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By electrically stimulating the spinal cord, it is possible to activate functional populations
of neurons that modulate motor and sensory function. One method for accessing these
neurons is via their associated axons, which project as functionally segregated longitudi-
nal columns of white-matter funiculi (i.e., spinal tracts). To stimulate spinal tracts without
penetrating the cord, we have recently developed technology that enables close-proximity,
multi-electrode contact with the spinal cord surface. Our stretchable microelectrode arrays
(sMEAs) are fabricated using an elastomer polydimethylsiloxane substrate and can be
wrapped circumferentially around the spinal cord to optimize electrode contact. Here,
sMEAs were used to stimulate the surfaces of rat spinal cords maintained in vitro, and
their ability to selectively activate axonal surface tracts was compared to rigid bipolar tung-
sten microelectrodes pressed firmly onto the cord surface. Along dorsal column tracts,
the axonal response to sMEA stimulation was compared to that evoked by rigid microelec-
trodes through measurement of their evoked axonal compound action potentials (CAPs).
Paired t -tests failed to reveal significant differences between the sMEA’s and the rigid
microelectrode’s stimulus resolution, or in their ranges of evoked CAP conduction veloci-
ties. Additionally, dual-site stimulation using sMEA electrodes recruited spatially distinct
populations of spinal axons. Site-specific stimulation of the ventrolateral funiculus – a
tract capable of evoking locomotor-like activity – recruited ventral root efferent activity that
spanned several spinal segments. These findings indicate that the sMEA stimulates the
spinal cord surface with selectivity similar to that of rigid microelectrodes, while possess-
ing potential advantages concerning circumferential contact and mechanical compatibility
with the cord surface.
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INTRODUCTION
Recovery of motor function lost to disease or injury is an
objective shared by approximately 255,000 individuals in the
United States living with spinal cord injury (NSCISC, 2008).
This goal is also shared by 1.5 million Americans living with
motor-control impairing neurological disorders (National Insti-
tute of Neurological Disorders and Stroke, 2009) as well as
the five million individuals experiencing temporary or perma-
nent loss of function due to stroke (Rosamond et al., 2008).
For over 40 years, electrical stimulation technologies have been
developed to elicit and control motor activity such as upper
and lower extremity movement, bladder and bowel control,
and respiratory pacing (Peckham and Knutson, 2005). Most of
these devices activate each muscle or peripheral nerve separately,
and are referred to as functional electrical stimulation (FES)
devices.

A trade-off that traditional FES devices make for their direct
muscle and peripheral nerve access is that their interfaces bypass
the upstream spinal circuitry that naturally creates adaptable,
multiple-muscle movements (Mushahwar and Horch, 1997).
Importantly, experiments in spinal cord transected cats and

rats have shown that the spinal neurons that coordinate motor
behaviors such as locomotion remain intact following discon-
nection from descending command (Guertin and Steuer, 2009)
and are accessible via surface stimulation (Gerasimenko et al.,
2008; Courtine et al., 2009). Spinal cord epidural stimulation
(ES) approaches to reactivate movement have utilized some of
this remaining spinal circuitry to evoke coordinated movements
similar to volitional gait (Courtine et al., 2009). In ES for evok-
ing lower limb movement, electrodes are typically placed near the
dorsal column, and are thought to activate low threshold, dorsal
root (sensory) afferents as well as spinal neurons in the dorsolat-
eral funiculus (DLF; Gerasimenko et al., 2008). Spinal neurons can
also be activated via intraspinal microstimulation (ISMS), which
involves insertion of stimulating microwires into gray matter lam-
inae of the lumbosacral enlargement. This method has been used
to recruit hindlimb activity in a selective, graded, and control-
lable manner (Tresch and Bizzi, 1999; Saigal et al., 2004). ISMS
of the spinal cord has been shown to directly and indirectly acti-
vate motoneurons via intraspinal axons (Tresch and Bizzi, 1999)
as well as the axons of sensory afferents whose collaterals extend
many spinal segments (Gaunt et al., 2006).
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For both epidural and intraspinal stimulation, the axons of
neurons are activated at lower thresholds than their associated
cell bodies (Ranck, 1975; Gustafsson and Jankowska, 1976; Gaunt
et al., 2006). Conveniently, the axons of most spinal neurons have
collaterals located in longitudinal white matter tracts surrounding
the central gray matter (i.e., spinal tracts), and have topographic
relationships to distinct functional regions in gray matter lam-
inae (Hochman, 2007). Direct contact and stimulation of these
spinal tracts, therefore, has the potential to recruit functional sub-
populations of spinal neurons. The ability of spinal cord surface
stimulation to elicit coordinated motor neuron activity patterns,
including fictive locomotion, has been demonstrated in the in vitro
isolated spinal cords of neonatal rats (Iwahara et al., 1991; Mag-
nuson and Trinder, 1997; Todd et al., 2009). In these studies, glass
or metal electrodes were pressed directly onto the spinal cord
surface at either the lower-thoracic ventrolateral funiculus (VLF;
Magnuson and Trinder, 1997; Antonino-Green et al., 2002), the
lumbosacral enlargement’s dorsal column (Iwahara et al., 1991),
the lumbosacral enlargement’s ventral funiculus (Iwahara et al.,
1991), or the sacral spinal dorsal column (Todd et al., 2009).

Regionally precise stimulation of these and other spinal cord
surface locations has the potential to enable a more controlled
study and regulation of evoked neural activity. Selective surface
stimulation can be facilitated by electrodes placed in very close
contact to the interfaced neural tissue (Rutten, 2002; Rodgers
et al., 2007). In addition, high spatial resolution MEAs have been
shown to facilitate stimulus patterns that use spatiotemporal adap-
tation as well as fatigue-minimizing interleaving (McDonnall et al.,
2004).

Safety constraints must be determined and followed when plac-
ing close-proximity, high-resolution MEAs on neural tissue; for
example, the charge/phase and charge density should be below
pre-determined thresholds found to be harmful to the interfaced
biology (Merrill et al., 2005). Additionally, mechanical damage by
either the electrodes or their substrate must be minimized. As the

nervous system is comprised of soft tissue, arrays of rigid micro-
electrodes have the potential to produce significant mechanical
damage. Tissue/electrode property mismatches – including dif-
ferences in mechanical compliance, damping, and density – are a
particularly significant issue for long-term implantable devices.
Consequences range from reduced interface integrity to irre-
versible loss of neuronal function due to scarring. Such damage
has been evaluated and quantified for several types of MEAs (Biran
et al., 2005; Leventhal et al., 2006; McConnell et al., 2009), and
techniques for its reduction or prevention continue to be explored
(Grill et al., 2009).

With the above-mentioned constraints in mind, we have devel-
oped an elastomer-substrate MEA technology for conformal con-
tact with the spinal cord surface (Guo et al., 2007; Meacham
et al., 2008; Guo and DeWeerth, 2009b; Figure 1A). This stretch-
able MEA (sMEA) is comprised of gold traces and electrodes
that are photo-patterned between layers of thin-film polydi-
methylsiloxane (PDMS). PDMS is a gas-permeable elastomer with
well-characterized biocompatibility (Belanger and Marois, 2001;
Peterson et al., 2005; Guven et al., 2006) and expanding use as a
microfluidic and cell-interfacing substrate. In addition, its elastic-
ity is orders of magnitude greater than more traditional flexible
electrode array materials, including parylene and polyimide (Yang
et al., 1998; Armani et al., 1999; Rousche et al., 2001; Table 1).
To further isolate the space between electrode and interfaced tis-
sue, each electrode is surrounded by a raised, conical isolation well
(Figure 1B; Guo et al., 2010). The impedance profiles of these elec-
trodes compare favorably to those of rigid microelectrodes used
for stimulation and recording of neurons (Guo et al., 2010), and
iterations of this design have been shown to maintain electrical
connectivity during both stretching (Meacham et al., 2008) and
bending (Guo and DeWeerth, 2010).

In the following experiments,we hypothesize that the sMEA can
stimulate spinal cord surface tracts with axonal selectivity that is
the same as that evoked by a rigid, bipolar microelectrode pressed

FIGURE 1 |The polydimethyl siloxane (PDMS)–substrate MEA with

conical isolation wells. The configuration used for these experiments has
five electrodes. (A) Photograph of the stretchable MEA (sMEA), indicating the
location of cord-interfacing electrodes, traces, and contacts to external
stimulating hardware. The black square over the electrodes indicates the
approximate region for (B). (B). Scanning electron micrograph of the exposed

gold stimulating electrodes. The raised PDMS wells surrounding each
electrode were designed to further isolate the space between a given
electrode and its interfaced soft tissue surface. (C) Scanning electron
micrograph of the tungsten rigid microelectrode (Harvard Apparatus, Inc.),
bipolar configuration, used as control comparison for selective stimulation of
the spinal cord surface.
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Table 1 | Comparison ofYoung’s Moduli for MEA (multi-electrode

array) substrates and spinal cord.

Material Young’s modulus (stiffness)

Parylene 4–4.5 GPa (Yang et al., 1998)

Polyimide 2.3–2.8 GPa (Rousche et al., 2001)

PDMS 0.05–1.79 MPa (Armani et al., 1999; Brown et al., 2005)

Spinal Cord 0.1–1.4 MPa (Mazuchowski and Thibault, 2003)

directly onto the cord. To test our hypothesis, we wrap sMEAs
around isolated young rat spinal cords maintained in vitro, with
electrodes overlying the dorsal surface for bipolar stimulation.
Stimulus selectivity is quantified by measuring the orthogonal
(lateral) spread of activated white matter tracts, as represented
by evoked tract compound action potentials (CAPs).

Rigid microelectrodes pressed firmly upon – but not
penetrating – the cord are used as a comparison because of their
well-established use in experimental neurophysiology protocols
requiring selective surface stimulation (Loeb et al., 1995). We also
compare sMEA vs. rigid microelectrode’s ability to recruit axons of
increasingly slower conduction velocities as a function of electrode
proximity and stimulus magnitude.

We then evaluate the ability of dual-site sMEA stimulation to
activate distinct axonal tracts, and the ability of single-pulse sMEA
stimulation to evoke motoneuron activity in ventral roots associ-
ated with hindlimb flexor and extensor movements (Kiehn and
Kjaerulff, 1996).

MATERIALS AND METHODS
The spinal cords of 20 Sprague-Dawley young rats (postnatal
days 10–14) were isolated and maintained in vitro for sMEA and
rigid electrode interfacing and evaluation. All animal procedures
were performed in accordance with policies of the Association
for the Assessment and Accreditation of Laboratory Animal Care
International and approved by Emory University’s Institutional
Animal Care and Use Committee. Each rat was administered 10%
wt./vol. urethane (2.0 mg/kg injected intraperitoneally) and, fol-
lowing confirmation of anesthesia, submerged in an ice slurry
for 5 min to decrease body temperature. Following subsequent
decapitation and evisceration, the cervical-to-sacral spinal cord
was isolated along with ventral and dorsal roots and placed in
an oxygenated (95% O2, 5% CO2) bath of artificial cerebrospinal
fluid (aCSF, in mM: NaCl 128; KCl 1.9; D-glucose 10; MgSO4 1.3;
CaCl2 2.4; KH2PO4 1.2; and NaHCO3 26). Further isolation, data
collection, and analysis procedures were specific to experiments
and are described in the following sections.

PREPARATION FOR MEA-SPINAL CORD INTERFACING
The fabrication steps for the conical-well sMEA technology have
been reported previously (Guo et al., 2010). Briefly, our fabrication
process involves lift-off patterning of gold features onto a PDMS
substrate cured on a glass slide, lithographically defining sacrificial
posts where electrode and contact pad openings are to be made in
assisting the formation of conical wells, covering the sample with

another thinner PDMS layer for encapsulation, and then removing
the sacrificial posts to expose the electrodes and contact pads.

The sMEA substrate thickness is approximately 80 μm, with
the isolation wells surrounding each electrode possessing an addi-
tional height of 40 μm. The exposed electrode surfaces are each
approximately 100 μm in diameter, and minimum inter-electrode
spacing (between electrodes in the same row) is 230 μm (Guo et al.,
2010; Figure 1). Fabrication, measurement, and imaging of the
sMEAs were undertaken using the Microelectronics Research Cen-
ter core facility at Georgia Institute of Technology. A five-electrode
configuration was chosen for these experiments; in related work,
eight-electrode version of the sMEA with integrated packaging has
also been implemented successfully (Guo and DeWeerth, 2009a).

Prior to in vitro testing, each sMEA was treated briefly with
oxygen plasma and stored in deionized water for preservation
of hydrophilicity (Guo et al., 2010). Contacts on the MEA were
adapted to leads for the MCS STG-2008 stimulator (MultiChan-
nel Systems) using 32 AWG wires (Belden, Inc.). These wires were
bonded to each contact using conductive epoxy (CircuitWorks
CW2400) and sealed with a thin layer of PDMS (Sylgard 184,
Dow Corning). PDMS tabs were cut out of the sMEA substrate
on either side of the five-electrode exposures prior to interfacing.
These tabs facilitated conformal attachment of the sMEA to a sin-
gle segment of the spinal cord, and enabled a snug, customized
fit as the wrapped around tab could be threaded through an oval-
cut opening in the opposite side (Figure 2). The sMEA was then
wrapped around a spinal thoracic segment with the exposures
facing inward.

ELECTROPHYSIOLOGY: WHOLE-CORD EXPERIMENTS
The first series of experiments assessed the degree to which adja-
cent axonal tracts were activated by single-site surface stimulation
by the sMEA, as compared to that evoked by a rigid tung-
sten microelectrode placed directly onto the same longitudinal
tract (Figure 2). Immediately following isolation, in vitro cords
were secured using insect pins (1.0 mm, Fine Science Tools) in a
Sylgard-coated Petri dish containing cold (4˚C), oxygenated aCSF.
Dura was carefully and thoroughly removed, and the cord was
given an hour to equilibrate at room temperature before further
experimentation.

To stimulate the cord, sMEA electrodes were placed directly on
the center of the dorsal column at thoracic levels 6, 7, or 8. For
comparison, a conventional tungsten bipolar electrode (conical-
shaped exposed tip with base diameter 5 μm, exposed tip height
25 μm, 50–100 μm inter-electrode distance; Harvard Apparatus,
Inc.) was pressed firmly onto – but not penetrating – the cord sur-
face immediately caudal to the stimulating sMEA electrode. For all
experiments, the tungsten electrode was placed at the same, fixed
(approximately 45%) angle to the spinal cord to ensure consistent
amount of electrode contact. To maximize the probability that
this rigid control electrode position was activating the same lon-
gitudinal tract as the sMEA electrode, both electrode types were
positioned to evoke a maximal CAP response on the same caudal
tract, as confirmed with a surface recording electrode (Figure 2).

The dorsal column was chosen because its axon composition
is well-characterized and because it possesses architecture com-
prised of mostly parallel tracts (Willis and Coggeshall, 2004). The
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FIGURE 2 | Experimental setup for measuring degree of lateral

stimulus spread (spatial selectivity). (A) Schematic of setup. Studies
were performed to demonstrate the capacity of the sMEA to activate a
specific region of longitudinally oriented axonal bundles (spinal tracts) in the
in vitro, isolated spinal cord of postnatal days 10–14 rats. Single-site sMEA
stimuli were delivered to the surface of the cord (thoracic levels 6–8)
and the evoked compound action potential (CAP) response was recorded
on adjacent white matter tracts located 10–15 mm (approximately
eight spinal segments) caudal to the site of activation. A rigid tungsten
microelectrode stimulating the same longitudinal tract was used as a

comparison. (B) Photograph of sMEA and tungsten electrode positions on
cord surface. The sMEA was wrapped, exposures facing inward, around the
spinal cord, and delivered bipolar stimuli between the second and third
electrodes from the left. Dotted line shows alignment of bipolar stimulus
locations for the two electrode types (sMEA and tungsten). (C) Photograph of
in vitro setup showing recording location. White arrow points to glass
suction recording electrode tip, which was moved in 50 μm lateral
increments to measure CAPs evoked from the stationary sMEA and rigid
tungsten electrodes. Bar on cord shows lateral range of recordings
(>700 μm).

dorsal column is primarily responsible for conveying ascending
proprioceptive, fine touch, and vibration information from pri-
mary afferents and a class of ascending tract neurons. It also
contains Aδ and unmyelinated C visceral afferents (Willis et al.,
1999). It has been shown that, in the adult rat dorsal column, at
least 2/3 of the axons in the dorsal column are myelinated Aα, Aβ,
or propriospinal fibers with diameters of 1–10 μm, and that the
remaining 1/3 of axons are Aδ or C/unmyelinated propriospinal
fibers with diameters of 0.2–1 μm (Chung and Coggeshall, 1983;
Patterson et al., 1989). In the juvenile rat, however, the composition
of the dorsal column has a higher ratio of unmyelinated-to-
myelinated fibers (Chung and Coggeshall, 1987). To our knowl-
edge, activation threshold in the juvenile rat dorsal column has not
been investigated previously. However, the activation thresholds
for these afferents within the peripheral nerve have been esti-
mated in rats in this age range in vitro where it has been shown
that they are recruited in the order of Aαβ, Aδ, and C with con-
stant current stimulation intensities of 50 μA/50 μs, 500 μA/50 μs
500 μA/500 μs, respectively (Thompson et al., 1990). Associated
conduction velocities for these afferent fiber groups in peripheral
nerve have been reported as 2.4–6.7 (Aαβ fibers), 0.6–4.3 and (Aδ

fibers), and 0.3–0.5 m/s (unmyelinated C fibers; Thompson et al.,
1990).

For all white matter tract selectivity studies, the delivered stim-
uli were single, charge-balanced, 500 μs duration current pulses
using adjacent electrodes (160 μm inter-electrode distance for
sMEA, 50–100 μm inter-electrode distance for rigid tungsten
bipolar electrode). A current (vs. voltage) delivery modality was
employed based on evidence that regulated current waveforms
guarantee generation of electric fields that are independent of elec-
trode polarization (Guo and DeWeerth, 2009a). A charge-balanced
square wave pulse was used to minimize possible charge injection
damage to tissue (Merrill et al., 2005). The minimum current value
at which a CAP was visible on any distal white matter tract was
defined as the threshold stimulus value (T). Amplitude multiples
of these threshold values (1.0–2.0T, in 0.2T increments) were used
to stimulate the cord to evoke increasingly stronger evoked CAPs,
and this series of stimuli were repeated as the recording electrode
was moved incrementally across the surface of the cord.

To measure activation of axonal tracts, a single glass record-
ing suction electrode (40–50 μm internal diameter; described in
more detail below and shown in Figure 2) was used to record
evoked CAPs in 50 μm lateral increments across the cord sur-
face (MO-10 One-axis Oil Hydraulic Micromanipulator, Narishige
International USA). This electrode was placed 10–15 mm caudal
to the stimulation site (typically spinal lumbar level L2) to allow
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for temporal separation of stimulus artifact and the evoked CAP.
A reference ground electrode was placed in the bath at the caudal
end of the spinal cord. For a subset of these experiments, an addi-
tional, adjacent pair of sMEA electrodes was also used to stimulate
the cord. This was done to determine the resolution of white mat-
ter tract selectivity achievable between adjacent sMEA electrodes
(bipolar configuration).

ELECTROPHYSIOLOGY: HEMISECTED SPINAL CORD
For the second series of experiments, which evaluated motoneuron
responses to sMEA surface stimulation, cord hemisections were
performed to ensure sufficient surface area exposure for complete
oxygenation of all spinal gray matter. Mid-sagittal hemisection was
accomplished using 0.10 mm diameter insect pins (light brushing
of the cord with the sharp end) and was performed immediately
after isolation and placement of the cord into a bath of ice-cold,
oxygenated, high sucrose-containing aCSF (in mM: sucrose 250;
KCl 2.5; NaHCO3 26; NaH2PO4 1.25; d-glucose 25; MgCl2 3;
CaCl2 1). Following hemisection, the spinal cord was placed in
room temperature, oxygenated aCSF and allowed to equilibrate
for at least 1 h before commencement of sMEA testing. Through-
out the experiments that followed, the viability of spinal neurons
was monitored intermittently by evaluating the magnitude of the
reflex at the spinal cord lumbar level 5 (L5) ventral root evoked by
stimulation of dorsal root L5.

Following equilibration of the hemisected cord, the sMEA was
wrapped around the cord’s lateral surface, and its electrodes (bipo-
lar configuration) were used to stimulate the surface of 12th tho-
racic segment along the DLF, lateral funiculus (LF), and VLF. These
spinal tract regions contain a combination of ascending, descend-
ing, and propriospinal axonal tracts of importance to movement
coordination as well as sensory transmission (Davidoff, 1983; Loy
et al., 2002; Noga et al., 2003). Single, monophasic current pulses
were applied at each of three electrode pair sites, using minimum
current values required to elicit a visible evoked response on either
the recorded ventral roots or on that tract’s recorded surface CAP.
For recording, glass suction electrodes were placed on the ven-
tral root at lumbar level 2 (L2), the ventral root at lumbar level
5 (L5), as well as on the surface of the spinal cord at the 6th
lumbar level DLF and VLF. Previous work has shown that record-
ings from ventral roots L2 and L5 are predominantly associated
with hindlimb flexor (L2) and extensor (L5) motor output, respec-
tively (Kiehn and Kjaerulff, 1996). Ventral root recording was
accomplished using bipolar glass suction electrodes (90–150 μm
internal diameter glass, silver chlorided wire differential record-
ing); surface recording electrodes had smaller internal diameter
(40–50 μm).

DATA COLLECTION AND ANALYSIS
All extracellular responses were amplified by 10,000 and recorded
using pClamp data acquisition software (Axon Instruments, now
part of MDS Analytical Technologies). For a given stimulus ampli-
tude and electrode type, 7–10 trials of spinal cord responses were
recorded. The strength of the evoked responses for both CAPs
and ventral root responses was quantified via MATLAB routines
that rectified and integrated the signal for the time window of
100 ms post-stimulus, starting immediately after the end of a given

stimulus artifact. To adjust for baseline noise, a 100-ms window of
rectified, integrated pre-stimulus recording was subtracted from
each value.

For selectivity comparisons across animals, values were also
amplitude-normalized such that the maximal response was equal
to 1. Visual verifications of response onset and offset values were
performed for each trial used in analysis, and the consistency of
response across trials was also verified visually. The time to onset
and duration of a given response was calculated using a MATLAB
detection algorithm, which used a combination of threshold detec-
tion and time windowing to identify the onset and offset of a given
response. Values for delay and duration of evoked response were
subsequently used, in combination with distance measurements,
to calculate axonal fiber conduction velocities. When appropriate,
paired Student’s t -tests with two-tailed distribution were used to
statistically compare spinal cord responses to each of the electrode
methodologies.

RESULTS
In the evaluation of in vitro stimulation efficacy of the sMEA,
five different characteristics were assessed: charge density required
for threshold activation of CAPs, spatial selectivity, axonal
conduction-velocity selectivity, dual-site stimulus precision, and
ability to recruit motoneurons. Spatial selectivity was defined as
the ability of single-site stimulation to activate axons with a highly
localized pattern comparable to conventional rigid stimulating
electrodes.

Axonal conduction-velocity selectivity was defined as the
sMEA’s ability to stimulate axonal fibers of incrementally lower
conduction velocities as a function of stimulating electrode prox-
imity and current amplitude. Dual-site stimulus precision was
defined as the degree to which adjacent electrodes could discrimi-
nate between activation of parallel tracts of axons. Ability to recruit
motoneurons was defined as the sMEA’s ability to evoke motor
output via surface spinal tract stimulation, as measured by ventral
root responses associated with hindlimb flexor and extensor activ-
ity (Kiehn and Kjaerulff, 1996). The following sections describe
the results of these analyses, and demonstrate that the sMEA can
be used to stimulate spinal tracts in a precise and controllable
manner.

CHARGE AND CURRENT DENSITY COMPARISON
The minimum current required to evoke a detectable CAP on
a recording electrode placed on the same longitudinal axonal
tract (central–dorsal column) was evaluated for the sMEA and
compared to those required for the rigid tungsten electrode. The
threshold current required for the sMEA was found to be signifi-
cantly greater than that required for the rigid electrode (153 ± 109
vs. 47 ± 24 μA, 500 μs biphasic pulses; paired Student’s t -test:
p = < 0.01, n = 16). However, the surface area of the sMEA elec-
trode was an order of magnitude greater than that of the rigid tung-
sten microelectrode (7,854 μm2 vs. maximum of 400 μm2, assum-
ing total electrode tip contact with the cord surface). As a result,
the charge density required by the sMEA to elicit a minimum CAP
(972 ± 696 μC/cm2) was significantly less than that required for
the rigid tungsten microelectrode (5,910 ± 3039 μC/cm2; paired
Student’s t -test: p = < 0.01).
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SPATIAL STIMULUS RESOLUTION
The spatial resolution of single-site sMEA stimulation was mea-
sured by evoking CAPs on surface spinal tracts and measuring the
progressive bilateral reductions in CAP amplitude with orthogonal
(lateral) distance from the site of maximal activation (Figure 2).
For the 13 spinal cords tested, the evoked CAPs were recorded
at orthogonally incremented locations from the site of maximal
activation, approximately eight spinal segments caudal to the stim-
ulation site. The sMEA and rigid tungsten electrodes were used to
stimulate the cord surface at incrementing multiples of threshold
(T–2T, in 0.2T increments).

Compound action potential magnitude die-off was plotted as
a function of lateral distance from site of maximal spinal tract
activation in order to compare the stimulus resolution proper-
ties of both electrode types (Figure 3A). Paired t -tests failed to
reveal significant differences in the sMEA’s vs. rigid microelec-
trode’s evoked CAPs’ stimulus resolution. For both array and rigid
electrode, increasing the stimulus amplitude increased the mag-
nitude of CAP responses in a graded manner. These gradations
appeared to be more evenly spaced in the case of rigid microelec-
trode stimulation, which may indicate a greater consistency in their
electrode-to-axon distance due to rigid microelectrode flattening
of the interfaced cord.

To determine overall resolution of lateral axonal tract acti-
vation, the CAP responses evoked by sMEA and rigid tungsten

electrode stimulation at 1–2T ranges (0.2T increments) were
magnitude-normalized such that all maximal responses were equal
to 1 (Figure 3B). The magnitudes of evoked CAPs for the sMEA
and the rigid electrode both decreased to below 50% within
approximately 100 μm of either side of the site of maximal spinal
tract activation.

AXONAL THRESHOLD SELECTIVITY
We further tested the sMEA’s ability to activate spinal axons in a
controlled manner by assaying recruitment of higher-threshold
axons as a function of electrode proximity (n = 13). Slower-
conducting (smaller diameter) axons are known to be recruited
at incrementally higher thresholds than faster-conducting (larger
diameter) axons (Hursh, 1939); in this way, axonal conduction-
velocity selectivity can help characterize this technology’s ability
to stimulate white matter axons in inverse order of their axon
diameter.

Minimum conduction velocities (m/s) for the evoked CAPs
were calculated using the measured distance between stimu-
lating and recording electrodes and the latency of the slowest
evoked responses at offset (Figure 4A). Because of the reduced
temperature’s slowing effect on axonal conduction-velocity, the
conduction velocities evoked by T and 2T stimulation using our
present in vitro setup were not directly comparable to ranges
reported in vivo at body temperature for Aβ fibers (16–36 m/s),

FIGURE 3 | Spatial stimulus selectivity of sMEA vs. tungsten

microelectrode. The magnitude of evoked compound action potentials
(CAPs; μV × ms) on the central–dorsal column surface was measured and
then plotted over lateral distance from site of maximal CAP response (i.e., the
longitudinal location of the stimulating electrodes; n = 13). CAP response
magnitudes were calculated using the rectified, integrated, and
baseline-subtracted responses for a fixed time window following the stimulus
artifact. These values were then averaged over 10 trials for a given recording

site on the dorsal column. Standard error bars are shown. (A) Comparison of
CAP magnitude over lateral distance from site of maximal activation with
sMEA (top) and tungsten electrodes (bottom) at multiple stimulus intensities.
(B) Magnitude-normalized comparison of lateral spread of axonal tract
activation for sMEA and tungsten electrodes. The magnitudes of evoked
CAPs for the MEA electrode pair and the rigid electrode each decreased to
below 50% within approximately 100 μm of either side of the site of maximal
activation.
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FIGURE 4 | Recruitment of slower-conducting axonal fibers: sMEA vs.

tungsten microelectrode. Minimum conduction velocities were calculated
for dorsal column CAPs evoked by single-site sMEA and tungsten
microelectrode stimulation at threshold (T; n = 13). (A) Example recordings of
sMEA-evoked CAPs. The upper CAP was recorded on the longitudinal site of
maximal recorded response (i.e., site of maximal activation) and the lower

CAP was recorded on a white matter tract 100 μm lateral to the site of
maximal activation. Arrows indicate onset of stimulus artifact, and the vertical
lines surrounding the responses indicate the onset and offset of the evoked
CAP. (B) Minimum conduction velocities for the CAPs evoked by threshold
current central–dorsal column stimulation, sMEA vs. tungsten
microelectrode.

nor for nociception-encoding Aδ and C fibers (4–16 and 0.5–2 m/s,
respectively, as measured in the rat; Suh et al., 1984; Chung and
Coggeshall, 1987).

While studies using rat tail motor neuron axons have shown
that lower temperatures slow axon conduction in a linear manner
that would place axonal conduction-velocity ranges in our exper-
iments within range of Aβ fibers (Miyoshi and Goto, 1973), such
extrapolations could not be applied definitively to the tested spinal
tracts. This was due not just to the differences in temperature,
but also the significant difference in the ratio of unmyelinated-
to-myelinated fibers in the juvenile vs. adult rat dorsal column
(Chung and Coggeshall, 1987).

Results comparing minimum conduction velocities of evoked
CAPs demonstrated that both electrode types were capable of
graded recruitment of slower-conducting fibers as a function of
lateral proximity to the stimulus site (Figure 4B). Two-tailed,
paired t -tests comparing these results showed that there was no
statistically significant difference between the sMEA and tungsten

electrode concerning ability to recruit slower axons as a function
of electrode proximity.

At stimulus values of twice threshold current, the sMEA
and tungsten electrode both evoked significantly slower axons
(paired t -test, p = 0.040 for sMEA and p = 0.070 for tungsten
electrode, minimum conduction velocities of 0.270 ± 0.070 and
0.254 ± 0.070 m/s, respectively. These results demonstrate that
sMEA and tungsten electrodes are similarly capable of modulat-
ing recruitment of slower-conducting fibers based on electrode
position and stimulus amplitude.

DUAL-SITE STIMULUS PRECISION
For a subset of experiments (n = 3 cords), an additional pair
of electrodes on the sMEA was used to stimulate a second site
on the dorsal column surface. For each of the sites (approxi-
mately 400 μm distance between electrode pairs), stimuli were
applied independently at single-pulse threshold current lev-
els (biphasic pulses, 500 μs duration). As in the single-site
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FIGURE 5 | Adjacent pair sMEA stimulation of spinal tracts activates

regionally distinct tracts. (A) The sMEA was placed on the central–dorsal
column for bipolar stimulation of white matter tracts by adjacent pairs of
electrodes (n = 3 cords). (B) Configuration for the adjacent sMEA electrode
stimulation. A recording electrode was moved across the cord at a site
orthogonal and caudal to the sMEA electrode placements and recorded CAP
responses (similar setup to Figure 2A). (C) Recorded response magnitudes
(μA × ms) to evoked CAPs, as a function of distance from left-to-right across
the spinal cord. Responses at a given site were averaged over 10 trials for a
given recording site on the dorsal column (error bars not shown). For each

independent spinal cord preparation [indicated by numerals (i–iii)], magnitudes
of CAP responses were normalized such that the maximal recorded response
on that cord equaled 1 (therefore, Y axis = 1 at highest points of (i–iii). Plots
have been aligned to the peak response elicited by the left pair of electrodes.
The dashed lines indicate a trend in relative location of CAP response
magnitude peaks, which corresponds roughly to the distance between the
two pairs of stimulating sMEA electrodes (two of the three cords
demonstrated this trend). (D) Example CAPs evoked by sMEA pairs, at
threshold current (1T) and twice threshold current (2T), measured at site of
maximal activation (peaks in Figure 5C). Arrows indicate stimulus artifact.

selectivity experiments, evoked CAPs were recorded at orthogo-
nally incremented locations approximately eight segments caudal
to the site of maximal activation. For all three cords on which the
sMEA electrodes were placed on the central–dorsal column, dis-
tinct peaks in CAP response magnitude were found (Figure 5).
The spacing of these peaks was approximately 400 μm in two out
of the three cords tested, and less than 400 μm for the third cord.

These results showed that adjacent electrodes on the sMEA
were capable of selectively recruiting distinct spinal tracts along
the central–dorsal column of the in vitro spinal cord.

MOTONEURON RECRUITMENT
Experiments were conducted to determine if sMEA-based spinal
tract surface stimulation was capable of activating motoneuron
population responses associated with hindlimb flexor and exten-
sor movement. Electrodes on the sMEA were placed on the lateral
aspect of the T12 segment (DLF, LF, and VLF tracts). These regions
are known to carry axons that subserve movement coordination
(Davidoff, 1983; Jordan and Schmidt, 2002), and pulse-train stim-
ulation of the in vitro VLF has been shown to elicit locomotor-like

activity (Magnuson and Trinder, 1997; Antonino-Green et al.,
2002). Adjacent electrodes on the sMEA were configured for
bipolar stimulation of the three surface locations such that the dis-
tance between DLF and LF stimulation was approximately 400 μm
and the distance between LF and VLF stimulation was approx-
imately 200 μm (Figure 6A). Single-pulse current stimuli were
delivered at minimum values required to evoke a visible ventral
root response, which was measured at the second and fifth lum-
bar levels. In addition, CAPs evoked on the surface of the VLF
and DLF were recorded at the sixth lumbar level to monitor axon
tract recruitment. LF and VLF, but not DLF stimulation, elicited
combined ventral root L2 and L5 responses (Figure 6B, n = 2).
Ventral root L5 responses were of greater magnitude and longer
delay-to-onset when compared with ventral root L2 responses.

To further determine whether surface stimulation of the spinal
cord using sMEA electrodes was capable of accessing hindlimb
flexor and extensor related motoneuron populations, the sMEA
was used to stimulate the T12 VLF using a train of pulses
(Figure 6C, n = 1). A pair of sMEA electrodes (bipolar current
stimulation configuration) was placed on the VLF at thoracic level
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FIGURE 6 | Hindlimb flexor- and extensor related responses to sMEA

electrode stimulation at three distinct surface sites. Adjacent sMEA
electrode pairs were used to deliver separate stimuli to the T12 DLF, LF, and
VLF (n = 2, eight stimulus trials per site, representative traces from one trial
per site shown). (A) Electrodes were configured for bipolar stimulation of the
three surface locations. (B) Response recordings were made at ventral roots

L2 and L5 (as well as at at the DLF and VLF L6 surfaces, in order to determine
the ability of the sMEA to activate distinct motor patterns. Numerals (i,ii)
indicate separate spinal cord preparations. (C) A sMEA electrode pair was
placed on the VLF at thoracic level 12 (T12) and responses were recorded at
ventral root L2, ventral root L5, the L6 DLF surface, and the l6 VLF surface. At
right, a longer-duration tracing shows ventral root L5’s prolonged activity.

12 (T12) and a train of 100 pulses (200 μA/200 μs) was delivered
at a frequency of 50 Hz. There was prolonged activity in the VLF
as well as ventral roots L2 and L5; this prolonged activity lasted
over 1 min in ventral root L5 (Figure 6C).

A total of two sMEAs were used for the 20+ in vitro, above-
mentioned experiments. These sMEAs were found to be mechan-
ically durable and re-usable without signs of delamination or
decomposition. For the several months over which these sMEAs
were repeatedly manipulated, they were constantly soaking in
either a CSF or deionized water (in between experiments). The
temporal consistency of the sMEAs’ electrical properties was not
formally tested; however, the required currents for evoking CAPs
on in vitro cords displayed consistent ranges across months of
experiments: for sMEA #1, the beginning and ending experiments

required 300 and 200 μA (total range: 200–300 μA with a 20-
μA outlier); for sMEA #2, the beginning and ending experiments
required 50 and 150 μA (total range: 50–250 μA). A single, charge-
balanced pulse of 500 μs duration was used to find each threshold
current value.

DISCUSSION
The sMEA’s ability to precisely stimulate spinal surface axons was
evaluated by comparing its activation profile to that of rigid (tung-
sten) bipolar microelectrodes pressed directly onto the cord. The
regional selectivity of the sMEA was similar to that of the rigid elec-
trode; however, the rigid electrode displayed a slightly more even
gradation. While the reasons for this difference are undetermined,
they may be related to the way in which the rigid microelectrode
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was pressed onto its interfaced cord surface, which visibly flattened
the surrounding cord surface.

When compared to rigid microelectrodes, the sMEA demon-
strated a lower minimum charge density required to activate dorsal
column surface tracts. This confers a considerable advantage over
the rigid tungsten microelectrode in terms of safe and effec-
tive stimulation of the cord surface (Cogan, 2008). However, the
sMEA’s threshold charge density is still higher than the threshold
charge densities required for neural prosthetic surface stimula-
tion of the human retina, optic nerve, cortex, auditory brainstem,
and sciatic nerve (summarized in Cogan, 2008). This may be
due to a greater distance (and/or greater aCSF shunting) between
our sMEA electrode and the tissue, as compared the aforemen-
tioned studies. The potential for the charge density provided by
the sMEA to incur damage to its interfaced neural tissue remains
largely undetermined, and will require further investigation as
sMEA-interfacing studies continue.

We have demonstrated that the strength of sMEA-evoked CAP
response decays over lateral (orthogonal) distance in a manner
similar to that evoked by the bipolar tungsten microelectrode, and
that threshold stimulation of the dorsal column using adjacent
sMEA electrodes was capable of non-overlapping recruitment of
parallel tracts along the central–dorsal column.

The magnitudes of evoked CAPs for the sMEA electrode pair
and the rigid electrode both decreased to below 50% within
approximately 100 μm of either side of the site of maximal
activation. An MEA electrode stimulus resolution of 200 μm is
roughly equivalent to anywhere from 27 to 270 adult rat dor-
sal column axon widths, assuming that at least 2/3 of the axons
in the dorsal column are myelinated Aα, Aβ, or propriospinal
fibers with diameters of 1–10 μm, and that the remaining 1/3 of
axons are Aδ, C, or unmyelinated propriospinal fibers with diam-
eters of 0.2–1 μm (Russell, 1980; Chung and Coggeshall, 1983;
Patterson et al., 1989).

Our conclusion that the observed CAP decays were the result of
a focused current delivery relies on the assumption that the acti-
vated dorsal column axons propagate their signals caudally with
negligible loss or (postsynaptic) addition of activity. This assump-
tion is supported by the fact that the dorsal column (aside from
the deepest white matter) contains mostly primary afferents and
postsynaptic dorsal column tract cells, which can be activated both
antidromically and orthodromically (Willis and Coggeshall, 2004).
As the presented experiments did not incorporate pharmacologic
block of synaptic transmission, the contribution of synaptically
recruited spiking of postsynaptic dorsal column tract cells can-
not be excluded. Nonetheless, such recruitment following a single
stimulus is unlikely to produce a suprathreshold synaptic response
in these neurons (Jankowska et al., 1979).

Another assumption made in interpreting the observed CAP
decays is that gray matter deep to the dorsal column was not acti-
vated by threshold stimulation at the surface. This likely, as axons
are activated at lower thresholds than their associated cell bodies
(Gustafsson and Jankowska, 1976; Gaunt et al., 2006) and only low
threshold stimuli were used to recruit only the largest and most
easily recruited axons.

A comparison of minimum CAP conduction velocities
evoked by the sMEA and tungsten microelectrode stimulation

FIGURE 7 | Schematic for proposed in vivo (inter-root, circumferential)

spinal implantation of sMEA.

demonstrated a progressively reduced recruitment of higher-
threshold (slower-conducting, smaller diameter) fibers as a func-
tion of lateral distance to the stimulating electrode site. This
suggests that both the sMEA and rigid tungsten electrodes are
in adequate proximity to the cord surface to recruit axons in a
manner dependent primarily on axonal activation properties. A
significant limitation to our analysis of recruited axonal tracts was
loss of faster components of the evoked responses in stimulus arti-
fact. In future studies, stimulus artifact elimination technologies
(Blum et al., 2007) can be used to circumvent this limitation and
also enable closer-proximity response recordings.

The sMEA was used to stimulate the lower-thoracic (T12) dor-
solateral, lateral, and ventrolateral funiculi, which are regions that
have been shown to carry axons that subserve movement coordi-
nation (Chung and Coggeshall, 1983; Jordan and Schmidt, 2002).
Threshold pulse stimulation of the LF and VLF, but not the DLF,
was capable of eliciting combined ventral root L2 and L5 responses.
Pulse-train stimulation of the T12 VLF evoked transient response
bursts at ventral root L2 and the VLF surface, and produced long-
lasting excitability at ventral roots L2, L5, and surface DLF and
VLF. It remains undetermined how much of this post-stimulus
excitability was noise- and/or damage-related, and how much
correlates with meaningful motor activity.

There are fundamental limitations to the correlation of evoked
ventral root potentials recorded from in vitro, hemisected spinal
cords to coordinated motor output. While the in vitro experi-
ments performed here were appropriate for initial assessment of
our sMEA’s capabilities, a more intact preparation is required to
determine whether sMEA stimulation of the spinal cord surface is
capable of activating motor activity.

As with any device designed for implantation, biocompatibility
characterization of the sMEA is an essential parallel step for in vivo
development of neural prosthetics (Green et al., 2010; McCreery
et al., 2004). In addition, further experiments must be performed
to evaluate the sMEA’s potential for in vivo spinal cord mechanical
damage.
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One proposed sMEA configuration for these initial in vivo
implantation experiments is illustrated in Figure 7. Using a dor-
sal laminectomy approach, the sMEA could be wrapped around
the circumference of the cord segment in between root pairs.
This approach would test the sMEA’s potential ability to access
multiple tracts on the anterolateral surface, which is presently a
speculated advantage of this technology. The damage incurred by
initial implantation – as well as long-term implantation both with
and without FES – could then be evaluated.

To support the proposed, next-step implantation experiments,
interconnect technology has been developed for the sMEA that
provides stable electro-mechanical interfacing with external stim-
ulators (Guo and DeWeerth, 2009a). Stabilization of the sMEA and
wiring can be accomplished using spinal processes as anchoring
points.

CONCLUSION
We have constructed specialized, elastomer-substrate sMEA tech-
nology that enables close-proximity, multi-point electrical inter-
facing to the spinal cord surface. The stimulus precision of the
elastomer-substrate sMEA, when compared to rigid (tungsten)
bipolar electrodes pressed directly onto the spinal cord surface,
was similar in both regional selectivity and gradation. This gra-
dation was demonstrated both by incrementally increased current
amplitudes as well as by relative (lateral) distance of the recruited
axons from the stimulus site.

The regional selectivity of the sMEA was quantified by mea-
suring the axonal activation magnitude as a function of lateral

(orthogonal) distance of the axons to the stimulus site, when stim-
ulated at threshold values. The magnitudes of evoked CAPs for
the sMEA electrode pair and the rigid electrode both decreased to
below 50% within approximately 100 μm of either lateral (orthog-
onal) distance side of the site of maximal activation. When using
the sMEA to stimulate central–dorsal column surface sites 200 mm
apart, the sMEA recruited non-overlapping parallel tracts.

Compared to the tungsten electrode, the sMEA demonstrated a
lower minimum charge density required to activate dorsal column
surface tracts. While these results are preliminary, they serve as
important starting points for demonstrating the relative utility of
the sMEA for axonal stimulation protocols.

The potential for the sMEA to incur harm to its interfaced
neural tissue – via charge density, mechanical shear/compression,
or otherwise – remains largely undetermined, and will require
further investigation. If in vivo testing proves that the implanted
sMEA is capable of minimal-damage spinal tract stimulation, and
if this in vivo stimulation provides similar precision to that of the
presented in vitro studies, this sMEA might be a powerful enabling
technology for multiple neuro-interfacing protocols.
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