the signals
during the previous 1 s at each electrode ch, frequency bin freq,
and time lag lag. The number of variables in the predictor vector
for monkey A was 3200 (32 electrodes, 10 frequency bins, and 10
time lags), and for monkey K was 6400. The goal of decoding was
to estimate a set of weights {a,, a } so M(t) could be modeled

ch,freg,lag
as their linear combination with Scalo , feg ,ﬂg( t):
M@t)=a,+ ZZZach,ﬁeqlﬂg -Scaloch‘ﬁeq,,ug t)+e(t) (1)

ch  freq lag

where a, is the intercept, a,,  is the weight for the scalogram
component at electrode ch, frequency freq, and time lag lag, and
€(t) is the residual error. Because of the high dimensionality of
Scalo,, . ..(t) and the high correlations between scalogram com-
ponents, multivariate partial least squares (PLS) regression was
used to estimate the lower dimensional latent structures to avoid
over-fitting (Wold et al., 1984). The PLS decoding model was cal-
culated from the training data, where 10-fold cross validation was
performed and the optimal number of PLS components was deter-
mined by the minimal predictive error sum of squares (PRESS): the
sum of the squared differences between predicted and observed val-
ues (Allen, 1974; Geladi and Kowalski, 1986). R* values (explained
variance), the ratio of variances of predicted and observed values,
were also calculated for comparison.

Spatial and temporal shuffling

To ensure that the decoding performance was achieved by utilizing
unique spatio-temporal structures in the brain signals, instead of
any systematic bias, a shuffling analysis was performed after each
decoding model was acquired. For each experiment, 20 surrogate
validation data sets were generated (10 with spatial shuffling and
10 with temporal shuffling), and the decoding model obtained
previously from the training data was used to make prediction on
these surrogate validation data. In spatial shuffling, the electrode
order of validation data was randomly shuffled, while the sample
order remained unchanged. In temporal shuffling, the sample order
of validation data was randomly shuffled, while the electrode order
remained unchanged.
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Spatio-spectro-temporal contributions
To quantify the spatio-spectro-temporal contributions of brain
activity for predicting each motor parameter, three different

where || represents the absolute value, W (ch) quantifies the
percentage spatial contribution of each recording electrode ch for
predicting across all frequency bins and time lags, W (freq) quanti-

quantities were calculated from the weights {a, . .} of each fiesthe percentage spectral contribution of each frequency bin freq
decoding model: across all recording electrodes and time lags, and W (lag) quantifies
the percentage temporal contribution of each time lag lag across
all electrodes and frequency bins.
2 2 ach ,freq,lag Z ]2‘ a[h,frcq,lag
W (ch)y=—tale . W, (freq) = e RESULTS
DI . DI . ASYNCHRONOUS DECODING OF 3D HAND POSITIONS WITH ACCURACY
ch freq lag ch freq lag SIMILAR TO THAT OF EXISTING DECODERS
We successfully decoded 3D hand trajectories, where the correla-
zh:z Aeh, freq lag tion coefficients (r) between observed and predicted trajectories
W, (lag) = —L (2)  were 0.71£0.11, 0.71 £0.13, and 0.75%0.08 (mean + SD, 5-min
222 Ay feg iag validation data, n = 35 experiments, two monkeys) for X-, Y-, and
ch freq lag Z-positions, respectively (Figure 2A). This accuracy is similar to that
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FIGURE 2 | Asynchronous decoding of 3D hand position by PLS
regression. (A) Representative example of prediction of X-, ¥, and Z-positions
of hand movements during a 5-min validation session. The average correlation
coefficients (r) between the predicted (blue) and observed (red) trajectories for
all positions are shown. (B) Determination of the optimal numbers of PLS

# of PLS components

components for the decoding models. R? values (green, mean + SD) and
PRESS (blue) for the decoding models with different numbers of PLS
components in two monkeys. For each experiment, the number of PLS
components for the optimal decoding model was determined as that with the
minimal PRESS (red).
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produced by predicting 3D hand trajectories using SUA in primates
(Wessberg et al., 2000; Carmena et al., 2003; Lebedev et al., 2008).
One representative example of 5 min of prediction of 3D hand posi-
tions is shown in Figure 2A, where still positions, movement onsets,
and different reaching trajectories were predicted (also see Movie S1
in Supplementary Material). After spatial shuffling, the correlation
coefficients between observed and predicted trajectories decreased
t00.08 £0.11,0.06 £ 0.12,and 0.11 £ 0.10 (n = 350 spatially-shuffled
data, two monkeys) for X-,Y-,and Z-positions, respectively. After tem-
poral shuffling, the correlation coefficients decreased to—0.01 £ 0.09,
—0.02 £0.10,and 0.03 £ 0.10 (# = 350 temporally-shuffled data) for
X-,Y-, and Z-positions, respectively. The predictive accuracies from
the surrogate validation data were significantly lower than those
from the original validation data (p < le — 6, for both spatially- and
temporally-shuffled data in all X-, Y-, and Z-positions, Wilcoxon
rank-sum test), which indicates that spatio-temporal structures in
the brain signals played an essential role in our decoding.

The optimal numbers of PLS components, or latent factors, for
decoding the models were 21.6 + 4.0 (R? = 0.29 % 0.04, 10-fold cross
validation) and 22.7 £ 7.3 (R* = 0.32 £ 0.11) for monkeys A (n = 23
experiments) and K (n = 12 experiments), respectively (Figure 2B).
These numbers were significantly lower than the total number of
variables included (3200 for monkey A and 6400 for monkey K).
In addition, even though the total number of variables included for
monkey K was double that for monkey A, the optimal numbers of
PLS components used did not differ significantly between monkeys
(p = 0.15, Wilcoxon rank-sum test). This indicates that a small por-
tion of the information carried in ECoG signals, representing the
latent structure independent of the original data’s dimensionality,
was sufficient for obtaining an accurate prediction. Examples of
the unique structures of these latent factors are shown in Figure S1
in Supplementary Material.

DURABLE AND STABLE DECODER USABLE FOR MONTHS WITHOUT ANY
DRIFT IN ACCURACY OR RECALIBRATION

Using the decoding model constructed just before the validation
data (same-day prediction), we acquired high predictive accuracies
that showed no significant decrease over months (about 2 months
for A-DL, 5 months for A-DF, and 2 months for K-C) (Figure 3A).
Fitting the correlation coefficients versus recording days with 1-
degree polynomials (slopes ranged between —0.08 and 0.02/month)
revealed no significant monotonic decrease in predictive accuracy
(p >0.25,|p| < 0.36, Spearman rank correlation test). This demon-
strated the long-term stability of the signal quality and the durabil-
ity of the recording system.

Next, we asked if the decoding model would produce similar
predictive accuracy with the data recorded days later (cross-day
prediction). The decoding model constructed from training data
of each experiment was used to predict all validation data in subse-
quent experiments, and the predictive accuracies were evaluated as
a function of duration between the model construction and predic-
tion (upper panels for each position in Figure 3B). For each block
of data collection with N experiments (N = 13,10, and 12 for A-DL,
A-DF, and K-C, respectively), the accuracies of every N cross-day
prediction with closest durations (which could be different models
predicting the same validation data or the same model predicting
different validation data) were compared with the accuracies of the

N same-day predictions (shown as darker symbols at the duration
of zero days), and the significance of their sharing the same median
was evaluated (lower panels for each position in Figure 3B). The
accuracies from any N cross-day predictions and the correspond-
ing N same-day predictions did not differ significantly (p > 0.01,
Wilcoxon rank-sum test). This indicates that the decoding model
could be used to predict hand position from the data collected
months later without compromising the accuracy.

The long-term stability of the predictive accuracy suggests
constancy in decoding models, which was supported by the high
correlations found between the weights of the decoding models
constructed from different days. For A-DL, the correlation coef-
ficients between the weights from all pairs of decoding models
were 0.52£0.12,0.50 £ 0.11,and 0.52 £ 0.11 (n = 78 pairs from 13
experiments) for X-, Y-, Z-positions, respectively. Those for A-DF
were 0.52+0.19, 0.57 £0.19, and 0.60 £ 0.16 (1 = 45 pairs from
10 experiments), and for K-C were 0.43 £0.11, 0.47 £0.13, and
0.65 % 0.11 (n = 66 pairs from 12 experiments).

SPATIO-SPECTRO-TEMPORAL INTEGRATION OF ACTIVITY ACROSS
MULTIPLE CORTICAL AREAS

We hypothesized that high predictive accuracy of the data acquired
from ECoG, even without signal resolution of single units, could be
produced by incorporating additional information that is usually
lacking in SUA-based decoding: the spatio-temporal integration
of activity not only at few local cortical regions, but across multi-
ple regions with more continuous coverage over a wide area. We
investigated further how our decoding models used the spatial,
spectral, and temporal contents of the ECoG data. For monkey A,
spatial contributions, W (ch), were significantly greater than their
median (p < 0.01, Wilcoxon signed-rank test, thick circles in Figure
4A) in the dorsal premotor cortex (PMd) for the X- and Y-positions
and in the ventral premotor cortex (PMv) for the Z-positions. For
monkey K, significant spatial contributions were found in the PMd
for the X- and Y-positions and in the primary motor cortex for the
Z-positions (Figure 4A). Spectral contributions, Wf(freq), signifi-
cantly greater than their median (p < 0.01, Wilcoxon signed-rank
test, asterisks in Figure 4B) were between 40 and 90 Hz (high-y
band) for all positions. Temporal contributions, W (lag), signifi-
cantly greater than their median (p < 0.01, Wilcoxon signed-rank
test, asterisks in Figure 4C) were found within 500 ms before the
predicted instant.

To examine the differences between decoding models for X-,Y-,
and Z-positions, the correlations between the weights of the decod-
ing models for different positions were evaluated (see the weights
of decoding models in Figure S2 in Supplementary Material).
Significant correlations were found between the decoding mod-
els for X- and Y-positions in A-DL (p < 0.01, n = 169 model pairs
from 13 experiments, Pearson’s linear correlation), A-DF (p < 0.01,
n =100 model pairs from 10 experiments), and K-C (p < 0.05,
n = 144 model pairs from 12 experiments). However, no significant
correlations were found between X- and Z-positions (p = 0.19
for A-DL, 0.22 for A-DE, and 0.51 for K-C) and between Y- and
Z-positions (p = 0.17 for A-DL, 0.35 for A-DE, and 0.38 for K-C).
This indicates that the different spatio-temporal integrations of
cortical activity were engaged in controlling hand trajectory in the
Z-direction (vertical) and in the X-Y plane (horizontal).
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FIGURE 3 | Long-term stability of decoding performance for same-day and
cross-day predictions. (A) Correlation coefficients (1) of same-day prediction after
implantation, shown with fitted 1-degree polynomials (lines) and error bounds that
contain at least 50% of the predictions (shaded). (B) Upper panels: correlation
coefficients of cross-day prediction with duration between the model construction
and prediction (light-color symbols), shown with medians of N consecutive data
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points (N =13, 10, and 12 for A-DL, A-DF, and K-C, respectively, see text) (lines)
and lower/upper quartiles (shaded) versus medians of corresponding durations.
Results of same-day predictions are also shown at duration = 0 days (dark-color
symbols), with their medians shown as horizontal lines. Lower panels: p-values
(pv) for comparisons of every N consecutive cross-day data points with N'same-
day predictions. The threshold of 0.01 is shown as a horizontal line.

DECODING OF JOINT ANGLES FOR HIGH-DOF ARM MOTION

To demonstrate that ECoG signals carry rich information about
multidimensional motor control, we investigated whether we could
decode arm orientations, calculated by a computational model that
transformed the motion-capture markers’ positions into 7-DOF joint
angles (Chan and Moran, 2006). High predictive accuracies were
obtained (average r for each joint angle ranged from 0.62 to 0.78 for

two monkeys, Figure 5A). The optimal numbers of PLS components
for the decoding model were 49.2 £ 8.0 (R* = 0.68 = 0.03, 10-fold
cross-validation) for A-DF (n =5 experiments) and 49.8£9.3
(R*=0.69£0.03) for K-C (n =4 experiments) (Figure 5B). The
optimal numbers of PLS components used did not differ signifi-
cantly (p = 0.94, Wilcoxon rank-sum test). Different cortical areas
contributed to different joint movements (Figure 5C).
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FIGURE 4 | Characteristics of the decoding models for 3D hand positions.
(A) Spatial contributions of different electrodes, W,(ch), for 3D hand positions.
Median WV.(ch) across decoding models obtained from different experiments are
shown (n =13, 10, and 12 for A-DL, A-DF, and K-C, respectively). For each
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frequency bins with contributions significantly greater than their median

(p < 0.01) are marked with asterisks. (C) Temporal contributions of different time
lags, W lag), for 3D hand positions. For each position, the time lags with
contributions significantly greater than their median (p < 0.01) are marked

with asterisks.

To examine the differences between decoding models for
7-DOF joint angles and the decoding models for 3D hand posi-
tions, the correlations between the weights of the decoding models
for each joint angle and each hand position were evaluated. For
K-C, none of the 21 pairs (seven joint angles, three hand positions)
correlated significantly (p > 0.21, n = 48 model pairs, 12 models
for each hand position and 4 models for each joint angle, Pearson’s
linear correlation). For A-DF, only the correlations between elbow
flexion and the Y-position and between wrist flexion and the Y-
position were significant (p < 0.01, 7 = 50 model pairs, 10 models
for each hand position and 5 models for each joint angle), and
none of the other 19 pairs correlated significantly (p > 0.13).
This indicates that the different spatio-temporal integrations

of cortical activity were engaged in controlling different motor
parameters and suggests further that there is an advantage in
exploiting the larger scale spatio-temporal integration of different
neuronal ensembles to enhance decoding performance.

DISCUSSION

We successfully demonstrated the long-term asynchronous decod-
ing of high-DOF arm kinematics in monkeys using ECoG signals.
Without explicit cues for instructing the subjects to start or stop
their actions, we successfully predicted 3D hand trajectories and
7-DOF arm joint angles with accuracy similar to that of existing
SUA-based decoders (Wessberg et al., 2000; Carmena et al., 2003;
Lebedev etal., 2008). Our ECoG-based decoder incorporated
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spatio-spectro-temporal integrations of activity across multiple
cortical areas and could be used for several months without any
drift in accuracy or recalibration.

INTEGRATION OF ACTIVITY ACROSS MULTIPLE CORTICAL AREAS

For decoding, each motor parameter at each point in time was mod-
eled as alinear combination of spatio-spectro-temporal components
of the ECoG signals during the previous 1 s. The decoding model was
estimated by multivariate PLS regression, where the lower dimen-
sional latent factors, each representing an axis in the predictor vari-
able space, were first identified. About 20 and 50 latent factors were
obtained for optimal decoding of 3D hand positions (Figure 2B) and
7-DOF joint angles (Figure 5B), respectively, and these were inde-
pendent of the subject and the original data’s dimensionality. This
suggests that these latent factors characterize the possible dynamic
bases for the control of arm motion (Figure S1 in Supplementary
Material). However, further analyses of latent factors across different
experiments and different subjects are required for clarification.

In the final decoding model, the significant contributions from
neurons in the premotor and motor cortices for decoding hand
movement were consistent with previous findings (Wessberget al.,
2000; Carmena et al., 2003; Lebedev et al., 2008). Figure 4 further
demonstrated that different spatio-spectro-temporal contributions
were employed in decoding models for predicting hand movement
in the Z-direction (vertical) and in the X-Y plane (horizontal).
This is consistent with studies of the kinematics and dynamics
for human arm motion that reported distinct controls for vertical
and horizontal arm movements (Soechting and Flanders, 1992;
Soechting et al., 1995). The differences in spatial contributions
between monkeys A and K might have resulted from their differ-
ent training levels or previous motor experience (Mitz et al., 1991;
Laubach et al.,2000). For spectral contributions (Figure 4B), high-
v band activity in the motor cortex has been found to associate
with different components of movement (preparation, initiation,
and maintenance) (Farmer, 1998), and has been reported widely
in ECoG/LFP/EEG/MEG studies of the directional and muscular
control of hand movement (Leuthardt et al., 2004; Rickert et al.,
2005; Ball et al., 2008; Waldert et al., 2008).

FUNCTIONAL MOTOR MAPPING OF ARM MOTION

Cortical functional maps of arm motion have been investigated
widely in lesion and electrical microstimulation studies in mon-
keys (Graziano et al., 2002a). However, these maps describe only
whether certain cortical circuits are involved in certain movement
controls, and evidence of how these cortical areas encode move-
ments is lacking. By contrast, the decoding of reaching, which illus-
trates how the brain controls hand movement dynamically, has
been studied in many cortical areas (Kalaska et al., 1997; Schall and
Thompson, 1999; Graziano et al., 2002b). However, most of these
studies focused only on specific cortical areas, whereas the interplay
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