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Communication of intent usually requires motor function. This requirement can be limiting
when a person is engaged in a task, or prohibitive for some people suffering from
neuromuscular disorders. Determining a person’s intent, e.g., where and when to move,
from brain signals rather than from muscles would have important applications in clinical or
other domains. For example, detection of the onset and direction of intended movements
may provide the basis for restoration of simple grasping function in people with chronic
stroke, or could be used to optimize a user’s interaction with the surrounding environment.
Detecting the onset and direction of actual movements are a first step in this direction.
In this study, we demonstrate that we can detect the onset of intended movements and
their direction using electrocorticographic (ECoG) signals recorded from the surface of the
cortex in humans. We also demonstrate in a simulation that the information encoded in
ECoG about these movements may improve performance in a targeting task. In summary,
the results in this paper suggest that detection of intended movement is possible, and
may serve useful functions.

Keywords: brain computer interface, ECoG, movement direction prediction, movement onset prediction,

neurorehabilitatation, performance augmentation

1. INTRODUCTION

Brain-computer interfaces (BCIs) aim to translate a person’s
intentions into meaningful computer commands using brain
activity alone (Wolpaw et al., 2002; Mak and Wolpaw, 2009). In
particular, determining when and where a person intends to move
would have important clinical applications for those suffering
from neuromuscular disorders (Sejnowski et al., 2007; Tan and
Nijholt, 2010). For example, a BCI that detects intended move-
ment onset in absence of actual movements could restore grasp
function in people with chronic stroke (Buch et al., 2008; Daly
and Wolpaw, 2008; Wisneski et al., 2008; Muralidharan et al.,
2011; Yanagisawa et al., 2011). Also, a BCI that predicts intended
movement onset prior to actual movements would have many
practical applications in everyday life. For example, it may sup-
port faster braking during vehicle operation (Haufe et al., 2011)
or more rapid targeting in military applications (Gunduz and
Schalk, 2011).

The first step in this direction is to establish whether it is
possible to detect the onset of actual movements from brain
signals. Several previous studies have shown that intracortical
activities recorded in primates over the premotor or parietal cor-
tices are related to the onset of movements (Achtman et al., 2007;
Lebedev et al., 2008; Hwang and Andersen, 2009; Hasan and Gan,
2011; Mirabella et al., 2011), but access to intracortical activity in
humans has been scarce (e.g., Hochberg et al., 2006; Simeral et al.,
2011). Other studies have investigated movement onset using

electroencephalographic (EEG) signals in humans (Mason and
Birch, 2000; Millan and Mourifio, 2003; Borisoff et al., 2004; Leeb
et al., 2007; Bai et al., 2008; Hasan and Gan, 2011; Muralidharan
et al., 2011), but accurately detecting the corresponding EEG sig-
natures in single trials has proven difficult. Electrocorticographic
(ECoG) signals are recorded directly from the surface of the cor-
tex, and thus have a higher signal-to-noise ratio compared to
EEG (Ball et al., 2009). They also readily support detection of
certain physiological phenomena, such as high gamma activity
(>70Hz), that is largely inconspicuous on the scalp. The ability
to detect high gamma activity is an important advantage, since
many ECoG studies (e.g., Miller et al., 2007, 2009; Kubdnek et al.,
2009; Chao et al., 2010) demonstrated that spatially focused high
gamma activity correlates closely with specific aspects of motor
functions. Yet, no previous study comprehensively studied the
possibility that movement onset can be detected using ECoG
signals.

The second step in this direction is to determine whether
ECoG also holds information about movement direction prior
to the actual movement. Several studies (Schalk et al., 2007;
Pistohl et al., 2008; Gunduz et al., 2009) showed that ECoG
signals collected during movements hold information about two-
dimensional trajectories of hand movements, and Leuthardt et al.
(2004) and Schalk et al. (2008) demonstrated one- and two-
dimensional real-time control of a computer cursor using ECoG,
respectively. However, there has only been scarce evidence that

Frontiers in Neuroengineering

www.frontiersin.org

August 2012 | Volume 5 | Article 15 | 1


http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/about
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org/Neuroengineering/10.3389/fneng.2012.00015/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ZuoguanWang&UID=37421
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AysegulGunduz&UID=30609
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PeterBrunner&UID=18340
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AnthonyRitaccio&UID=18341
http://community.frontiersin.org/people/QiangJi/63276
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GerwinSchalk&UID=8332
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive

Wang et al.

Decoding movement onset and direction

brain signals recorded in humans give information about move-
ment direction prior to the movement (Leuthardt et al. (2004)
using ECoG, Wang et al. (2010) using MEG), and that this
information may be useful.

In this paper, we investigate whether ECoG holds information
about the onset and direction of hand movements in a center-
out task. Specifically, we use a support vector machine (SVM)
classifier to determine, at each step in time, the probability that
the subject initiated a hand movement at that particular time. We
also characterize the ECoG features that hold the most informa-
tion about movement onset. We then use a novel implementation
of a time-varying dynamic Bayesian network (TVDBN), which
was designed to take advantage of the spatio-temporal dynam-
ics of ECoG features, to determine the direction of the intended
movement using ECoG signals prior to the movement. Finally,
we simulate a targeting application in which brain signals prior to
the movement are combined with the actual movement signals.
In this simulation, the time-to-target reduces by up to 150 ms
when we use the directional information captured in ECoG sig-
nals. Overall, our results contribute to our understanding of the
neural representation of intended movements and suggest that
integrating information from brain signals and motor execu-
tion may eventually lead to systems that can improve a user’s
performance.

2. MATERIALS

2.1. HUMAN SUBJECTS

Five subjects participated in this study. The subjects were patients
with intractable epilepsy who underwent temporary implantation
of subdural electrode arrays for the localization of seizure foci
prior to surgical resection. Table 1 summarizes the subjects’ clin-
ical profiles. All of the subjects had normal cognitive capacity and
were functionally independent. The study was approved by the

Institutional Review Board of Albany Medical College as well as by
the Human Research Protections Office of the US Army Medical
Research and Materiel Command, and the subjects gave informed
consent. The implanted electrode grids (Ad-Tech Medical Corp.,
Racine, WI) consisted of platinum-iridium electrodes that were
4 mm in diameter (2.3 mm exposed) and were configured with an
inter-electrode distance of 1 cm. Subject E was implanted with a
higher density (6 mm inter-electrode distance) grid with 68 con-
tacts (PMT Corp., Chanhassen, MN) over the temporal lobe. Each
subject had postoperative anterior-posterior and lateral radio-
graphs (see Figure Al), as well as computer tomography (CT)
scans to verify grid location. The number of implanted electrodes
varied between 58 and 120 contacts across subjects (Table 1). We
excluded data collected over the occipital strips (in Subjects A
and B) from the analyses to minimize the potential impact of
visual stimulation on the results.

2.2. CORTICAL MAPPING

We used Curry software (Compumedics, Charlotte, NC) to cre-
ate subject-specific 3D cortical brain models from high resolution
pre-op MRI scans. We co-registered the MRIs with post-op CTs
and extracted the stereotactic coordinates of each grid electrode.
We identified the cortical areas underneath each electrode using
an automated Talairach Atlas (Lancaster et al., 2000) (http://www.
talairach.org/daemon.html) for functional mapping. We also
projected the electrodes onto the reconstructed brain models (see
Figure 1) and generated activation maps using custom Matlab
software to delimit the cortical areas involved in prediction of
movement onset and direction.

2.3. DATA COLLECTION
We recorded ECoG signals at the bedside using eight 16-channel
g.USBamp biosignal acquisition devices (g.tec, Graz, Austria) at a

Table 1| Clinical profiles of the subjects that participated in the study.

Subject Age Sex Handedness Perf. 1Q Seizure focus Grid/Strip location # of Electrodes
A 29 F R 136 Left temporal Left fronto-parietal 64
Left temporal 23
Left temporal pole
Left occipital 6
B 56 M R 87 Left temporal Left frontal 56
Left temporal 35
Left occipital 6
Right posterior mesial 4
C 45 M R 95 Left temporal Left fronto-temporal 54
Left temporal pole 4
D 49 F L 99 Left temporal Left fronto-temporal 61
Left temporal mesial 4
Left frontal 4
E 29 F R 95 Left temporal Left frontal 40
Left temporal 68
Left frontal 4
Left inferior temporal 4
Left parietal 4
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FIGURE 1 | Subject-specific brain models and projected electrode
locations for Subjects A-E. The brain template on the bottom right,
indicated with a star, depicts the location of the central sulcus, Sylvian

fissure, and important Brodmann areas. The areas most relevant to our task
are Brodmann areas 6 (premotor), 4 (primary motor), 1-3 (sensory motor),
and 7 (posterior parietal cortex).

sampling rate of 1200 Hz. Electrode contacts distant from epilep-
tic foci and areas of interest were used for reference and ground.
In addition to recording brain activity, we also recorded the sub-
jects’ eye gaze using a monitor with a built-in eye tracking system
(Tobii Tech., Stockholm, Sweden) positioned 54—60 cm in front of
the subjects, and the movements of a joystick. The eye tracker was
calibrated to each subject at the beginning of the experimental
session using custom software that invoked standard calibration
functions provided by Tobii. Data collection from the biosig-
nal and behavioral acquisition devices (g.USBamp, eye tracker,
and joystick, respectively), as well as control of the experimental
paradigm and stimulus presentation, were accomplished simulta-
neously using BCI2000 software (Schalk et al., 2004; Schalk and
Mellinger, 2010). BCI2000 provides a flexible general-purpose
software platform that consists of modules that realize signal
acquisition, signal processing, user feedback, and an operating
protocol. BCI2000 facilitates the implementation of any BCI or
related system, and is used in hundreds of laboratories for this
purpose.

2.4. EXPERIMENTAL PARADIGM

ECoG signals were collected while the subjects performed an
8-target center-out cursor movement task (Georgopoulos et al.,
1982) while fixating their eye gaze at a central fixation cross. Eye
gaze fixation was enforced online by BCI2000: a trial was aborted
if the subject looked away from the center for more than 5° for
more than 500 msec. Each trial started with the presentation of
a target in one of eight possible locations. A cursor appeared 1s
later at the center of the screen. The subjects’ task was to use their
hand contralateral to the implant(s) to control a joystick so as to
move the cursor into the target. (Only Subject D used the non-
dominant hand.) We positioned the subjects such that the joystick
movements were mainly restricted to the wrist (see Figure A2).
The subjects were instructed to make exaggerated movements and

achieve maximal radial extension of the joystick to hit the targets.
Once the target was hit, the next trial started after an inter-trial
interval of 1s. Figure 2 gives a simple illustration of the stages of
the task. Trials aborted by the eye tracker, trials in which joystick
movement preceded the presentation of the cursor, and trials in
which subjects failed to hit the correct target were omitted from
further analyses. The total number of remaining valid trials were
394, 584, 258, 398, and 305 for Subjects A through E, respectively.

3. METHODS

The primary goal of this study was to determine whether ECoG
may be used to detect the onset and direction of an intended
movement, and whether this information could be useful to
reduce the time-to-target in a simulated targeting application. In
the following sections, we describe our methods for ECoG fea-
ture extraction, movement onset and direction prediction, and
the simulation of the targeting application.

3.1. FEATURE EXTRACTION

We first re-referenced the raw ECoG signals (excluding occipital
channels) using a common average reference (CAR) spatial filter
to remove spatial noise (Kubdnek et al., 2009). For each 100 ms
time step and each channel, we converted 300 ms windows (i.e.,
200 ms overlap) of ECoG time series into the frequency domain
using an autoregressive model of order 25 (Marple, 1986). Using
this model, we derived frequency amplitudes between 0 and
200 Hz in 1 Hz bins. Figure 3 shows an example of ECoG activity
at different frequencies during the preparation for and execution
of the movement task with respect to rest averaged across trials.
Spectral amplitudes were divided by an average spectrum of the
rest condition. A normalized amplitude of 1 suggests no task-
related modulations at a particular time and frequency, whereas
a value of 2, for instance, suggests that the spectral amplitude
of interest doubled during the task. ECoG features were attained
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FIGURE 2 | lllustration of all eight possible target locations (left) and the five experimental stages.
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FIGURE 3 | Exemplary time-frequency plots from Subject B of
normalized spectral amplitude (indicated with a linear colorscale) for
an electrode over the premotor cortex (indicated by the blue star in
the brain model on top) and an electrode over primary motor cortex
(yellow hexagon). The horizontal axis gives time (the target was presented
at time O; the cursor was presented at 1s). The vertical axis gives
frequency.

by averaging these frequency amplitudes across three frequency
bands: mu (8-12 Hz), beta (18-26 Hz), and high gamma activity
(70-170 Hz). In addition to these three spectral features, we also
calculated the local motor potential (LMP) (Schalk et al., 2007;

Kubdnek et al., 2009) by averaging the raw time-domain signal at
each channel over each 300 ms time window (also 200 ms over-
lap). This process resulted in a total of four features from each
ECoG channel at each (100 ms) time step.

To remove features unrelated to movement onset and direction
prediction, we performed feature selection via forward search on
five cross-validation folds (i.e., dividing the number of total tri-
als into five and using four-folds for training and one-fold as the
novel testing set, five times). The algorithm started with an empty
feature set and, at every iteration, added a new feature to the set to
generate best classification accuracy across each of the five testing
folds. We chose the size of features as 20 for both movement onset
prediction and movement direction prediction.

3.2. PREDICTION OF MOVEMENT ONSET

We downsampled the joystick data to 10 Hz using a moving aver-
age filter (300 ms window, 200 ms overlap) to align with the ECoG
features. In each trial, we defined the actual movement onset as
the time sample when the joystick was pushed beyond one eight
of its maximum radial extension from its rest position. For each
trial, there was a single onset sample and all time samples from
the beginning of the trial up to this onset were labeled as not
onset.

We then designed a detector that accumulated 1 s of ECoG fea-
tures into a first-in-first-out (FIFO) buffer and determined from
a full buffer whether the subsequent time step would be the onset
of a movement. Each trial started with an empty buffer which was
updated with new features every 100 ms. Once the buffer was full,
a prediction was made every 100 ms via a weighted SVM (Huang
and Du, 2005). We opted for a weighted SVM as it overcomes
the classification bias that results from the unbalanced nature
of the data (i.e., the class not onset’ is much more likely than
the class onset) by setting the ratio of penalties to the inverse
ratio of the class sizes. We configured the weighted SVM to use
a radial basis function as the kernel. The labeled joystick data
was divided into 5-folds; four of these folds were used for train-
ing the weighted SVM, and one fold was allocated for testing.
We repeated this process five times until each fold was used for
testing .

'In ancillary analyses, we performed feature selection on 1/5th of the data,
which were subsequently not used in the training and testing of the onset and
direction predictors. The results of this more conservative analysis were very
similar to the results reported in the paper.
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The output of the weighted SVM classifier yielded the proba-
bility of an onset as a function of time. Time points were classified
as movement onsets if their probability values were greater than
an empirically determined threshold of 0.3. We chose the F1-score
as our accuracy metric as it is preferable over percent accuracy or
error rate for highly unbalanced classes (van Rijsbergen, 1979).
F1-score is defined as:

2TP
l= (1)
2TP + FP + FN

where TP, FP, and FN are the occurrences of true positive, false
positive, and false negative predictions. Fl-score is particularly
befitting for our onset predictor, as the metric is not influenced
by true negative (TN) predictions. Given the imbalance of our
two classes, any random classifier is likely to yield high TN
rates. Fl-scores take on values between 0 and 1, with the latter
corresponding to a perfect classifier.

We computed the Fl-scores of onset predictions for all sub-
jects. We were also interested in determining the ECoG features
(i.e., spectral bands and spatial locations) that were most pre-
dictive of movement onset. To do this, we calculated F1-scores
separately for each ECoG feature using the methods described
above. We ran the 5-fold cross validation 20 times; each time there
was a random division of the folds. A series of high F1-scores sug-
gests that the prediction was highly accurate, whereas ratios close
to zero indicate a poor predictor. Hence, we tested whether the
F1-scores in these 20-folds were significantly different than zero
via a t-test. The corresponding p-values represent the significance
of the F1-scores, and thus the accuracy of the classifier. We con-
verted these p-values into indices of confidence [(i.e., —log(p))],
and mapped those confidence indices on the cortex models of the
individual subjects.

3.3. PREDICTION OF DIRECTION OF INTENDED MOVEMENT
We predicted movement direction using all ECoG features from
1s prior to the actual movement onset (i.e., the same window used
to predict the movement onset). Routinely in such multivariate
prediction problems, multichannel time series are re-arranged
into a vector to be used as input features to train a classifier,
e.g., a neural network or SVM. However, the shortcoming of
this approach is that it generally ignores the spatial and temporal
structure of the multidimensional time series. Because we felt that
such structure was likely important for directional classification,
we opted to implement a novel modified time-varying dynamic
Bayesian network (MTVDBN) that can capture the spatial and
temporal dependency of the ECoG signals across both domains.
A Bayesian network is a probabilistic graphical model that
represents a set of variables and their conditional dependen-
cies via directed acyclic graphs, in which nodes represent ran-
dom variables and edges represent conditional dependencies.
A Bayesian network is an established method for modeling depen-
dency structures in complex multivariate systems. An extension
of Bayesian networks that models time series is called a dynamic
Bayesian network (DBN). However, an important assumption
underlying DBNs is that the time series are generated by a sta-
tionary process, which generally does not hold for neural signals.

TVDBN (Song et al., 2009) introduced non-stationary tempo-
ral transitions, but did not describe spatial dependency between
variables. In this paper, we extend the TVDBN to the modi-
fied TVDBN (MTVDBN) in which the non-stationary temporal
and spatial dependencies of ECoG signals are modeled simul-
taneously. Figure 4 depicts a block diagram of a MTVDBN in
which (vertical) arrows within each time slice (i.e., across rows
of a column) represent spatial dependencies, while (horizon-
tal) arrows across time slices (i.e., across columns) describe
the temporal dependencies. Regular TVDBNSs lack the former
spatial structure, i.e., the (vertical) arrows within each time
slice.

Let X! = (X!, ..., Xlt\/I)T be a vector representing the ECoG fea-
tures (mu, beta, high gamma bands, and LMP) from all channels
at time t (i.e., M is four times the number of channels for each
subject). The joint likelihood of the time sequence of length T
can be expressed as:

T M
X', XD =] [T Pt X, X ). )

t=1m=1

where X!"1 and X!, denote the parents of input feature X}, at
time (+ — 1) and t, respectively (see Figure4). Since we use 1s
of ECoG features, we are interested in a time sequence of length
T = 10 samples. Note that the parent X;_ml represents temporal
dependencies, where as parent X represents spatial dependen-
cies. An equivalent form of representing P(X}, |X{ 1, X! ) is the
following linear model (Duda et al., 2008):

Xt =an X 4 al XE

m m* Ty,

+¢,wheree ~ N(0,1), (3)

a' ! and a!, are row vectors of the coefficients of parents of fea-
ture X!, at times (¢ — 1) and ¢, respectively, and the variable ¢ is
Gaussian noise with mean zero and unit standard deviation. The
coefficients a represent the structure of the network. The zero
elements of a represent the missing links within the structure,
whereas the non-zero elements stand for the dependence strength.
The coefficients are learned through maximizing the likelihood
of X!, across all training samples. To prevent overfitting and to
encourage sparse structures, we learn a through an ¢; penalty.
Specifically, the coefficients a’, ! and a’, are learned by:

1 N

p n,t t—1n,t—1 t b2

trplm — E (Xm —a,, Xnm —aanm)
t N

m >qm n=1

(a1, a1, (4)
where N is the size of training vector samples, XJ;" represents
the data at the feature m at time ¢ in the n training vector.
Similarly, X! is the parent of X};" at time  in the n training
sample. Parameter X is the penalty coefficient, which controls the
sparsity of the structure and it is identified by cross validation.
Equation (4) is solved by least angle regression and shrinkage
(LARS) (Efron et al., 2004), which has a computational complex-
ity of O(N(2M — 1)%) time. Equation (4) was applied to each
node to select the potential parents. However, this preprocessing
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Features

FIGURE 4 | Block diagram of a modified time-varying dynamic Bayesian network (MTVDBN). The shaded nodes are the parents of the node .

does not automatically result in acyclic graphs at each time slice.
A hill-climbing algorithm was then used to greedily construct an
acyclic graph in which the edges were restricted by the selected
potential parents (Schmidt et al., 2007).

We built a MTVDBN for each direction trained using
only the trials toward that direction. For each direction d =
{1, 2, ..., 8}, the set of parameters a;,m form=1{1, 2, ..., M} and
t ={1, 2, ..., T} were trained. Each MTVDBN thus learned the
patterns of the input ECoG features associated with planning a
movement in their assigned direction (Equation 3). After these
model parameters were trained, given a test sample of ECoG
features, the classification was done by:

T M
d* = argmin Z Z —log P(an’t|X:[’;_l, X;;,f)
d

t=1 m=1

T M
= argmin Z Z(X;‘;’t — a;’_r;X;‘t’y:_l — a;,mX;’yi)z. (5)
d

t=1 m=1

In other words, every time an onset was detected, 1 s of input
features (i.e., T = 10 samples) were fed into eight MTVDBNSs.
Each of these eight MTVDBNS s yielded the joint likelihood of X*
for one particular direction, d. In each trial, we then chose the
direction that yielded the highest likelihood (i.e., lowest negative
log-likelihood) as the predicted direction.

3.4. INTEGRATION OF ECoG-BASED PREDICTIONS AND TASK

In additional offline analyses, we simulated the integration of
the directional prediction using ECoG signals with the task. We
placed the cursor in the predicted direction at a distance o from
the center. In other words, if the directional prediction was accu-
rate, the cursor would be placed closer to the target, resulting in
a decreased time needed to hit the target. Figure 5 gives a sim-
ple illustration of re-positioning the cursor toward the predicted
target direction. In this figure, the black box is the target and the
predicted direction is (somewhat inaccurately) towards the right.
If the radius of the circle in Figure 5 is R, to decrease movement

. Actual
“\\target

R’ predicted
target

R

FIGURE 5 | An illustration of the simulated brain-assisted targeting
system. The black box depicts the current target and the white boxes
represent all other possible target locations. The arrow shows the
incorrectly predicted direction. The dashed circle is the locus of all points at
a distance R away from the target. When the cursor is re-positioned in this
circle, the distance to the target is decreased, as R’ < R.

time, the distance between the re-positioned cursor and the tar-
get should be less than R. The dashed circle is the locus of all
points at a distance R to the target. Thus, to be closer to the target,
after direction prediction the cursor should lie within the dashed
circle. The area enclosed by the two circles is 39% of the area
of the solid circle, implying that if we place the cursor in a ran-
dom direction, then there would be a 61% chance that the cursor
would be farther away from the target compared to if were left
in the center of the circle. In other words, if we randomly placed
the cursor within the solid circle, on average it would take the
subject longer to hit the target. Conversely, if the output pre-
diction is the correct target or at least one of its neighbors, this
would bring the cursor closer to the target and may allow the
user to reduce the time it would take to hit the target. The angle
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between the imaginary line that passes through the center and
the actual target and the imaginary line that passes through the
center and one of the intersection points between the two circles
is 60°. Hence, we have an error margin of £60° to improve the
performance.

4. RESULTS

4.1. PREDICTION OF MOVEMENT ONSET

As described in the Methods, we computed from ECoG signals
(i.e., amplitudes in the mu, beta, and gamma band, as well as
the LMP) the likelihood of an occurrence of a movement onset.
Figure 6 gives an exemplary resulting time course of the like-
lihood values of an onset over 20s for Subject A, along with
arrows that indicate the actual and predicted movement onsets.
We observe that the likelihood curves exhibit sharp peaks around
the actual movement onset, which demonstrates that the classi-
fier can accurately detect movement onsets using ECoG signals.
In each subject, we used these likelihood values to classify each
time point ¢ as “onset” if the likelihood value exceeded an empir-
ically attained threshold value of 0.3. The confusion matrices,

evaluated during actual movement, for all five subjects are shown
in Table 2 in percentages, along with the total number of events
and the resulting F1-scores. Most of the false positives occur
200 ms around the movement onset (i.e., the peak of the proba-
bility function). The predictor yields high detection performance
for Subjects A and B. The high occurrence of false negatives
decreased the F1-score for Subjects D and E. The high number
of false negatives and false positives led to reduced performance
in Subject C.

Figure 7 shows the confidence indices of the ECoG features
that are most predictive of the movement onset. (Note that a
significance level of p < 0.05 corresponds to a confidence index
of —log(p) > 3). The two larger brain models in the top row
show the confidence indices for the high gamma band and LMP,
the most predictive of the features, accumulated across all sub-
jects. The bottom two rows show the results of the high gamma
band and LMP for individual Subjects A—E. These results indicate
that the brain areas yielding prediction of movement onset are
centered on hand representations of motor cortical areas for the
high gamma band and extend beyond the hand representations
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FIGURE 6 | Time course of likelihood of movement onset for Subject A. The dashed line represents a probability level of 0.3, which was used as a

Table 2 | Confusion matrices of movement onset prediction for Subjects A-E. The values shown in parentheses are the false positives that

occur more than 200 ms away from the actual movement onset. The bottom row gives the F1-score.

Subject A Subject B Subject C Subject D Subject E
Actual Actual Actual Actual Actual Actual Actual Actual Actual Actual
not onset onset not onset onset not onset onset not onset onset not onset onset
Predicted not onset 94% 27% 94% 36% 73% 74% 84% 65% 93% 66%
Predicted onset 6%1(0.5%) 73% 6%1(0.7%) 64 % 27%(22%) 26% 16%(9%) 35% 7% (4%) 34%
Number of events 3991 316 4021 468 4537 205 3380 316 4640 320
F1-score 0.69 0.63 0.06 0.23 0.35
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FIGURE 7 | Relationship of brain signals with movement onset. This figure shows the spatial distribution of accumulated confidence indices —/og(p)
for the 70-170 Hz high gamma band (top left) or the LMP (top right) across all subjects. The spatial distribution of the confidence indices for each subject

for the LMP. This finding is in agreement with results from a
previous report that investigated finger flexions (Kubanek et al.,
2009). However, areas other than the sensorimotor cortex were
used in the onset prediction as selected by the feature selection
algorithm (see Methods). On the other hand, mu and beta bands
did not yield statistically significant activations for prediction of
movement onset. Although desynchronization of these bands has
been posited to relate to local increases in high gamma amplitude
in the motor cortex (i.e., as a gating mechanism) (Miller et al,,
2009), the corresponding brain signals are known to be spatially
widespread and slowly evolving, and thus may not be the best
indicators for the exact timing of movement onset.

4.2. PREDICTION OF DIRECTION OF INTENDED MOVEMENT

We computed the absolute value of the angular error of the direc-
tional predictions obtained by the MTVDBNS for each trial and
each subject, and calculated their mean and standard deviation
across all trials. This yielded the following single-trial angular
error statistics for Subjects A-E, respectively: 55.29° & 52.61°,
46.28° + 57.80°, 68.95° &+ 55.16°, 70.55° + 53.78°, and 87.8° &+
57.9°. A single-sided t-test revealed that the accuracy of our
results was better than chance (i.e., 90.0 & 57.36°) at a signifi-
cance level of 5% (p < 0.05) for all subjects. Our method yielded
single-trial angular errors that were smaller than 90° for all sub-
jects, and as low as 46° in one subject. Given that the targets are
separated by 45°, the results indicate that the classifier was able to

infer the direction of intended movements within less than two
targets in single trials.

4.3. INTEGRATION OF ECoG-BASED PREDICTIONS AND TASK

We further studied whether integrating information extracted
from ECoG signals would improve performance in a simulated
targeting task. Every time a movement onset and direction were
predicted, we placed the cursor in the predicted direction. As
described in the Methodes, this stimulation will result in improved
performance if the single-trial error of the predicted direction is
less than 60°. Figure 8 shows the positions of the cursor averaged
across trials for each target for Subject A. It is clear that, after the
re-positioning of the cursor based on the predicted directions, on
average the subject would need to move a shorter distance to hit
each target, and therefore should complete the task in less time
assuming he/she would not have been distracted by the changing
position of the cursor. After the cursor was placed closer to the
decoded target, we simulated the cursor movement toward the
target at each subject’s average moving speed.

The distance o at which we place the cursor toward the
predicted target is an important parameter that needs to be
optimized. Note that o is a factor of the distance to the target
(i.e., & = 0.5 places the cursor halfway between the center and
the predicted target) and thus 0 < a < 1. With either too small
or too large of an o (a > 1), we might not take full advantage
of the prediction results. The time needed to hit the target as a
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FIGURE 8 | Results for movement direction prediction results for
Subject A. The symbols represent the eight different targets. The
symbols in bold depict the actual positions of the targets and the thinner
symbols show the averaged pre-movement positions of the cursor
across all trials in each direction. (Note that these are average cursor
positions. Values for single-trial angular errors are given in the text.)
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FIGURE 9 | Time to hit the target as a function of « for Subject A,
where « is a scaling factor of the distance from the center to the
targets. The dashed line gives the average time to hit the target without
the assistance of ECoG signals. Error bars give the standard deviation of
the mean. Note that predictions from the brain signals do not have any
effect when a is zero.

function «a is plotted in Figure9 for Subject A, which suggests
an optimal value of 0.8 for a. The optimal o values for other
subjects are listed in Table 3, which also compares the average
movement time with and without the assistance of ECoG signals.

The results in this table also demonstrate that the movement time
of the majority of trials would have improved up to 150 ms. These
encouraging results suggest that at least under certain assump-
tions?, ECoG signals may improve a user’s performance in a
targeting task.

5. DISCUSSION

In this paper, we demonstrated that it is possible to use ECoG
signals to detect the onset and the direction of an intended move-
ment. We also demonstrate in a simulation that it may be possible
to use these predictions to reduce the time to complete a targeting
task by pre-positioning the cursor using ECoG signals acquired
only prior to the movement. We achieved detection of movement
onset by continually analyzing the incoming ECoG signals using
a SVM classifier, and predicted the intended movement direc-
tion using a novel variant of a dynamic Bayesian network (i.e.,
the MTVDBN algorithm) that captures the spatial and temporal
structure of the ECoG features.

5.1. OPTIMAL INTEGRATION OF BRAIN SIGNALS FOR
IMPROVEMENT OF PERFORMANCE

The distance a from the center at which the cursor is repo-
sitioned affects the improvement in performance as shown in
Figure 9. Moreover, we see in Table 3 that the optimal o values
ranges from 0.4 to 1.0 across subjects. It can also be observed
that a higher o value is reflected in higher percentage of tri-
als with improved movement time. This does not imply that a
higher a value improves performance, which is not the case for
Subjects D-E. Rather, it implies that if the directional classifier
yields accurate outputs, we can take better advantage of the system
(with a high a) for improving performance. Hence, improv-
ing classifier performance is crucial for the optimal integration
of information from brain signals with external (e.g., joystick)
control.

5.2. RELEVANCE FOR ASYNCHRONOUS BCls

Synchronous BCIs restrict the user to communicate in prede-
fined time frames. Asynchronous BCIs, which allow the user to
communicate spontaneously, may support more powerful practi-
cal applications as they are self-initiated and self-paced systems.
However, asynchronous BCIs require the detection of the event
in addition to identifying the properties of the event. The results
presented in this paper may prove useful as the basis for an
asynchronous BCI. While data collection was achieved using
cued external events, our decoder was ambivalent to these events
and processed the incoming data asynchronously. That is, the
only input to the decoder in our experiment was the ECoG
time sequence. At each time t, the decoder detected whether
the user was beginning to move the joystick, and also predicted
the intended movement. Future research could explore similar
capacities in completely uncued situations, and in people who
attempt but do not actually execute movements, such as people
with chronic stroke.

20ne assumption here is that reduced distance-to-target will reduce move-
ment time or at least will have other distinct benefits.
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Table 3 | Statistics and parameters of the simulated performance: optimal o values, original average movement times, average simulated

movement times achieved by integrating ECoG, percentage of trials with improved movement time, percentage of trials with degraded

movement time, and the statistical significance of performance improvement (in trials with reduced movement time).

Subject A Subject B Subject C Subject D Subject E
Optimal o 0.6 0.8 0.6 0.4 0.4
Average movement time 1050 + 160 1067 + 355 1710 + 156 1635 + 148 1507 £ 480
without ECoG (ms)
Average movement time 882 + 430 789 + 469 1604 £+ 494 1610 4+ 687 1483 £ 733
with ECoG (ms)
Percentage of trials with 61% 70% 54% 43% 53%
improved movement time
Percentage of trials with 39% 30% 46% 57% 47%
degraded movement time
Significance (p-value) of 7.3x107° 1.5 x 10719 2.7 x 1074 6.2 x 102 7.4 %1072

improved movement time

5.3. RELEVANCE FOR PERFORMANCE AUGMENTATION

We showed in a simulation that the time required to perform
a directional motor task can be reduced by up to 150 ms. Such
improvements in human performance should have a number of
important applications. As an example, a reduction of the time to
acquire a target may increase the probability to come out ahead
in tactical combat. To investigate this possibility, the methods
presented in this paper could be readily transferred to real-time
testing. In this scenario, model parameters are estimated once ini-
tial training data are collected. The computational complexity of
the MTVDBN directional classifier during the online testing ses-
sion is O(dTM?), where d is the number of directions, T is the
memory depth (i.e., input time samples), and M is the number
of input features (i.e., spectral bands times the number of chan-
nels). This relatively modest computational requirement should
readily support real-time testing once the MTVDBNSs are trained.
Nevertheless, real-time implementation and testing is necessary
to determine whether the time to hit the target will also decrease
in actual online experiments.

5.4. EXPERIMENTAL LIMITATIONS

While the signal characteristics of ECoG are attractive, the acqui-
sition and study of ECoG have several important limitations.
Foremost, to record cortical signals subdurally, a craniotomy and
dural incision must be performed. Hence, the implantation of
the grids is associated with infrequent, but serious risks, such
as inflammation or death. Moreover, the extent of grid cover-
age and its placement is not standardized across subjects and is
determined by the clinical needs of the patients. For instance, the
subject with the smallest fraction of trials with improved move-
ment time (i.e., Subject D) had grids implanted ipsilateral to
her dominant (left) hand. Thus, she was asked to use her non-
dominant hand (i.e., contralateral to her implants) during the
experiment, which might have contributed to reduced informa-
tion about movement direction, and hence the low percentage
of trials with improved movement times. Next, the physical and
cognitive condition and level of cooperation of each subject are
variable. Moreover, ECoG experiments are for practical reasons
performed in uncontrolled noisy environments (i.e., hospital

rooms). Furthermore, the subjects in the study suffered from
epilepsy, and thus may have some degree of functional or struc-
tural reorganization compared to healthy individuals. Despite
these limitations, the results presented in this and other ECoG
studies are usually consistent with expectations based on human
neuroanatomy.

While we controlled for important variables in this study (such
as eye gaze), the experimental setup in any ECoG study is neces-
sarily somewhat less controlled than that in the typical animal
or human neuroscientific study. However, real-world environ-
ments are typically very uncontrolled as well. This circumstance
strengthens our claim that our results may translate into benefits
in real-life scenarios.

In its present design, the onset predictor is based on ECoG
signals from the previous Is. In other words, at least 1s of data
need to be available to make a prediction about movement onset.
In addition, the directional classifier is designed for prediction
of discrete directions at the time of movement onset. Moreover,
it takes advantage of the +60° error margin to bring the cursor
closer to the target. Hence, it is unclear to what extent the infor-
mation in ECoG would generalize to reliable predictions during
continuous cursor control. Finally, real-time implementation of
the proposed system (i.e., re-positioning of the cursor) is required
for evaluating the proposed system, as unpredicted jumps in the
cursor, whether closer to or farther from the target, might affect
the performance of the user.

5.5. FUTURE DIRECTIONS

The work presented in this paper focused on detecting the onset
and direction of movements using ECoG signals. The methodolo-
gies for initiation detection presented in this paper may also be
extended to the detection of inhibition of a movement. Volitional
inhibition is the process of adapting to sudden changes in the
surrounding environment by stopping or modifying an action.
Thus, future work may include testing countermanding of initi-
ated motor responses, e.g.,using a stop-signal paradigm (Logan
et al., 1984). Inhibiting a response has been suggested to recruit a
fronto-basal ganglia-thalamic network, including the right infe-
rior frontal gyrus (Aron et al., 2003, 2007; Rubia et al., 2003;
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Chambers et al., 2006) and pre-supplementary motor corti-
cal areas (Sumner et al.,, 2007; Chen et al., 2010; Scangos and
Stuphorn, 2010). These areas are thought to influence the cor-
tical areas underlying limb movement preparation and initiation,
i.e., dorsal premotor (Mirabella et al., 2012) and primary motor
cortices (Coxon et al., 2006; Swann et al., 2009), through the sub-
thalamic nucleus (Aron and Poldrack, 2006; van den Wildenberg
et al., 2006; Mirabella et al., 2011). Applying the methodological
framework described in this study to ECoG signals collected over
the right inferior gyrus, motor and pre-supplementary motor
cortices during a countermanding task may thus allow for the
detection of the onset of corresponding inhibitory processes.
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FIGURE A1 | Example of an implanted subdural grid (Subject A).

(A) Lateral radiograph indicating grid position. (B) Subdural grid placed over
left fronto-parietal and temporal lobes.

FIGURE A2 | The experimental setup at Albany Medical College.
Joystick control mostly entailed wrist movements.
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