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To provide a platform to enable the study of simulated olfactory circuitry in context, we have
integrated a simulated neural olfactorimotor system with a virtual world which simulates
both computational fluid dynamics as well as a robotic agent capable of exploring the simu-
lated plumes. A number of the elements which we developed for this purpose have not, to
our knowledge, been previously assembled into an integrated system, including: control of
a simulated agent by a neural olfactorimotor system; continuous interaction between the
simulated robot and the virtual plume; the inclusion of multiple distinct odorant plumes and
background odor; the systematic use of artificial evolution driven by olfactorimotor perfor-
mance (e.g., time to locate a plume source) to specify parameter values; the incorporation
of the realities of an imperfect physical robot using a hybrid model where a physical robot
encounters a simulated plume. We close by describing ongoing work toward engineering a
high dimensional, reversible, low power electronic olfactory sensor which will allow olfac-
torimotor neural circuitry evolved in the virtual world to control an autonomous olfactory
robot in the physical world. The platform described here is intended to better test theories
of olfactory circuit function, as well as provide robust odor source localization in realistic
environments.
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INTRODUCTION
Brain sensory and control systems evolved to enable action which
leads to organism survival. The active interplay between sen-
sation, motor action, and the environment is at the heart of
the field of evolutionary robotics (Cliff, 1991; Cliff et al., 1993;
Nolfi and Floreano, 2000) and has been studied extensively in
the context of visuomotor interaction, so-called “active vision”
(Churchland et al., 1994; Floreano et al., 2005). However, evo-
lutionary robotics has received limited attention in the context
of olfaction, though olfaction is the more evolutionarily prim-
itive sensory system. While olfactory neural circuitry has been
profitably studied as a stand-alone sensory system, combining an
olfactory sensory representation with an ability to trigger motor
activity has not been attempted. Studying the evolution of senso-
rimotor transformations is particularly apt in olfaction: olfacto-
rimotor function is reflected in the most evolutionarily primitive
chemotactic sensory-motor interactions, such as the spin-and-run
behavior observed in paramecium where cilia activity is triggered
by chemosensitive ion channels (Greenspan, 2007). Further, the
olfactory bulb and piriform cortex dominates the cerebrum in
the most evolutionarily primitive vertebrates, hagfish and lam-
prey (Wicht and Northcutt, 1998), reminding us that olfaction
was the foundational cortical sense followed much later by the
dedicated visual cortex arising in reptiles (Ulinski, 1990). The
physical exploration of a plume has been suggested to be criti-
cal in nulling background, making sensory-guided motor control
directly related to odorant object identification (Best and Wil-
son, 2004; Rhodes, submitted). The evolutionarily ancient role

of olfaction and the role of exploration in olfactory function
suggests that the study of olfactorimotor neural systems will iden-
tify principles fundamental to sensorimotor neural systems of all
modalities.

A number of intriguing studies have recently pointed to the
need for simulations of realistic plume environments in which
to develop and test models of olfactorimotor control. Trincavelli
(2011) emphasized the joint need for an experimental environ-
ment reflecting the turbulence and convection characteristic of
natural conditions, but in this work imposed a fixed quasi lam-
inar airflow between source and sensor to enable repeated trials
under comparable conditions. In an attempt to develop a data-
base for potential use in studies of olfactorimotor control, Ishida’s
group (Wada et al., 2010) obtained maps of convection and sensor
readings at a regular grid of points in both indoor and outdoor
environments; however, the difficulty entailed in using physical
robotic platforms to simply map turbulent plumes was reflected in
the fact that minutes separated each of dozens of serial measure-
ments of the ever-changing convective environment, preventing
the ability to use the database to reproduce the sensor and con-
vection experience of a robotic agent in traversing any path other
than the one used to collect the data. Recently Bennetts et al. (2012)
addressed olfactorimotor control in several natural environments
with sensors on board three types of physical robot platform, two
wheeled and one aerial, equipped with metal oxide (MOX) and
photon ionization detector (PID) sensors. They also quantified the
effective sampling rate for these sensors (<0.04 Hz for the MOX
and <0.15 Hz for the PID) suggesting that reversibility is far slower
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than the 1–10 Hz relevant to biological sensor responses ranging
from canine or rat sniff rates to insect olfactory receptor neurons.
Trincavelli and colleagues particularly emphasize the joint neces-
sity of olfactorimotor control experiments with rapidly reversible
sensors operating in realistic environments, along with the exper-
imental reproducibility required to systematically test models of
olfactorimotor control, whether neurally inspired or not. We have
set out to develop a simulation system that meets these goals in
this work.

With respect to the control algorithms much work has been
motivated by the apparent search strategies adopted by animals,
and over the last 15 years a compelling body of work on robotic
olfactorimotor control has developed (reviewed in Kowadlo and
Russell, 2008; McGill and Taylor, 2011). Most of these studies
have however incorporated a more traditional robotic sensorimo-
tor controller, and there has thus far been little work embedding
a neural olfactory sensorimotor system in a simulated (or real)
olfactory environment. In this paper we report on the develop-
ment of a virtual olfactory plume world with a robotic agent
controlled by a neural olfactorimotor simulation. We argue for
the use of artificial evolution of the parameters controlling the
simulated brain, and then describe how the virtual closed world
can be linked to a physical robot, both before and after the devel-
opment of a physical olfactory sensor with the high dimensionality
and rapid reversibility needed to enable plume exploration, so that
neural olfactorimotor systems can be evolved in virtual and real
worlds in tandem. Describing the components we have chosen
to assemble for this integrated system, and addressing some of the
constraints encountered and the trade-offs entailed, is the purpose
of the present work.

MATERIALS AND METHODS
AN ENVIRONMENT FOR THE SIMULATION OF NEURAL SENSORIMOTOR
INTERACTION IN A VIRTUAL PLUME WORLD
To explore olfactorimotor circuit function we embedded a simu-
lated sensory-motor system in a virtual world which simulates
multiple turbulent plume sources and their interaction with a
robot agent in real-time. This enables modeling two effects of
motor commands on the sensory experience: movement of the
sensor position through the plume, and perturbation of the plume
dynamics due to agent movement. The virtual plume environ-
ment is crucial for developing artificial olfactorimotor machines:
robots that can autonomously locate a plume source in the
face of their interaction with the plume during exploration. As
reviewed in the Discussion below, there are currently no vir-
tual world/robotic simulation packages which integrate real-time
computational fluid dynamics (CFD) solvers capable of incor-
porating flow fields shaped by the features of the environment
(convection sources, temperature differences) in which to situate
odorant plumes. We first explored available CFD implementa-
tions capable of integration into a virtual world, seeking one
computationally light enough to update plumes and convection
fields interactively during simulation, in order to allow agent posi-
tion and velocity to affect plume and convection motion. The
following is an outline of the set of elements that we suggest
need to be assembled to enable the study of neural olfactorimotor
interactions:

1. A computationally efficient fluid dynamics simulator inte-
grated into a virtual world.

2. A model of robotic agent, including positions of the olfactory
sensors and motor effectors to be connected to neuronal motor
representation.

3. A means of communicating the currently sampled odorant con-
centration from the robot sensor to the brain simulation, and
of communicating the motor unit activity levels, or resulting
effector control signals, back to the agent.

4. Simulated source odorants, an odorant background, and a
sensor array.

5. A simulated neural system including circuitry for sensory
representation, motor units, and the linkage between them.

6. A mapping of motor unit activity to the control of effectors
on the agent, so that the firing of motor neurons in the circuit
simulation moves the agent in the virtual world.

7. A means to select and optimize simulation parameters to guide
the construction of a biologically inspired neural implementa-
tion of an olfactorimotor system embedded in such a virtual
world. We have adopted the large-scale use of artificial evo-
lution for this purpose, and outline some of the challenges
entailed.

8. A means to bring all three simulations (sensorimotor neural,
robotic agent, and plume CFD) into correspondence with a
physical robot, initially in a hybrid real-virtual environment
where the plume simulation generates the sensor signals and
the output of the neural simulation drive both a virtual and
real robot in tandem.

Moving from simulated olfactorimotor environments into physi-
cal agents of course requires the availability of a physical olfactory
sensor array. A suitable artificial olfactory sensor must be rapidly
reversible with a time constant comparable to that of biological
olfactory sensors to extract information about plume spatiotem-
poral changes during exploration (Wada et al., 2010; Trincavelli,
2011), and high dimensional if it is to represent a wide range of
odorants, two fundamental prerequisites not jointly met by exist-
ing physical olfactory sensor alternatives. We are engineering such
a sensor1, an array of functionalized carbon nanotube field effect
transistors, and briefly reference this work below.

Below, we report the development of a system incorporating
the elements enumerated above:

Computational fluid dynamics simulator
Arguably, the most important aspect of a virtual world devoted
to olfactory search behavior is the fluid simulator. Typically the
robotic system has the goal of discovering the location of an object
(often called the “source”) by utilizing a stream of sensor signals
triggered by the odorant plume emitted by the source. The CFD
simulator determines odorant dispersal from the source by con-
structing a flow field which takes into account multiple physical
effects including air entering and exiting the simulation environ-
ment (for example, through an open window, under a door-jam, in
a heating vent, or out an air return duct), temperature differentials

1www.nanosensetech.com
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leading to convective currents, and air displacements due to robot
movement (detailed further below). The odor plume, represented
as either particles or a continuous value in a voxel or other finite
element array, is then transported along this flow field. While the
simple diffusion of odor molecules is a factor, real plumes of the
scale encountered by most laboratory animals are dominated by
turbulent flow.

While simulated robotic olfaction plumes are often pre-
computed or simulated without ongoing interaction with the
moving robotic agent in order to reduce simulation overhead
(Cabrita et al., 2010), simulations of the interaction of the body
of a moving agent of several centimeters in size or larger with
plumes from compact objects (for example sources of food) sug-
gest the perturbation of the plume by the moving agent is very
significant, and cannot be plausibly neglected, even in first-order
approximation (Dickman et al., 2009). Further, many creatures
utilize a variety of means of active intake to enhance olfactory
function, including the familiar sniffing characteristic of many
mammals and the antennule motion drawing in a stream of water
crucial for crustacean olfaction. Such active sensing has been used
to advantage in robotic olfactory function (e.g., Ohashi et al.,
2008). Simulating olfactorimotor behavior which accounts for
perturbation of the plume by movement of the agent, as well as
incorporates active intake, requires interactive CFD simulation
with an update time comparable in speed to the time step update
of the sensorimotor control system.

In selecting a CFD implementation we were therefore forced
to balance accuracy with the need for interactive plume updates
to account for the movement of the robotic agent under con-
stant (and unpredictable) sensorimotor control by the simulated
neural control system. We tested a variety of CFD solutions that
enabled multiple odors and interaction between flow field and
moving objects but with sufficient computational efficiency to
allow plume dynamics to be updated in a time comparable to the
neuronal simulation update time. While accurate, traditional CFD
software packages such as OpenFOAM, and Comsol Multiphysics
are designed to simulate steady-state equilibrium dynamics, rather
than the transient dynamics we seek to capture here, and further
do not run at speeds approaching real-time. Software designed for
generating computer graphics, such as Blender and Houdini, offer
exceptional rendering of 3D plumes, but focus on the generation
of high resolution effects suited for offline dedicated computation
without ongoing interaction with a separately simulated robotic
controller. We thus found these software packages unsuited for
real-time interactive operation.

While exact implementations of the Navier–Stokes equation
system must use very short time steps or implicit solvers in order
to avoid instability in the system, Jos Stam has invented a method
which employs a simplified version of the Navier–Stokes equa-
tions optimized for use in interactive applications such as games
(Stam, 1999). To solve fluid equations at video rate, Stam crafts
a robust version of the equations which are inherently bounded
and thus stable, allowing longer time deltas between simulation
steps. Though each time step requires solving a few linear systems
and thus is expensive computationally, the fact that each step can
represent tens of milliseconds means very few steps are required
to run at real-time.

Many implementations of the Stam algorithms exist; for the
present work we used Java implementations for ease of prototyp-
ing. For rendering a rich graphical interface on a desktop computer
we used the MSAfluid fluid dynamics library2 within the Pro-
cessing graphics framework3, and for fast computation with no
graphics or interface we used an implementation from Karsten
Schmidt’s Toxiclibs4. The libraries facilitate the creation of a grid
of cells, each of which contains a flow force vector and a density
variable referred to as “dye.” The regional neighborhood of flow
vectors determines the transfer (or advection) of dye from one cell
to another, as well as the effect of flow velocity on the flow field.
Dye may be injected (or removed) at any cell, and thus is ideal
for representing odorant plumes (see Movie S1 in Supplementary
Material). This CFD implementation allows in-simulation manip-
ulation of plume-related variables, such the position and intensity
of the simulated plume and wind sources. Crucially, this system
enables interaction between robotic agent and plume environ-
ment that characterizes the genuinely interactive system we wish to
study (see Movie S2 in Supplementary Material). Our Processing
source code implementing the Stam algorithm in two dimensions
is linked here: www.stanford.edu/∼tanders/CFD

Currently the virtual world, like the CFD, is two dimensional.
Three independent plume sources are modeled, representing three
distinct odorants rendered in red, green, and blue, respectively
(Figure 1). Odorant concentration is represented by color inten-
sity at the specified x, y cell coordinate within the scalar field
(Figures 2A–C). Air movement, modeled as a force vector field,
advects the odor plume. A convection source, such as a fan or vent,
is incorporated by adding an additional vector to the existing vec-
tor in a specified cell or set of cells. The robot body is modeled as
a rectangle, with a top-down image of our real robot (a Surveyor
SRV-1) mapped on top. The user may reposition and modify the
strength of odor and wind sources using a graphical interface. A
separate slider-based panel allows adjustment of such global sim-
ulation parameters as viscosity, time step delta, odor evaporation,
friction between robot and floor, and the magnitude of the robot’s
effect on the flow vector field (Figure 3). In addition, a graph of
the concentrations of each odor over time is plotted in separate
window (see Figure 1, and Movie S3 in Supplementary Material).

Robot agent simulation
In order to interact with the simulated plume, we need to represent
the robotic agent within that plume. The agent, whether simu-
lated or physical, will include olfactory and other sensors (e.g.,
for collision detection), as well as effectors to transport the robot
(motor-driven tracks) and provide for active air intake mecha-
nisms (“sniffing” fans). We require a virtual world which captures
both the physics of moving robots, such as friction, inertia, colli-
sions with obstacles, as well as the fluid dynamics discussed in the
previous section. As the robot carries the virtual sensor through the
virtual world, encountering different parts of the plume, the odor
concentrations at the sensor fluctuate from moment-to-moment
in a realistic manner (Figure 1). These concentration values are

2http://memo.tv/msafluid_for_processing
3http://www.processing.org
4http://toxiclibs.org/
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FIGURE 1 | Concentration of three odors (red, green, and blue lines)
experienced by the virtual robot as it moves in the virtual
environment, with each point representing 1/30 of a second. Thus the
x -axis reflects 30 s of sensor response. Odor concentration is normalized

to the maximum concentration found at the odor source. Note the high
rate of change of odorant concentration at the sensor surface, and the
independence of relative concentration from the two stationary (blue and
red) odorant sources.

sent to the brain (see Figures 2D–F), triggering a cascade of activ-
ity which eventually activates the motor units. These motor signals
are transmitted back to the virtual world to drive the simulated
motor effectors used to update the robot position, thus closing the
sensorimotor loop via continuous interaction between the virtual
environment and separately simulated neural circuitry.

Available virtual worlds designed for simulating robotics are
abundant; examples include Microsoft Robotic Simulator (Johns
and Taylor, 2008), Webots (Michel, 2004), Player/Stage (Cabrita
et al., 2010), and the Robotic Operating System (ROS) promul-
gated by Willow Garage. Additionally many software packages
designed to facilitate creation of video games contain many of
the necessary features, including game engines such as Quake
(Harvey et al., 2009), Blender (Echeverria et al., 2011), Irrlicht
(Ettlin et al., 2005), Unity (Craighead et al., 2007). However,
aside from the simplistic particle systems built into many game
engines, these existing solutions have not included objects capa-
ble of representing odor plumes. One implementation, PlumeSim
(Cabrita et al., 2010) built on top of the open source robot sim-
ulator Player5 may enable integration of plumes into a virtual
environment but presently lacks support for interaction between
the plume and the exploring robots. Because of the plethora of
existing libraries for graphical user interface (GUI) control, fluid
simulation, and robot communication, and because of the lan-
guage used to build the CFD model described in Section “CFD
Simulator,” we wrote a simple custom model robot, incorporat-
ing friction via velocity-proportional speed decrement, collision
proximity detection, in Java.

Communication between virtual world and neural simulation
To guide the robot agent toward the source of the plume, we
integrated the virtual world with a separately simulated neural sen-
sorimotor system based on the Evolved Machines neural simulator

5http://playerstage.sourceforge.net/

(briefly described below in A Simulated Neural System). The sim-
ulated agent in the virtual world was connected to the neural
simulation (“brain”) via a two-way socket protocol based on the
Microsoft socket library winsock2 and the Processing library called
“Network6”. Socket connections allow the brain and CFD-virtual
world to be modular processes running on separate computers and
compatible with any programming language supporting socket
communication.

The amount of data to be passed between the neural simulation
and the virtual world is extremely light, just a few tens of bytes per
timestep. The concentration of each of the three distinct odor-
ants at the position of the sensor is sent from the virtual world
to the Neural Simulator. These values activate the sensor array
as described in Section “Simulated Virtual Odorants, Background,
and the Sensor Array”below, which in turn activates the mitral and
cortical arrays, finally activating the motor units (Figure 4). The
net right-left, forward-backward movement signal resulting from
the pattern of activity in the motor unit array, encoded as described
in Section “A Mapping of the Motor Units to the Control of Effec-
tors on the Agent” below, is then relayed back to the virtual world
so that the agent moves through and perturbs the plume environ-
ment. Neural activity passes from the sensor to motor units in five
simulation timesteps, creating a degree of propagation-time based
latency in the neural system.

The robot interacts with the plumes by adding fluid forces to
the vector representing the leading edge of the robot chassis. These
forces are equal and opposite to the force measured at each CFD
cell along this vector, and as the robot moves so do these vec-
tors. This method generates realistic-looking perturbations of the
plume during robot movement (see Movie S2 in Supplementary
Material).

The robot movement may be controlled in a variety of ways.
A human user can steer the robot, using keyboard controls. The

6http://processing.org/reference/libraries/net/
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FIGURE 2 | Series of panels show the incremental build up of our
simulation framework. (A) CFD alone, near the start of the simulation.
(B) CFD with robot positioned in the center, and a plot of the odor
concentrations experienced by the robot at bottom; the current reading is
on the right, and the plot scrolls to the left. (C) Robot perturbing the odor
plumes; dotted line is the robot path. (D) Simulated brain responding to

odor concentrations sent by the virtual robot; dashed line shows
information flow. (E) Simulated brain sending motor commands to the
virtual robot. (F) Hybrid real-virtual world, where motor commands are
sent to a real robot, which is tracked by video to update the position of the
virtual robot in the CFD, and therefore send new odor concentrations to
the simulated brain.

robot also has a built-in exploratory behavior, which generates
motor commands based on the detection of five sensory states. Two
of these states are triggered based on absolute odor concentration

being either low or high, and two more on rising or falling concen-
trations relative to a measurement 1 s prior. The fifth behavioral
state is a reversing mode, triggered when the virtual robot collides
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FIGURE 3 | Virtual World graphical user interface. The left side shows a
panel containing sliders to control simulation parameters, as well as a
scrolling plot of odor concentration history experienced by the robot. The

right side shows the virtual world rendering, with two plumes (red and
blue), a robot (center), two wind sources (gray circles), and an internal
boundary.

FIGURE 4 | Screenshot of the neural simulator (left side) reacting to
odorant concentration from three odorant plumes (red, green, and
blue) at the virtual sensor location (right side). A set of 16 motor units
activates the forward/backward left/right track treds of the simulated
virtual robot, closing the sensorimotor loop with the simulated “brain”

receiving sensor information from the virtual world, and via its motor
neuron activity sending motor commands into the virtual world. The two
otherwise independent software processes were linked by socket-based
communications using winsock libraries. See Movie S4 in Supplementary
Material.

(reaches zero proximity) with a virtual wall. Finally, the robot can
be controlled over the local network, using socket connections.
This last method allows communication with human interface
devices like joysticks or mobile phones, or more importantly for
this project, a remote brain.

Simulated virtual odorants, background, and the sensor array
Odorants. A set of abstract “motifs” was used to specify both
odorants and an array of sensors: odorants were defined by the
degree (a real number between 0.0 and 1.0) to which they exhibit
each of a set of 10 abstract “motifs” (by analogy to the molecular
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motifs that correlate with glomerular activation; c.f. Mori et al.,
2006). Two odorants could exhibit the same two motifs, though
in different relative and absolute degree. The concentration of an
odorant is multiplied by motif degree to compute the concentra-
tion of the motif present. It is the concentration of motif (not
odorant per se) that activates the sensors. The background odor-
ant environment comprises a set of additional odorants, constant
in space and time but for zero-mean stochastic variation.

Sensors. Input to the neural system initiated with the activation
of an array of 256 or 1,024 sensors, each defined by their affinity
to several of the motifs chosen at random from the 10 available
motifs. For the ith sensor the affinity associated with motif α is
defined as the inverse of the concentration Ki,α of that motif α

(not the associated odorant) necessary to elicit 50% maximal sen-
sor activation. With sensors activation level ranging from 0.0 to
1.0, if a given sensor has affinity 1/Ki,α to motif α, and an odorant
present at concentration C possesses only motif α in degree dα,
then the concentration of the motif present is C·dα, and at odorant
concentration C50≡Ki,α/dα, sensor i reaches activation level 0.5.
Assuming a first-order interaction between sensor and the con-
centration of motif α and linear activation of the sensor itself, the
steady-state activation level Aα of sensor i in the presence of an
odorant at concentration C is given by:

Aα =
C ·dα

C · dα + Ki,α

If an odorant exhibits multiple motifs it is assumed that each
activates an independent receptor with first-order kinetics which
combine linearly and act jointly to activate the sensor; thus in
steady-state the activation level of sensor i presented with an
odorant possessing multiple motifs is:

Aα =
C

C +
∑
α

Ki,α
/

dα

where the sum runs over all motifs α present in the odorant to
which the sensor i also has affinity. If one assumes that instead of
instantaneous activation receptors have a finite rate of activation
and deactivation toward the equilibrium activation level, then we
instead have:

dAα

dt
= rf ·

(
Āα − Aα

)
− rβ · Aα

where rα and rβ are the rates of activation and deactivation of
the sensor respectively. In this work, it was assumed that sensors
activated rapidly in comparison to the rate of odorant variation,
and so instantaneous activation of sensors was adopted.

A simulated neural system
A very brief description of a subset of the Evolved Machines Neural
Simulator used for this work follows. The self-organization of
wiring during sensory experience (Rhodes and Taba, 2007), for
which this system was built, was de-activated during the present
study, which was primarily concerned with putting in place the
virtual world and software mechanisms to allow interaction with
the a neural sensorimotor circuitry.

Piriform cortex. Pyramidal neurons in piriform cortex and
Kenyon cells in the insect homolog both receive input on a set
of vertically oriented apical dendrites traversed by a horizontal
sheaf of afferent axons from the olfactory bulb and antennal lobe
respectively. In a typical cortical pyramidal cell these apical den-
drites number between 8 and 50, depending upon species, are
largely equal in rank, so that given equivalent excitation it is plau-
sible that each branch could make a comparable contribution to
somatic depolarization. The Kenyon cells of the Mushroom Body
are similar. Inputs from bulb to piriform cortex are very widely
distributed (Stettler and Axel, 2009; Nagayama et al., 2010), as
is the projection from antennal lobe to Mushroom Body (Jort-
ner et al., 2007), reflecting a remarkable similarity in architecture
between insect and vertebrate olfactory systems. Motivated by
these anatomical observations, a cortical array of 4,096 neurons
(versus 50,000 in the locust Mushroom Body), each with eight
identical branches was constructed, with each neuron receiving
160 inputs, 16 excitatory and 4 inhibitory on each branch, from the
bulb output units. Thus the piriform cortex incorporated 655,360
synapses. Branches were independent thresholded units (Rhodes,
1999; but see Bathellier et al., 2009), a branch-spike based model
of integration encouraged by indirect evidence suggesting that
regenerative branch-level spikes are produced in these branches
in vivo in insects (Laurent et al., 1993), with a neuron activated in
turn by the firing of a threshold number of its branches. Branch
threshold was a global parameter that homeostatically adjusted
during calibration periods. A model neuron of this type can be
considered a detector of the presence of a member of a family
of subset detectors, well suited mathematically to orthogonalize
overlapping inputs that may represent different objects (Rhodes,
2008). As in vivo assessment of branch electrogenesis in vertebrate
olfactory cortex pyramids has not yet been made, alternative inte-
grative models were considered, including linear dendrites each of
which conveyed their unthresholded summed input to the soma,
and sigmoidally activated dendrites (Poirazi et al., 2003) which
transformed the linear sum of their inputs with a sigmoid and
conveyed the resulting value to the soma. Thresholded units per-
formed better in concentration-invariant olfactory classification
in preliminary studies and so were adopted for this study.

Mitral cells. A highly simplified “mitral cell” layer consisting of
256 units with a single dendritic branch was utilized, simply to
receive the output of a cluster of four of the 1,024 sensor neurons
(Figure 5). The interaction between the granule cells and mitral
cells present in the vertebrate bulb was neglected in this work, and
as a consequence the use of the term “mitral cell” is made only
to signify the position of this second layer of units in the flow of
activity from sensors to cortex.

Synapses and synaptic depression. There were five classes of
synapses in this simulated system: (1) sensor neuron to mitral cell;
(2) mitral cell to feedforward interneuron; (3) mitral cell to the
dendrites of cortical pyramidal cells; (4) feedforward interneu-
ron to the dendrites of cortical pyramidal cells; (5) and cortical
pyramidal cell to motor neuron. Each was modeled as an addi-
tive weight, with duration of excitatory post-synaptic potential
(EPSP) or inhibitory post-synaptic potential (IPSP) an evolvable
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FIGURE 5 | A simulated neural olfactory system, developed using the
Evolved Machines neural simulator. Here a sensor sheet (far left)
innervates a mitral array (orange dendrites). An inhibitory granule cell layer
(green cells and dendrites) is synaptically interconnected with mitral cell
lateral dendrites via dendrodendritic reciprocal connections. The resulting
mitral cell activity is projected (dark orange axons) to the cortex (sheet of
gray cells at bottom left; feedforward interneurons shown without

dendrites, at top right), where the pattern of activated cortical cells
(lavender) represents the sensor information at this timestep. In the first
simulations of the sensorimotor system and plume world, the granule cell
dendrodendritic interaction was omitted for simplicity, and a set of 16
motor neurons was added, as described in Section “A Mapping of the
Motor Units to the Control of Effectors on the Agent” below and illustrated
in Figures 2D–F.

parameter for each class. Short term synaptic dynamics (depres-
sion and facilitation) is present at all cortical synapses (Thomson,
2000), and accordingly here first-order synaptic depression and
recover was incorporated at all synapses in the system. During the
evolution of system depression and recovery rates for each of the
five classes of synapses were among the variables free to evolve to
maximize system performance (see below).

Local homeostatic adjustment of excitability. It has become
increasingly clear that the local homeostatic adjustment of den-
dritic and neuronal excitability and of synaptic efficacy, via a
myriad of co-active mechanisms, is ubiquitous in both inverte-
brate and vertebrate neural circuitry (Davis, 2006). We have found
that when simulating the activity-dependent wiring of developing
neural circuits homeostatic adjustment of excitability is indispens-
able, because the target neurons must have a useful dynamic range
early in the wiring process, where there are very few connections
per neuron so that excitability must be high to enable some post-
synaptic activity, as well as and later when hundreds or thousands
of connections have been made, so excitability must decline to
present constant activation. Here the thresholds of the individual
dendrites of cortical pyramids, as well as firing threshold of the
pyramidal cells themselves, independently locally self-adjusted to
maintain a target average firing rate. The dendritic and somatic
average activity rates were independently evolved, while rates of
adjustment and the time constant used to compute the activity
average were fixed.

A mapping of the motor units to the control of effectors on the agent
While the circuitry and synaptic physiology of the insect and verte-
brate olfactory sensory system has been extensively characterized,
less information is available, in either insect or vertebrate, regard-
ing the motor system controlled by or affected by olfactory sensory
representations. In order to establish an interactive connection
between the sensor input from the virtual world to the simulated
“brain” and the motor commands sent from the neural system
back to move the agent in the virtual world, we connected the
cortical array described above to an array of 16 “motor” neurons,
each receiving 256 connections from the 4,096 cortical neurons,
drawn at random. Given the set of motor effectors on board the
simulated agent (forward, backward, left, and right controllers) it
was then necessary to define the functional connectivity between
the 16 motor units and 4 motor effectors. In other words, when
one of these motor neurons fires, what effect occurs at the robot’s
motor effectors? We chose a mapping that incorporates the “size
principle,”which in physiology refers to the incremental activation
of muscle fibers of increasing power to grade effector force in a
useful way, allowing for both fine movement, perhaps appropri-
ate for exploration, and more powerful motor action as might be
useful during a surge in the direction of a plume upon its location
(Henneman et al., 1965). Motor neurons were divided into two
populations, left and right, each of which is further divided into
another two populations corresponding to forward and backward
control. Within each of these four populations a given neuron dri-
ves one wheel of the simulated agent (or a track on the physical
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Surveyor robot) left/right, forward/backward, depending on the
population identity of that neuron, with force 1, 2, 4, or 8 assigned
to the four motor units in each directional pool.

The motor effector system of the agent we chose was intended
to mirror the two treads of a bulldozer-like physical robot, the Sur-
veyor SRV-1, that we used in the hybrid system described below.
Thus the four motor neuron pools are all that are needed to repre-
sent the positive or negative motor current values transmitted to
control the two track motors. The two motors require four graded
control populations instead of two, because negative values are not
represented by spike rates. To solve the problem of representing
negative numbers, which are readily interpreted as negative cur-
rent values to drive the tread motor backward, the neural system
encodes negative values with a second set of units for each tread.
The activity of each set of motor units is then added together to
compute a net current value for the motor for each tread, which is
finally the actual 8-bit integer relayed back to the virtual world to
control robot motion, as well as to the physical Surveyor robot in
the hybrid system described below.

Artificial evolution as a mechanism for refining parameters used in
the neural simulation
The sections above outline the components enabling interaction
between a simulated robotic agent situated in a virtual olfac-
tory world, with a simulated olfactory sensor activating a neural
olfactorimotor simulation, and motor unit activity controlling the
actions of the agent. The emphasis has been on achieving an inter-
active linkage between “brain” activity leading to motor action,
and updated sensor stimulation from contact with a plume in the
virtual world. The system we describe is clearly highly complex,
with a great many parameters associated with the components of
the neural mechanisms, including non-linear dendrites, short term
synaptic dynamics, and local homeostatic regulation of excitabil-
ity, all interacting to result in the dynamic relationship between
sensor input and motor output. How does one select parameters
for this neural system, and make systematically grounded deci-
sions as to which individually well-studied neural mechanisms
should be integrated into this system, or excluded in the interest
of parsimony and computational efficiency?

We have chosen to approach this problem by defining a per-
formance measure for olfactorimotor behavior of the neurally
controlled simulated agent, and then applying large-scale artifi-
cial evolution as a means to search the space of parameters as
well as neural mechanisms driven by maximization of this fitness.
In recent work (Rhodes, submitted) we have evolved simulated
olfactory circuitry driven by purely sensory fitness measures, for
example the concentration-invariant identification of odorants in
stimulus environments incorporating unknown background. In
the framework described here, the development of an interac-
tive virtual olfactory world with a robotic agent controlled by the
simulated neural olfactorimotor system now brings this work one
step closer to true survival-relevant fitness by defining behaviorally
defined fitness measures, such as the speed with which the robotic
agent achieves a defined proximity to a target odorant source. This
measure implicitly combines odorant identification, inherent in
reacting to the desired plume amidst other unimportant distract-
ing point sources, and in the midst of distracting background,

along with motor control suited to explore and thereby exploit the
plume environment to get to the proximity of a source.

Evolution operators, and the selection of parameters subject to
evolution. An evolution process entails the choice of the ≈50
parameters for one or more initial “parent” parameter sets, the for-
mation of a first generation from these parents, the specification
of a subset of parameters to be subject to variation by mutation,
the specification of evolution operators (e.g., mutation, recombi-
nation, and selection methods) and their parameters. In each trial,
then, a particular parameterization of the neural sensorimotor sys-
tem controls the action and interaction of the robot in the virtual
world, defined by a fixed set of odorant sources and convection
boundary conditions. For each such trial fitness (e.g., speed of
source localization) is computed and stored, and when a full gen-
eration of trials is completed the relative fitness of each individual
member of the generation is used to select a set of parents for the
next generation. Typically a single generation has minimum on
the order of 100 distinct parameter sets (“individuals”), with the
selection process iterated for order 100 generations, so that in an
evolution process order 10,000–50,000 individual interactive neu-
rally controlled robotic runs are performed. The neural system
is simulated entirely on NVIDIA GPU hardware employing their
CUDA software framework. The speed of this hardware is such
that at the scale of order 10,000 neurons, 100,000 compartments,
and several million synapses the neural system side of a simulation
of order 10,000 timesteps requires a few minutes, excluding virtual
world update. If we consider a model of olfactory function, as sug-
gested by Stopfer et al. (2003), that updates cortical representation
in a sequence of cycles clocked by the 20–50 ms beta oscillation
for vertebrates and invertebrates respectively, and if we allocate
four simulation timesteps with which to update the neural system
for each such beta cycle (allowing a single timestep to correspond
to a 5–10 ms EPSP), then 10,000 simulation timesteps is approx-
imately 2,500 beta cycles, corresponding to approximately 2 min
of sensorimotor exploration of the virtual environment. We chose
the CFD simulation with the constraint that the time required for
these 2,500 updates of 20–50 ms real-time was also order a few
minutes of compute time, so that the neural circuit simulation
and CFD simulation with which it interacts runs in compara-
ble times. For the 2-dimensional CFD environment with sources
and moving robot, at a 140× 140 grid spacing, simulating a 30 ms
update requires approximately 2–5 ms on a modern CPU. Thus the
2,500 such updates in a run the interacting CFD requires approxi-
mately 10 s While we do not yet know the update time required for
the three-dimensional plume world, including perturbation of the
convection field by robot motion, it can be 50-fold longer than the
interactive CFD update for the 2-dimensional world and remain
comparable in time required for update of a neural system of sev-
eral million synapses. Therefore, depending on the simultaneity
of update a 2 min (real-time) robotic exploration of the virtual
plume world controlled by a neural sensorimotor system of the
scale noted above is computed in approximately 5 min.

The computational resources required, and the use of a farm of
GPU’s. Given that a parameter evolution process with a 100-
member population evolving for 100 generations requires 10,000
such interactive trials, a single GPU-accelerated compute node
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would require approximately 1,000 h for a single evolution. If we
wish to have these evolutions instead run overnight, say a 12-h
period, so each evolution runs results can be analyzed daily, then
we can take advantage of the profound parallelism of the evolu-
tion process the trials for all members are entirely independent,
and so can be run on independent GPU-accelerated nodes, with
very data-light communication of fitness results to a control node,
and subsequent data-light propagation of the next generation’s
parameter sets out to the compute nodes, then 80 such GPU-
accelerated compute nodes suffices. At Evolved Machines we are
completing installation of a 216-node array of NVIDIA GTX-580-
accelerated GPU’s, which we estimate will allow the evolution of an
interactive olfactorimotor system, with fitness computed during
several minutes of plume exploration in each simulation, over the
course of 150 generations computed for a 150-member population
in a 12-h period.

Hybrid virtual world
This paper describes a method for building a robotic odor source
localization system which uses a sensorimotor loop modeled after
real neural systems. This brain model contains a large number
of parameters, and we would like to tune this model to produce
behavior which robustly guides the robot to the source the of odor
plume. Two facts have lead us to build a virtual world for simu-
lating the interaction between a robot and a set of odor plumes.
The first is that we do not yet have a biologically realistic sensor
module which can be mounted on a moving robot. The second
is that tuning the brain model requires many simulation runs.
As compared to running experiments using real robots and real
plumes, simulations vastly increase the number of parameter sets
which can be tested in a given amount of time.

However, simulations fail to capture all the complexities
inherent in real-world robotics and fluids, for example non-
homogeneous ground surface topography and friction, sensor
noise, wheels/track slippage, uneven motor power. In order to
ensure robust behavior, the simulation-tuned brain models must
be exposed to these complexities. A hybrid virtual world, in which
certain aspects of the real world are simulated, lets us select which
of these complexities our system experiences. In addition, the
hybrid world lets us get started tuning the neural model even
before we have a reliable mobile olfactory sensor. The ultimate
goal is to build a real robot to operate in real environments, and
we want to be certain our early experiments are grounded in the
complexities of the physical world.

Further, wear and tear would render the robot model non-
stationary, and while an effective neural controller of physical
robots needs to adjust continually for the drift in the physical
model (Bongard et al., 2006), just as animal neural circuits do,
that would add a challenge to exclusively using physical robots for
this study. It is for this reason that we have developed a virtual
plume world, where computing power and a farm of compute
nodes running in parallel enables running tens of thousands of
plume tracking trials in order 10 h instead of order 1000 h.

For these reasons, we sought to increase the realism of our test-
ing system by putting a real robot in the sensorimotor loop. The
robot we used is an SRV-1 from Surveyor Corporation7, which

7http://surveyor.com/

is a small tracked robot, about 10 cm× 12 cm in dimension, and
350 g in its most basic configuration8. Motor control commands
are relayed to the agent over WiFi (802.11 b/g protocol), as are
the signals from the variety of sensors that are conventionally
mounted on board, which can include a 1.3 M pixel video camera
and infrared proximity sensors. To incorporate the robot into the
sensorimotor feedback loop, we need to both control the robot
motors using signals from the simulated brain, and send odor
concentration signals from the robot to the brain. The first task
is relatively straightforward; the socket commands consisting of
wheel motor control signals are converted from the activity of
the motor units as described in Section “A Mapping of the Motor
Units to the Control of Effectors on the Agent” above are con-
verted to Transmission Control Protocol (TCP) commands and
passed across the network to a server running on the real robot,
which then sends a varying amount of current to the left and right
motors. The result is that the simulated brain, activated by vir-
tual sensor activity in the virtual world due to contact between an
odorant plume and the location of the virtual sensor, result in acti-
vation of motor units in the simulated brain which are converted
into motor signals which move the physical Surveyor robot on the
floor of the lab (see Movie S5 in Supplementary Material).

Since we do not yet have a physical olfactory sensor for the Sur-
veyor robot, we cannot yet have the sensor signals to the simulated
brain come from the physical robot. To bridge the gap we have
developed a hybrid system, where the new position of the physical
robot, controlled by the simulated motor units as just described
in this Section and Section “A Mapping of the Motor Units to the
Control of Effectors on the Agent” above, is detected and relayed
to the virtual world, where it is used to update the position of
the virtual robot in the plume world simulation. This requires
tracking the real robot in X and Y, as well as determining the head-
ing (for the purposes of sensor localization). To capture robot
posture, we use the infrared blob tracking camera on a WiiMote
(Nintendo Corporation) to localize three infrared light-emitting
diodes (LEDs) we positioned in an isosceles triangle arrangement
on top of the robot (Figure 6). The asymmetry of the LEDs lets
us determine position and heading from single time points sent
over Bluetooth by the WiiMote at 100 Hz, using custom software
built with Processing (see text foot note 3) and DarwiinRemote9.
As the real robot moves, driving by motor commands from the
simulated brain, the tracked position and heading are fed into the
virtual world to update the posture of the virtual robot. The odor
concentrations sent back to the simulated brain are drawn from
the robot’s position in the simulated plumes, which are perturbed
by the motion of the real robot. Thus the virtual robot is no longer
controlled by the neural motor units, but rather mirrors the move-
ment of the physical robot, which is tracked as just described. In
this way, we are equipped to begin to study the control of a phys-
ical robot by a simulated neural sensorimotor systems activated
by interaction between a moving olfactory sensor and a simu-
lated plume, and begin to deal with the attendant irregularities
(and non-stationarities) including motor response, floor surface
traction, power source variability.

8http://www.surveyor.com/SRV_info.html
9www.sourceforge.net/projects/darwiin-remote
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FIGURE 6 |The hybrid virtual-real world experimental setup. Upon
receiving a motor command, the physical robot (lower right) executes a
maneuver beneath the tracking camera (WiiMote, upper right). Based
on isolating the coordinates of three LEDs positioned on the robot’s top
surface, the coordinates and heading of the robot are sent to the virtual
world CFD simulation. The odor concentrations extracted from the

robot’s position in the CFD are sent to the computer in the lower left,
which is running the brain simulation. The odor concentrations are
transduced by olfactory receptor neurons, which spread activation
through the neural simulation. When the motor neurons become
active, a motor command is sent to the physical robot, which
completes the feedback loop.

Thus we are able to run 10,000 trials to evolve the parameters
of the simulated sensorimotor to optimize as an intermediate step
until such time as physical sensors with adequate properties can
be engineered and made available, as further described in the next
section.

The development of a high dimensional, rapidly reversible,
compact, low power artificial olfactory sensor using functionalized
nanotube FET arrays
In the foregoing we have outlined a system to study the function of
olfactory sensory and sensorimotor circuitry with the assistance
of a simulated agent embedded in a virtual world, controlled by
the simulated neural “brain.”While we expect that the exploration
of mechanisms, neural architectures, and parameters choices over

order 10,000 trials will continue to require acceleration using a
virtual world environments, as noted in the previous section, the
olfactory conditions of the real world, and the imperfections of
the motor model and effector action (e.g., slippage on the car-
pet of a wheel) call for transition to a physical machine. To build
autonomous olfactory robots driven by reverse-engineered bio-
logical neural circuitry requires an olfactory sensor with several
crucial properties: (1) High dimensionality. Odorants and odor-
ant mixtures activate biological olfactory sensor arrays identified
by expression of a large set of distinct olfactory receptors, ranging
from 50 to 150 in the antenna of insects to 900 in the olfactory
receptor neuron sheet of olfaction-oriented vertebrates such as
canines and rats. The result is a high dimensional dimensional dis-
tributed representation, enabling the identification of thousands

Frontiers in Neuroengineering www.frontiersin.org October 2012 | Volume 5 | Article 22 | 11

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Rhodes and Anderson Simulation environment for neural olfaction

of objects and environments. (2) Rapid reversibility, so that a time
series of odorant measurements can be collected at an adequate
rate as an animal explores a plume environment (as emphasized
by Bennetts et al., 2012), a dynamic agility which may be central to
nulling background and to facilitate odorant identification in com-
plex environments (Best and Wilson, 2004; Rhodes, submitted).
The sample rate which has evolved in of highly olfactory animals,
around 5 Hz, as a practical target sampling rate. (3) Further to
plausibly be mounted on an autonomous physical robot such a
sensor would ideally be low power, compact, rugged, and require
no consumables. One of us (PAR) is affiliated with a company
(see text footnote 1) engineering a sensor comprised of an array
of functionalized carbon nanotube field effect transistors which
seeks to meet these requirements, and which will be made available
to the academic community. With such a sensor, robotic devices
could be used in conjunction with the interactive CFD simulations
described here to develop and test models of olfactory sensory and
sensorimotor circuitry, situating such simulated neural systems in
the context for which that circuitry evolved.

DISCUSSION
SUMMARY OF THE PRESENT WORK
In order to study simulations of neural olfactory circuitry in a
motor context we have developed an integrated olfactory virtual
world incorporating a computationally light CFD simulation of
plumes and convection, in which a simulated robotic agent sends
odorant concentration values at its location to a separately sim-
ulated neural olfactorimotor system. The resulting continuous
stream of activation of a simulated sensory array produces activity
in the “cortex” of a simulated neural system incorporating approx-
imately 10,000 cells and a million synapses, for now connected to
a simple motor array. The units firing in this motor array in turn
relay activation signals to a set of motor effectors on the robotic
agent, moving it within the virtual world. Its movement there
disturbs the plumes and convection fields being simulated in the
ongoing computational fluid dynamic simulation, with the result-
ing update of odorant concentration at the location of the robot
sensor being again relayed to the simulated neural system, closing
the sensorimotor loop. We optimize neuronal and circuit parame-
ters and refine the choice of neural mechanisms incorporated in
this complex interacting system by the systematic use of artificial
evolution, driven by fitness measures chosen to reward perfor-
mance on relevant sensorimotor tasks such a rapidly locating a
plume source, amidst other distracting plumes, and unfamiliar
background.

THE PROPOSED PARADIGM IN THE CONTEXT OF RECENT WORK IN
NEURAL OLFACTORIMOTOR CONTROL
While there is a rich and growing literature exploring olfactorimo-
tor control in both real and simulated environments (reviewed in
Kowadlo and Russell, 2008; McGill and Taylor, 2011), the combi-
nation of elements listed above, including a turbulent plume simu-
lation perturbed by a robot which is controlled by a realistic neural
simulation optimized using artificial evolution, have not yet been
integrated. Table 1 presents a summary of the literature identifying
the simulated environment, method of parameter optimization,
motor performance measure, and algorithm space explored, level

of interaction between robot and plume, and other characteris-
tics of each of 12 studies, reported within the last 5 years, so that
the neural olfactorimotor simulation environment developed and
advocated here can be put in context of the distinguished body of
work that has informed this field.

With respect to CFD implementation, many studies have imple-
mented turbulent plume simulations using the filament technique
of Farrell et al. (2002) or more classic Navier–Stokes (Cabrita
et al., 2010). While potentially highly accurate, these equation sys-
tems require solution times incompatible with interaction between
robot movement (or convection source such as fans, and other
mechanisms to achieve sniffing) in real-time during the neural
simulation (obviating the ability to run the number of simula-
tions required to do systematic parameter optimization) and so to
our knowledge none have enabled the alteration of the plume by
a moving robot.

Only a few studies have incorporated neural simulations in
guiding olfactory behavior (Mathews et al., 2009; Lopez, 2011),
using models built with the IQR simulation framework (Bernardet
and Verschure, 2010). Though multiple studies have attempted
to emulate the general behavior patterns of odor-seeking insects,
often moths (Willis, 2008; Ferri et al., 2009; Cabrita et al., 2010;
Lopez, 2011), the use of artificial evolution to systematically search
the space of olfactorimotor source localization algorithms (neural
or otherwise) is, to our knowledge, unique.

Studies which utilize physical robots (Willis, 2008; Ferri et al.,
2009; Mathews et al., 2009; Li et al., 2011; Lopez, 2011) sample
real turbulent plume conditions where the perturbation of robot
motion is accounted-for, of course, but aside from wind tunnels
that ensure laminar flow conditions, it is impossible to ensure that
the turbulent plume sensed by the agent is the same from one trial
to another. Any method of systematic optimization of the para-
meters of the simulated system entails a large number of repeated
trials which must be sufficiently similarity to make the parameter
optimization tractable, suggesting that the use of simulated olfac-
tory environments is indispensable in enabling the exploration
of parameter space to an extent that use of physical robots pre-
clude. Once the neural parameters, architecture and mechanisms
have been explored in a virtual plume world, incorporation into
physical robots is of course a necessary transition to make practical
use of the system developed; we therefore emphasized an inter-
mediate step wherein from time to time the physical robot was
controlled by the neural motor output, with its resulting position
imported to the agent in the plume world, enabling continuous
refinement of the virtual world motor model to ensure its relevance
to developing motor control of the robot available.

The foregoing review of the literature supports the following
enumeration of characteristics of the present system that have not
been brought together previously:

1. Control of virtual world agent by a neural olfactorimotor
system, rather than more conventional robotic control system.

2. Interaction between the simulated robot and the virtual plume
and convection field, so that movement of the robot perturbs
the plume. This interaction also will enable the addition of (and
evolution of the optimum characteristics of) active fluid intake
mechanisms such as are employed by biological creatures from
lobster to canine to help more efficiently find plume sources.
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Table 1 | A survey of studies of olfactorimotor control presented within the last 5 years.

Authors and

Year

Neural

brain

Parameter optimization

via artificial evolution

Closed

loop

2D/3D Real or

simulated

# odors Fluid interaction

with robot

Rhodes and Anderson (present work) Yes Yes Yes 2D Both 3 Yes

McGill and Taylor (2011) No No Yes 2D Both Up to 3 No

Li et al. (2011) No No Yes 3D Real 1 Real

Lopez (2011) Yes No No 3D Real 2 Real

Lu and Luo (2011) No No Yes 2D Sim 1 No

Cabrita et al. (2010) No No No 3D Both 1 No

Moraud and Martinez (2010) 2D Both 1 No

Li et al. (2011) No 2D Sim 1 No

Zarzhitsky et al. (2010) No No Yes 2D Sim 1 No

Ferri et al. (2009) No No Yes 3D Real 1 Real

Mathews et al. (2009) Yes No Yes 3D Real 1 Real

Willis (2008) No No Yes 3D Real 1 Real

In all but one case, aside from the present study, the sensorimotor control system was not neural, though a variety motor strategies observed in nature were

implemented in non-neural control systems. None of the simulation studies incorporated a CFD model that enabled the robot to interact with the plume as it moved,

a significant limitation. We advocate the use of a simulated environment to enable the systematic optimization of system parameters, a process that requires the

repeated run of plume-robot interaction order 103–105 times, depending on the number of parameters to be jointly optimized.

3. The routine inclusion of multiple distinct odorant plumes and
background odor.

4. The systematic and extensive use of artificial evolution driven
by olfactorimotor performance (e.g., to minimize the time to
locate a plume source) to specify the parameter values for the
neural system and to refine the selection of neural mechanisms
to incorporate.

5. A hybrid virtual world with the output of the simulated motor
units triggering the motion of a physical robot, the resulting
position of which updates the location of the agent in the virtual
world,as a bridge to incorporate the realities of motor control of
an imperfect physical robot. We note that recently Cabrita et al.
(2010) presented a hybrid world with a physical agent wherein
a Figaro sensor on board moving through a real environment
is assessed in parallel with a simulated agent in a virtual world,
though the sensory and motor system was not neural, and there
was no interaction between the agent and plume.

OUTLOOK FOR THE FUTURE
While we await development of a physical olfactory sensor with
the high dimensionality and rapid reversibility necessary to serve
as a front end for a real robot, we have developed an intermediate

system connecting the purely simulated neural control system and
virtual world to the real world. In this hybrid a physical robot, with
its motor control imperfections and non-stationarities, is activated
by the motor signals from the simulated neural system, with its
position on the lab floor monitored and imported to update the
position of the simulated agent, which moves through and per-
turbs the simulated plume. Finally, we describe the development
of a new class of high dimensional, rapidly reversible, low power
electronic artificial olfactory sensor which, when available, could
be the front end for a fully autonomous neural olfactory robotic,
with a neural control system co-evolved in virtual and physical
environments. When developed, this olfactory sensor platform will
be made available to the research community to both explore the
development of working olfactory robotic devices and to enable
the study of highly neural simulated olfactory circuitry in the
sensorimotor context for which it evolved.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at:http://www.frontiersin.org/Neuroengineering/10.3389/fneng.
2012.00022/abstract
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