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Brain–computer interfaces (BCIs) use 
brain signals to communicate a user’s 
intent (Wolpaw et al., 2002). Because these 
systems directly translate brain activity 
into action, without depending on periph-
eral nerves and muscles, they can be used 
by people with severe motor disabilities. 
Successful translation of BCI technology 
from the many recent laboratory demon-
strations into widespread and valuable clin-
ical applications is currently substantially 
impeded by the problems of traditional 
non- invasive or intracortical signal acqui-
sition technologies.

Non-invasive BCIs use electroencepha-
lographic (EEG) activity recorded from the 
scalp (Birbaumer et al., 1999; Pfurtscheller 
et al., 2000; Wolpaw et al., 2002; Millan Jdel 
et al., 2004; Wolpaw and McFarland, 2004; 
Blankertz et al., 2007; McFarland et al., 
2008). While non-invasive BCIs can support 
much higher performance than previously 
assumed (Wolpaw and McFarland, 2004; 
Müller and Blankertz, 2006; McFarland 
et al., 2008, 2010), such performance typi-
cally requires extensive user training and 
can also be variable. Intracortical BCIs use 
action potential firing rates or local field 
potential activity recorded from individual 
or small populations of neurons within the 
brain (Serruya et al., 2002; Taylor et al., 2002; 
Carmena et al., 2003; Shenoy et al., 2003; 
Santhanam et al., 2006; Donoghue et al., 
2007; Velliste et al., 2008). Signals recorded 
within cortex may encode more informa-
tion and might support BCI systems that 
require less training than EEG-based sys-
tems. However, clinical implementations 

are impeded mainly by the problems in 
achieving and maintaining stable long-term 
recordings from individual neurons and by 
the high variability in neuronal behavior 
(Shain et al., 2003; Donoghue et al., 2004). 
Despite encouraging evidence that BCI 
technologies can serve useful functions for 
severely disabled individuals (Kübler et al., 
2005; Hochberg et al., 2006; Nijboer et al., 
2008), these issues of non-invasive and 
action potential-based techniques in acquir-
ing and maintaining robust recordings and 
BCI control remain crucial obstacles that 
currently impede widespread clinical use 
in humans.

In consequence, a critical challenge in 
designing BCI systems for widespread clini-
cal application is the identification and opti-
mization of a BCI method that combines 
good performance with robustness. In the 
current absence of robust techniques to 
extract high-fidelity signals from EEG or to 
record activity from within the brain over 
prolonged periods, the use of electrocorti-
cographic (ECoG) activity recorded from 
the cortical surface could be a powerful 
and practical alternative. ECoG has higher 
spatial resolution than EEG (i.e., tenths of 
millimeters vs. centimeters, Freeman et al., 
2000; Slutzky et al., 2010), broader band-
width (i.e., 0–500 Hz, Staba et al., 2002, vs. 
0–40 Hz), higher amplitude (i.e., 50–100 μV 
maximum vs. 10–20 μV), much greater 
signal-to-noise ratio (Ball et al., 2009), 
and far less vulnerability to artifacts such 
as EMG (Freeman et al., 2003). In addition 
to these superior general characteristics, a 
number of human studies (Schalk et al., 
2007; Ball et al., 2008; Pistohl et al., 2008; 
Sanchez et al., 2008; Waldert et al., 2008; 
Gunduz et al., 2009; Kubanek et al., 2009) 
have recently shown that ECoG can pro-
vide information about movements that far 
exceeds that provided by EEG. Other studies 
(Leuthardt et al., 2004; Wilson et al., 2006; 
Schalk et al., 2008) demonstrated that this 
information in ECoG can be used to provide 

one- or two-dimensional BCI control with 
little training. In summary, these (predomi-
nantly human) studies have produced great 
excitement for ECoG recordings, because 
they demonstrate that ECoG can provide 
information about movements and other 
aspects of behavior that is in aspects rel-
evant to BCI performance on par with, and 
can even exceed, the information provided 
by single-neuron recordings.

While these studies demonstrated 
ECoG’s impressive capabilities, and while 
several other studies suggested that ECoG 
may have long-term robustness (Loeb et al., 
1977; Bullara et al., 1979; Yuen et al., 1987; 
Pilcher and Rusyniak, 1993; Margalit et al., 
2003), concrete quantitative evidence for 
ECoG’s long-term stability has been miss-
ing. The recent study by Chao et al. (2010) 
provided this critical piece of information. 
This study evaluated ECoG-based decod-
ing of hand position and arm joint angles 
during reaching movements. Data were 
recorded in two monkeys over a period of 
several months. This study confirmed and 
extended the previous finding that local 
field potentials recorded from the sur-
face of the brain can be used to accurately 
decode different kinematic parameters of 
limb movements. More importantly, it also 
provided two other pieces of information. 
First, the authors showed that decoding 
performance does not significantly degrade 
with time, which suggests that the signal-
to-noise ratio of ECoG recordings is robust 
over many months. Second, the authors also 
showed that there is no negative correla-
tion between decoding performance and the 
time between model generation and model 
testing, which suggests that the neural rep-
resentations that encode kinematic parame-
ters of reaching movements are stable across 
the months of study.

In conclusion, the study by Chao and 
colleagues is of critical importance to the 
whole field of BCI research. It justifies pre-
vious excitement for ECoG recordings, and 



Schalk Can ECoG support robust BCIs?

Frontiers in Neuroengineering www.frontiersin.org June 2010 | Volume 3 | Article 9 | 2

fingers using electrocorticographic signals in humans. 
J. Neural Eng. 6, 66001.

Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., 
Pawelzik, H., Schalk, G., McFarland, D. J., Birbaumer, 
N., and Wolpaw, J. R. (2005). Patients with ALS can use 
sensorimotor rhythms to operate a brain–computer 
interface. Neurology 64, 1775–1777.

Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., 
and Moran, D. W. (2004). A brain–computer inter-
face using electrocorticographic signals in humans. 
J. Neural Eng. 1, 63–71.

Loeb, G. E., Walker, A. E., Uematsu, S., and Konigsmark, 
B. W. (1977). Histological reaction to various conduc-
tive and dielectric films chronically implanted in the 
subdural space. J. Biomed. Mater. Res. 11, 195–210.

Margalit, E., Weiland, J., Clatterbuck, R., Fujii, G., Maia, 
M., Tameesh, M., Torres, G., D’Anna, S., Desai, S., 
Piyathaisere, D., Olivi, A., de Juan, E. J., and Humayun, 
M. (2003). Visual and electrical evoked response 
recorded from subdural electrodes implanted above 
the visual cortex in normal dogs under two methods 
of anesthesia. J. Neurosci. Methods 123, 129–137.

McFarland, D. J., Krusienski, D. J., Sarnacki, W. A., and 
Wolpaw, J. R. (2008). Emulation of computer mouse 
control with a noninvasive brain–computer interface. 
J. Neural Eng. 5, 101–110.

McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2010). 
Electroencephalographic (EEG) control of three-
 dimensional movement. J. Neural Eng. 7, 036007.

Millan, J. R., Renkens, F., Mourino, J., and Gerstner, W. 
(2004). Noninvasive brain-actuated control of a 
mobile robot by human EEG. IEEE Trans. Biomed. 
Eng. 51, 1026–1033.

Müller, K. R., and Blankertz, B. (2006). Toward noninva-
sive brain–computer interfaces. IEEE Signal Process. 
Mag. 23, 126–128.

Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, 
T., Furdea, A., Halder, S., Mochty, U., Krusienski, D. 
J., Vaughan, T. M., Wolpaw, J. R., Birbaumer, N., and 
Kubler, A. (2008). A P300-based brain–computer 
interface for people with amyotrophic lateral sclero-
sis. Clin. Neurophysiol. 119, 1909–1916.

Pfurtscheller, G., Guger, C., Muller, G., Krausz, G., and 
Neuper, C. (2000). Brain oscillations control hand 
orthosis in a tetraplegic. Neurosci. Lett. 292, 211–214.

Pilcher, W., and Rusyniak, W. (1993). Complications of 
epilepsy surgery. Neurosurg. Clin. N. Am. 4, 311–325.

Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., 
and Mehring, C. (2008). Prediction of arm move-
ment trajectories from ECoG-recordings in humans. 
J. Neurosci. Methods 167, 105–114.

Sanchez, J. C., Gunduz, A., Carney, P. R., and Principe, J. 
C. (2008). Extraction and localization of mesoscopic 
motor control signals for human ECoG neuropros-
thetics. J. Neurosci. Methods 167, 63–81.

Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., and Shenoy, 
K. V. (2006). A high-performance brain–computer 
interface. Nature 442, 195–198.

Schalk, G., Kubanek, J., Miller, K. J., Anderson, N. R., 
Leuthardt, E. C., Ojemann, J. G., Limbrick, D., Moran, 
D., Gerhardt, L. A., and Wolpaw, J. R. (2007). Decoding 
two-dimensional movement trajectories using elec-
trocorticographic signals in humans. J. Neural Eng. 
4, 264–275.

more forcefully suggests a realistic trajectory 
toward robust, powerful, and widespread 
clinical applications of BCI technology.
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