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Regenerative peripheral nerve interfaces have been proposed as viable alternatives for
the natural control of robotic prosthetic devices. However, sensory and motor axons at
the neural interface are of mixed sub-modality types, which difficult the specific record-
ing from motor axons and the eliciting of precise sensory modalities through selective
stimulation. Here we evaluated the possibility of using type specific neurotrophins to pref-
erentially entice the regeneration of defined axonal populations from transected peripheral
nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root
ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve
growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth ofTrkA+
nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The aver-
age axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3,
whereas the number of branches increased threefold in the NT-3 channels. These results
were confirmed using a 3D “Y”-shaped in vitro assay showing that the arm containing NGF
was able to entice a fivefold increase in axonal length of unbranched fibers. To address if
such segregation can be enticed in vivo, a “Y”-shaped tubing was used to allow regenera-
tion of the transected adult rat sciatic nerve into separate compartments filled with either
NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted
toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and
NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in
specific regenerative chambers, and supports the notion that neurotrophic factors can be
used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

Keywords: peripheral nerve, nerve regeneration, multielectrode array, sensory feedback, bionics, NGF, NT-3,
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INTRODUCTION
Advanced robotic prosthetic limbs designed with multiple degrees
of freedom bear great promise as substitutes for the human
arm/hand in amputees (Lin and Huang, 1997; Miller et al., 2008;
Velliste et al., 2008; Matrone et al., 2010; Otr et al., 2010). How-
ever, while thousands of touch-sensing receptors in the natural
hand provide information about skin deformation and limb posi-
tion, current hand prostheses lack such sensory feedback systems.
Instead, users rely on unnatural vibrotactile and electrotactile sen-
sors for surrogate feedback information,and operate the prosthetic
limbs mostly under visual control (Phillips, 1988; Marasco et al.,
2009; Micera and Navarro, 2009).

Indwelling multielectrode arrays (MEA) placed in the premo-
tor cortex have been used successfully to record neural activity
associated with motor intention in monkeys and humans, and to
actuate robotic prosthesis (Hochberg et al., 2006; Simeral et al.,
2011). These findings have fueled interest in the possibility of
developing a closed-loop cortical interface able to convey tac-
tile and positional information to amputees by direct electrical
micro-stimulation of the sensory cortex (Fitzsimmons et al.,2007).
However, since the topographic mapping in the somatosensory

cortex is quite variable, and is currently unclear which cortical
neurons provide information during sensory sub-modality dis-
crimination, this strategy may be limiting in conveying distinct
sensations such as pain, touch, thermal, and limb/digit stretch.
Furthermore, direct cortical stimulation lacks the benefit of signal
integration and modulation from neural networks in the spinal
cord and thalamus, known to provide critical context-dependent
regulation of information and sensory discrimination (Brown
et al., 2004; Lee et al., 2008; Rosenzweig et al., 2010).

Alternatively, tactile and positional information detected from
specialized neurons innervating the skin, muscle, and tendons can
be interfaced at the dorsal root ganglia (DRG; Weber et al., 2007;
Gaunt et al., 2009) or in the transected peripheral nerve (Dhillon
et al., 2004; Brill et al., 2009), and used for eliciting sensation in
amputees (Dhillon and Horch, 2005). However, modality-specific
neurons such as nociceptive and proprioceptive have intermixed
perikarya in the DRG, and assorted axons in most peripheral
nerves (Castro et al., 2008). Thus, selective electrical stimulation is
particularly challenging, and is further complicated by the fact that
large myelinated axons (i.e., proprioceptive) are depolarized with
smaller currents, while smaller diameter neurons (i.e., nociceptive)
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require larger stimuli. Thus, when stimulating the small caliber
fibers in a nerve with assorted axon types, likely the large-size axons
will be non-specifically recruited, eliciting either mixed sensations
and/or involuntary motor movements (Grill et al., 2009).

We recently reported the use of an 18-electrode regenerative
multielectrode interface (REMI) to record multiunit activity in
both acute and chronically damaged peripheral nerves (Garde
et al., 2009). Regenerative interfaces such as the REMI are unique
since axonal growth can potentially be guided specifically to com-
partmentalized electrodes using neuron-specific growth factors.
Neurotrophic factors such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3),
are known to promote cell survival, nerve regeneration and func-
tional recovery not only in the injured peripheral nerve and spinal
cord, but in neurodegenerative conditions such as Parkinson and
Alzheimer diseases (Fischer et al., 1991; Nagahara et al., 2009;
Brock et al., 2010; Rangasamy et al., 2010; Jin et al., 2011). In the
peripheral nerve, BDNF and glial cell-derived neurotrophic fac-
tors (GDNF), have been shown to promote axonal regeneration of
motor neurons (Boyd and Gordon, 2003b; Geremia et al., 2010),
whereas NGF and NT-3 are know to stimulate selectively axonal
growth of pain, and proprioceptive axons, respectively (Misko
et al., 1987; Oakley et al., 1997). Such selectivity relies on the
specific binding of NGF to TrkA receptors in nociceptive, and of
NT-3 to TrkC receptors on proprioceptive, DRG neurons. Further-
more, the induced expression of NGF or NT-3 effectively guides
the regeneration of nociceptive and proprioceptive sensory axons
into proper targets in the dorsal or ventral spinal cord (Blits et al.,
2000; Romero et al., 2000, 2001), and into skin and motor branches
in the periphery (Hu et al., 2010).

Here we hypothesized that mixed axons from an amputated
nerve can be segregated into separate regenerative compartments
through neuron-type specific neurotrophins. To test this possi-
bility, we investigated the feasibility of using NGF and NT-3 to
selectively attract TrkA nociceptive axons and TrkC proprioceptive
axons both in vitro and in vivo. Our results are consistent with the
notion that specific molecular cues can be used to guide the axonal
growth of a mixed axonal population into specific compartments.

MATERIALS AND METHODS
DORSAL ROOT GANGLION EXPLANTS CULTURE
Dorsal root ganglia were obtained from neonate (P0–P3) rats.
The animals were anesthetized by hypothermia and sacrificed.
The spinal cord was harvested into Hank’s buffered salt solution
(Gibco, Carlsbad, CA, USA), and cleaned from dorsal and ven-
tral roots using tungsten needles. Individual DRGs were placed in
the main well of the choice assay and fixed in place using 50 μl
of growth factor reduced ECM (Matrigel; BD Biosciences, San
Jose, CA, USA). After ECM polymerization for 5 min at 37˚C, the
explants were cultured in neurobasal medium supplemented with
l-glutamine, B-27, and 1% penicillin/streptomycin (Gibco).

IN VITRO 2D Y-SHAPE ASSAY
A “Y” shaped polydimethylsiloxane (PDMS) template was fabri-
cated containing a circular well for DRG placement in the common
arm, and two arms terminating in wells where pieces of Gelfoam
(MWI, Meridian, ID, USA) containing neurotrophins were placed.

The PDMS was polymerized onto a negative template (1 volume
PDMS: 10 volume curing agent mixed at 50˚C for 2 h), cleaned,
sterilized, and placed on tissue culture chamber slides. Immers-
ing in 70% ethanol and exposing to UV light sterilized the PDMS
templates. The DRG explants were then placed in the well with
a thin layer of growth factor reduced Matrigel® polymerized on
top at 37˚C for 30 min. After 2 days in culture, pieces of gelfoam
(3 mm × 3 mm) pre-soaked in saline (n = 10; negative control),
7S NGF (n = 10; 100 ng/ml, Sigma, St. Louis, MO, USA), or NT-
3 (n = 12; 5 ng/ml, Sigma, St. Louis, MO, USA) were placed in
the “target” wells. A piece of glass coverslip was placed over the
entire PDMS template with openings at the DRG and gelfoam
ends. The coverslip served as a ceiling to the microchannels, pre-
vented floating of the gelfoam and delayed neurotrophin dilution
into the media. To demonstrate that the choice assay provides
independent gradients of neurotrophins from the separate “tar-
get” compartments to the DRG, we placed a piece of gelfoam
with Cy2 (897 Da-green) and Cy3 (765 Da-red) dyes in the two
separate compartments and determine the fluorescence diffusion
into the microfluidic channels at 4, 6, 8, and 12 h. A Zeiss Pas-
cal laser confocal microscope equipped with an environmental
chamber was used to evaluate the optical densitometry of the Cy2
and Cy3 fluorescence over time, maintaining the cultures at 37˚C
and 70% humidity. The diffusion rate was confirmed in sepa-
rate experiments using Gelfoam loaded with bovine serum albu-
min (BSA) conjugated alexafluor-594 (66 kDa), as its molecular
weight approximates that of the neurotrophins (NGF = 135 kDa
and NT-3 = 27 kDa) used in this study.

IN VITRO 3D Y-SHAPE ASSAY
A casting device was designed for 3D cell growth in collagen-filled
agarose microchannels similar to that recently described (Dawood
et al., 2011). Briefly, a“Y”shaped fiber consisting of a base (OD 0.5,
10 mm long) and two arms (OD 0.25, 11 mm long) were inserted
through perforations into separate loading wells (Figure 4A). The
hydrogel 1.5% agarose was polymerized over the fibers, collagen IV
(Chemicon International, Temecula, CA, USA) was placed in the
loading well. Removal of the common fiber not only casted a “Y”-
shaped microchannel in the agarose gel, but due to the negative
pressure created filled the lumen with collagen. After polymer-
ization of the collagen, we added either NGF (n = 4; 100 ng/ml;
Sigma, St. Louis, MO, USA) or NT-3 (n = 4; 500 ng/ml; Sigma, St.
Louis, MO, USA) into separate wells to provide separate guidance
cues in the arms of the “Y” assay. A DRG explanted from a post-
natal day 2 mouse pups was then inserted into the base arm and
allowed to grow for 5 days at 37˚C and 5% CO2 in a humidified
incubator.

IN VIVO SEGREGATION
A “Y”-shaped tubular conduit was designed consisting of a com-
mon arm (OD 0.5, 3 mm long) and two arms (OD 0.25, 7 mm
long) using polyurethane tubing (Micro-Renathane®). The ani-
mals were anesthetized (Ketamine/medetomidine, 87 mg/kg i.p.)
before being subjected to the sciatic nerve transection injury. The
sciatic nerve in 32 rats (4 groups; n = 8) was transected and
repaired by either a straight tube (normal mixed axonal con-
trol) or Y-tube implants filled with collagen in the common arm.
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The left and right arms were then filled with either collagen, or
collagen/NGF or collagen/NT-3. Four experimental groups were
evaluated: (1) Simple tube distally attached to the unbranched sci-
atic nerve (mixed control), (2) “Y” tube distally attached to the
tibial and sural nerves (positive control), (3) “Y” tube filled with
collagen (negative control), (4) “Y” tube filled with either NGF
and/or NT-3; in groups 3 and 4 the distal nerve was not sutured to
the tubing. Following a 2-month post-operative survival period, all
animals were sacrificed and implants were recovered. The regen-
erated nerves were sectioned and immunostained to identify large
myelinated axons (N-52 clone of neurofilament 200, mouse anti-
N-52, 1:3000; Sigma, St. Louis, MO, USA) and pain axons that
express calcitonin gene-related peptide (CGRP+). The number of
CGRP+ and N-52+ was then quantified from traced digital con-
focal microscopy photographs in each of the regenerated nerves.
This study was performed in accordance to the Institutional
Animal Care and Use Committee at UT Southwestern Medical
Center.

IMMUNOCYTOCHEMICAL ANALYSIS
The explant cultures were fixed 2 days after the neurotropic treat-
ment using 4% paraformaldehyde (PFA). DRG cultures were
rinsed with PBS, permeabilized in 0.25% triton-X for 30 min at
room temperature, and blocked by 1% normal donkey serum for
another 30 min at room temperature. Regenerated axons from the
DRG explants were labeled with β-tubulin (mouse anti- β-tub,
1:500; Sigma, St. Louis, MO, USA) and calcitonin gene-related
peptide (CGRP; rabbit anti-CGRP, 1:2000; Chemicon, Temecula,
CA, USA). Visualization of axonal growth in the 3D “Y” assay
was achieved by labeling the axons with phalloidin green (Mol-
ecular Probes, Carlsbad, CA, USA), stack imaged using confo-
cal microscopy and collapsing the 3D image to obtained a 2D
rendition of the 3D growth.

Animals were perfused with PBS-1% heparin, followed by
4% PFA. The regenerated nerve was harvested and processed
for immunohistochemistry. Double labeling studies were done
on longitudinally cut cryosections using the monoclonal N-52
clone of neurofilament 200 (N-52) and CGRP. The tissue was then
visualized using Cy2 Goat anti-Rabbit 1:250, Cy3, and Cy2 Goat
anti-Mouse 1:500; Cy3 Goat anti-Rat 1:400 (Jackson labs, West
Grove, PA, USA). Sections mounted using Vectashield containing
the nuclear label DAPI (Molecular Probes, Carlsbad, CA, USA).

IMAGE ANALYSIS AND QUANTIFICATION
For in vitro segregation studies, digital images of 20× magnifi-
cations were obtained using a confocal microscope (Zeiss LSM
510 Meta). The length of axons was quantified in each channel to
calculate mean axonal length. Only neurite processes longer that
20 μm were counted. For 3D in vitro experiments, the length of
four to six axonal fibers per animal was measured to determine the
average in each treatment group. For in vivo segregation studies,
three stacked images of the A, B, and C arms were captured using
confocal microscopy for each subject. Double-level standardized
optical density threshold was applied to subtract the background
and the saturated intensity values. A circle (fixed area 0.03 mm2)
was placed over three randomly selected areas for fiber growth
quantification. The area (in μm2) of positively stained N-52+

axons and CGRP+ axons was measured in all three arms of the
Y-shaped nerve regenerate.

STATISTICAL ANALYSIS
The data is reported as the mean and the SE of the mean (SEM).
An unpaired Student’s t -test was used to determine statistical dif-
ferences. In multiple group comparisons, one-way ANOVA was
used followed by Neuman–Keuls multiple comparison post hoc
evaluation (Prism 4, GraphPad). p-Values ≤ 0.05 were considered
significant.

RESULTS
An in vitro “Y” assay was used to determine if separate delivery
of NGF and NT-3 can differentially entice axonal regeneration
of specific neurons from the mixed population of DRG sensory
neurons. The assay consisted in a PDMS mold where early post-
natal DRGs were placed at a 1-mm distance from the bifurcation of
5 mm“Y”arms ending in separate compartments. Gelfoam soaked
with saline (control), NGF, or NT-3 was presented 48 h after DRG
plating and the axonal growth into the separate compartments
evaluated (Figure 1A). To verify that the assay provided separated
molecular cues we measured the diffusion rate of fluorescently
labeled Cy2 (green) or Cy3 (red) antibodies in each compartment.
We confirmed that the molecules diffused separately in each arm
of the “Y” assay, providing a distinctive and measurable gradient
for up to 8–12 h (Figure 1B).

In absence of guidance cues, DRGs showed axonal growth of
mixed axon morphologies (i.e., length or number of branches)
into the arms of the Y assay (not shown). In contrast, when
NGF was deliver into both arms we observed that axons were
long and lacked branches (Figure 2Aa). Conversely, when NT-
3 was delivered into the microchannels the axons were shorter
and with numerous branch collaterals (Figure 2Ab). Such long
unbranched axons,and short-branched axons are morphologically
characteristic of the nociceptive and proprioceptive sensory axons
in vitro (Romero et al., 2007). We next evaluated whether NGF
and NT-3 if presented simultaneously in two separate microchan-
nels would differentially entice the growth of distinct popula-
tion of neurons. In that assay, axons growing from single DRGs
toward the NGF-containing compartment were long and relatively
unbranched, while those attracted toward NT-3 were branched
and shorter in length. Double immunolabeling for β-tubulin
(axonal marker) and CGRP (specific marker for nociceptive sen-
sory axons), confirmed that CGRP+ pain/nociceptive fibers are
predominantly attracted toward NGF, while those growing toward
NT-3 were CGRP-/N-52+ axons (Figure 2B). Quantitative analy-
sis (Figure 3) showed that axon length and branch number aver-
aged 139.5 ± 17.85 μm, and 4.85 ± 0.82 respectively, in the saline
treated groups. In contrast, the average axon length in the NGF
channel (352.1 ± 40.24 μm) increase 2.5-fold (p ≤ 0.001) com-
pared to that in saline or NT-3 (115.8 ± 10.30 μm), whereas the
number of branches increased threefold in the NT-3 channels
(15.75 ± 2.25; n = 12; p ≤ 0.01), compared to saline or NT-3-
treated (7 ± 0.95) groups. These results supported the possibility
that different sensory axon subtypes in the DRG can be dif-
ferentially attracted to separate compartments in culture using
neuron-specific guidance signals.
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FIGURE 1 |Y-shaped in vitro assay for axonal segregation. (A)

Gelfoam-diffusion delivery of neurotrophins into the distal arms was used to
differentially entice axonal outgrowth from neonatal DRGs. Bottom: higher

magnification shows axonal growth from the DRG (arrow) in the choice area.
(B) Diffusion of green (Cy3) and red (Cy3) labeled antibodies, were imaged
over time and quantified to demonstrate independent gradient formation.

FIGURE 2 | Differential axonal morphology of axons growing toward

NGF or NT-3. (A) Mixed axon morphologies were observed in control
DRGs. Magnified images of the area in boxes (in right and left) detail the
morphological differences in the NGF (n = 10) and NT-3 (n = 12) treated
groups. Axons growing toward NGF showed characteristic long and

unbranched morphology. In contrast, those growing toward NT-3 were
short and highly branched axons. (B) Visualization of β-tubulin (green) and
CGRP (red) demonstrated that axons growing toward NGF are
CGRP-positive (i.e., nociceptive, arrows), while those growing toward NT-3
are CGRP negative.

We then evaluated the feasibility of delivering neurotrophins
into a luminar collagen matrix of a 3D Y-shaped transpar-
ent hydrogel assay. Using a custom device (Figures 4A,C), we

confirmed the formation of gradients in separate arms of the
3D-assay by adding Trypan blue dye into a single loading well
(Figures 4B,B′). Quantification of the absorbance from 1 mm
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FIGURE 3 | Selective neuron growth of DRG sensory axons by

compartmentalized neurotrophin delivery. (A) NGF selectively induced
the growth of longer axons compared to control and NT-3-treated groups.
(B) NT-3 increased significantly the number of branches per axon compared
to control and NGF. *p < 0.001, +p < 0.01. (n = 10–12).

segments taken at top middle and bottom of the “Y” arm after
7 days revealed a 2.14 dilution at the bifurcation point (Figure 4D).
When NGF and NT-3 were delivered into separate arms of the “Y”
assay and a DRG placed at the bottom of the base channel, we
observed the long unbranched axons in the arm with luminal NGF
and short-branched axons in the NT-3 arm (Figures 4E,F). In this
assay both neurotrophins elicited longer axonal growth compared
to no-treatment controls, but that containing NGF was able to
entice a fivefold increase in axonal length of unbranched fibers
(Figure 4G).

COMPARTMENTALIZED NT-3 IN VIVO ENRICHES N-52-POSITIVE FIBERS
To test if mixed axons in the transected peripheral nerve could
be segregated into modality-specific compartments in vivo, we
compared the segregation effect of natural distal targets such as
the sural (primarily sensory) and tibial (mixed sensorimotor)
nerves; distally connected to each arm of a Y-shaped tube, to that
enticed by NGF and NT-3. The sciatic nerve in 32 rats was com-
pletely transected and repaired with either straight or Y-tubes.
The two arms of the Y-tubes were filled with collagen and distally
sutured to the tibial or sural nerves, or filled with NGF- or NT-3-
containing collagen. Following a 2-month survival the regenerated
tissue was longitudinally sectioned and stained for specific mark-
ers. All implanted groups demonstrated axonal outgrowth in the
common arm of the implants (Figure 5). Compared to simple

tubularization nerve gap repair that mediate the regeneration of a
single nerve cable (Figure 5A), Y-tubes containing collagen con-
nected distally to sural and tibial nerves showed robust Y-shaped
nerve regeneration (Figure 5B). Growth in those with collagen-
only was minimal in absence of distal targets (Figure 5C), but was
qualitatively enhanced if NGF and NT-3 were added in the Y-arms
(Figure 5D).

To determine the specific modality of the neurons that grew
into the different “Y” chambers, we tried to retrograde label those
axons using Flourogold as recently reported (Tansey et al., 2011).
However, the limited amount of tissue distal to the Y-arms caused
cross-contamination during labeling. Alternatively, we resourced
to markers specific for nociceptive fibers (CGRP+) and for large-
diameter axons (N-52+). In the DRG, sciatic nerve (Figure A1 in
Appendix) and spinal cord (not shown), CGRP labeled exclusively
the TrkA pain fibers while N-52 stained large TrkC neurons and
large-diameter axons. The staining did not overlap, thus labeling
these two distinctive sub-populations of neurons in the experi-
mental groups confirmed that the CGRP+ fibers were qualitatively
more abundant in the arms of the Y-tube sutured distal to the sural
nerve (Figure 6A), and N-52+ axons appeared to be more dense
in the arm attached to the tibial nerve (Figure 6B). In those with
NGF/NT-3, no differences were apparent with CGRP labeling, but
seemed more abundant when labeled with N-52 in the arm with
NT-3 (Figure 6C).

Quantitative analysis using optical densitometry in single tube
regenerated nerve, or nerve regenerated through the common
(c) arm of the Y-tube, showed no significant differences between
the treatment groups (Figure 7). In sharp contrast, the density
of CGRP+ axons (Figure 7A) was significantly increased in the
compartment attached to the sural nerve (p < 0.01; 7528 ± 604.7
OD units), but not in that supplemented with NGF (1884 ± 504.8
OD units). Conversely, N-52+ immunoreactivity was significantly
increased (p < 0.01), both the tibial (8718 ± 769.2 OD units) and
NT-3 (9120 ± 1080 OD units) compartments (Figure 7B). We
also noted significant increases (p < 0.05) in CGRP in the tibial
(4894 ± 739.4 OD units) and of N-52 in the sural (9689 ± 676.3
OD units), compartments.

Together, the data indicate that specific growth factor combi-
nations can be used to guide the axonal growth of a mixed neuron
population in an amputated nerve and coerce specific types of
regenerative fibers to grow into separate compartments.

DISCUSSION
The transected peripheral nerve provides an optimal site for the
neural interfacing as movement commands can be recorded from
motor axons, and electrical stimulation of sensory fibers can con-
vey natural sensation to the user of advanced robotic prosthetic
devices. Stimulation of sensory axons conveys sensory feedback
with natural integration and modulation at the spinal cord, brain
stem, and thalamus prior to reaching the sensory cortex. Further-
more, neuron-specific stimulation will be able to convey precise
sub-modality sensory information such as pain, temperature, and
limb stretching.

Peripheral nerve interfacing has been accomplished either
through extraneural (i.e., cuff electrodes; Leventhal and Durand,
2004 #2143), or intraneural electrodes. Indwelling interfaces like
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FIGURE 4 |Three-dimensionalY-shaped microchannels. (A) Casting
device with dual cell-seeding wells and containing a Y-shaped fiber.
Subsequent to the addition of agarose in the central well and collagen in
both the cell-seeding wells, the brush is extracted thus, forming a
collagen-filled Y-shaped channel. (B) Diffusion of blue dye overtime in
collagen at day 3 and day 7 (B’). (C) Photograph of the Y-channel
homogenously filled with collagen. (D) Schematic of the Y-shaped assay
with quantified absorbance in each segment measured at 7 days of

continuous dye delivery into the right well. (E) Axonal growth from DRG
into channels containing either NGF (n = 4) or NT-3 (n = 4) confirmed
differences in axonal morphology in the separate compartments. (F)

Compared to untreated channels, those with NGF showed longer and
unbranched axons (arrows), while those in the NT-3 compartment were
relatively shorter and highly arborized (arrowheads). (G) Quantification of
mean axonal length confirmed the growth promoting effect of the
neurotrophins. *p < 0.001.

the longitudinally implanted intrafascicular electrodes (LIFEs;
Lefurge et al., 1991) have been used successfully to record motor
signals from the peripheral nerve, and through stimulation, used
to convey sensation in long-term amputee human volunteers
(Dhillon et al., 2004; Benvenuto et al., 2010). However, indwelling
electrodes like LIFE provide limited long-term efficacy due to the
progressive reduction in the number of active sites over time, poor
bio–abio interface, tissue damage, and loss of recording activity
due to electrode insulation as a result of tissue scar formation
(Biran et al., 2005, 2007; Williams et al., 2007; Leung et al., 2008).

Regenerative sieve electrodes were proposed more than three
decades ago as a viable alternative to interface motor and sensory
nerve axons (Mannard et al., 1974; Edell et al., 1982; Dario et al.,
1998). Sieve electrodes have been shown to obtain neural record-
ings after long-term (i.e., 2–6 months) implantation (Klinge et al.,
2001; Lago et al., 2007; Panetsos et al., 2008), and we recently
obtained long-lasting single and multiunit recordings using a
non-obstructive REMI placed between the transected ends of
an end-to-end repaired nerve, and after interfacing the nerve 5–
6 months after injury despite absent connections to their normal
target muscles (Garde et al., 2009). Here we tested the possibil-
ity to use neurotrophins to guide the regenerative process of the
transected peripheral nerve and segregate the growing axons into
modality-specific compartments.

Previous reports have shown that incorporation of growth fac-
tors into neural interface electrodes can increase the sensitivity
of the neural interfaces by attracting axons to the recording sites.
Indeed, several growth factors and adhesion molecules have been
incorporated to conductive substrates. NGF has been attached
to polypyrrole (Gomez and Schmidt, 2007), or combined with
laminin and applied to polymer polyethylene dioxythiophene
(Green et al., 2010) and brain-derived neurotrophic factor (BDNF)
and NGF have been entrapped in hydrogels polymerized over the
electrodes or in nanopore membranes (Lopez et al., 2006; Winter
et al., 2007; Jun et al., 2008).

This study shows that in addition to the general chemoattractive
nature of the neurotrophins, neuron-specific molecular guidance
cues can be used to separate the regeneration of specific types of
neurons. DRG neurons have been broadly classified based on cell
body size, axonal diameter, conduction velocity, and the expression
of either NGF, BDNF, or NT-3 Trk receptors (Harper and Lawson,
1985; Misko et al., 1987; Oakley et al., 1997), and further differ-
entiated based on the expression of N-52 and CGRP, which are
preferentially expressed in large and small-diameter nerve fibers,
respectively (Goldstein et al., 1991; Zhang et al., 1995; Ho and
O’Leary, 2011). We and others have shown that exogenous expres-
sion of NGF can be used successfully to entice and direct axonal
regeneration of CRGP-positive pain axons in the brain (Curinga
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FIGURE 5 | Guided peripheral nerve regeneration. (A–D)

Schematic representation of the experimental groups (n = 8) tested
in vivo. s = single tube, c = common arm, a and b = left and right arms
of the Y-shaped tube. (A’–D’) Photographs of regenerated nerves
60 days post-tubularization. A single nerve cable was observed in

nerves repaired with straight tubes (A’), A Y-shaped nerve regenerate
formed in the other groups. The regenerated tissue was thicker with
the sural and tibial nerves attached distally (B’), dramatically reduced
in absence of distal treatment (C’), and increased with neurotrophin
delivery (D’).

FIGURE 6 | (A) In the “Y” shaped nerve regenerate, both axon types are
present in the common arm (c), whereas those attached to the tibial nerve
showed apparently less CGRP+ axons compared to those growing into the

sural nerve compartment. (B) Conversely, N -52+ axons appear denser in the
tibial compared to the sural compartments. (C) In the NT-3 and NGF groups,
N -52+ axons were more prevalent in the NT-3 arm.
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FIGURE 7 | Optical densitometry of CGRP and N-52 axons. (A) Pain
fibers (CGRP+) axons are grown in a significantly larger numbers in arms
filled with NGF and tibial nerve compared to collagen or NT-3. (B)

Large-diameter axons were attracted toward the tibial and NT-3 channels,
but also to the sural nerve compared to collagen controls. *p < 0.01,
+p < 0.05.

and Smith, 2008), spinal cord (Romero et al., 2000, 2001), and
peripheral nerves (Hu et al., 2010). This study shows that compart-
mentalized diffusion of NGF and NT-3 can differentially entice
and direct the regeneration CGRP+ nociceptive and N-52+ large-
diameter fibers, such as proprioceptive and mechanoreceptive
axons, into separate chambers. This notion is further supported by
the observed morphological dimorphism observed in DRG axons
growing into the NGF and NT-3 compartments, in which, sim-
ilarly to that previously reported in vitro, NGF-dependent noci-
ceptive neurons grow mostly long and unbranched axons, while
NT-3 dependent proprioceptive neurons show increased axonal
branching (Romero et al., 2007). Furthermore, Y-nerve regenera-
tion assays showed that NT-3 can mimic the specific enticement
of N-52+ axons observed in chambers in which the tibial mixed
sensory-motor nerve was sutured distally. Conversely, the sural
sensory nerve was able to attract a larger population of CGRP-
positive axons toward that compartment. However,we were unable
to replicate such effect when NGF release was compartmentalized.
Since we used a larger concentration of NGF (100 ng/ml) com-
pared to that of NT-3 (5 ng/ml), it is possible that a lower NGF
concentration is needed for an optimal axonal enticement, and
future studies will be required to optimize the concentration and
nature of the signaling cues needed to achieve maximal and more
selective segregation.

FIGURE 8 | Schematic of multielectrode compartments. (A) Mixed
nature of regenerative nerve in the absence of any molecular cues. (B)

Specific growth factors attract a subtype of neurons to the
modality-specific compartment.

This study demonstrates the guided enrichment of nociceptive
axons in this particular regenerative chamber, and supports the
notion that neurotrophic factors can be used directly as a means
to enrich sensory and perhaps motor axons into an electrode
interface (see model in Figure 8). However, since no electrical
recording was done in this study, additional research is needed to
demonstrate the selective recording/stimulation of growth factor-
enticed REMI. Future experiments are also needed to test weather
growth factors such as glial-derived neurotrophin factor and
BNDF, known to stimulate the regeneration of motor neurons
(Boyd and Gordon, 2003a; Jubran and Widenfalk, 2003), can be use
to segregate motor from sensory fibers. Achieving a greater con-
centration of axons from a particular neural subtype is expected
to provide a more sophisticated and selective peripheral neuro-
interface. The selective regeneration of subtypes of neurons into
specific target chambers would be better suited to achieve selec-
tive stimulation of a neuron subtype, compared to the penetration
electrodes that are in contact with mixed axons from different neu-
ron types, as this would minimize the possibility of unintentional
neural activation. Ultimately, such an arrangement would reduce
the burden of data extraction from mixed signals from electrodes
embedded in a mixed neuron population, and achieve selective
recording and stimulation of the regenerative peripheral neuroin-
terfaces, which in turn can be valuable in order to achieve more
precise control of the robotic prosthetic hand.
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APPENDIX

FIGURE A1 | Differential labeling of large myelinated proprioceptive

(N -52+; red), and small unmyelinated nociceptive (CGRP+ green)

neurons in dorsal root ganglia (left) and sciatic nerve (right) in rat

demonstrates the specificity of the markers as no overlap is apparent.
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