
“fneng-06-00011” — 2013/11/13 — 21:15 — page 1 — #1

ORIGINAL RESEARCH ARTICLE
published: 15 November 2013

doi: 10.3389/fneng.2013.00011

Identification of a self-paced hitting task in freely moving
rats based on adaptive spike detection from multi-unit M1
cortical signals
Sofyan H. H. Hammad 1, Dario Farina1,2 , Ernest N. Kamavuako1 and Winnie Jensen1*

1 Department of Health Science and Technology, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
2 Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August

University, Göttingen, Germany

Edited by:

Ulrich G. Hofmann, Albert Ludwigs
University Freiburg, Germany

Reviewed by:

Hun-Kuk Park, Kyung Hee University,
South Korea
Karin Helene Somerlik-Fuchs, Albert
Ludwigs University Freiburg,
Germany

*Correspondence:

Winnie Jensen, Department of Health
Science and Technology, Center for
Sensory-Motor Interaction, Aalborg
University, Fredrik Bajersvej 7D, 9220
Aalborg, Denmark
e-mail: wj@hst.aau.dk

Invasive brain–computer interfaces (BCIs) may prove to be a useful rehabilitation tool for
severely disabled patients. Although some systems have shown to work well in restricted
laboratory settings, their usefulness must be tested in less controlled environments.
Our objective was to investigate if a specific motor task could reliably be detected from
multi-unit intra-cortical signals from freely moving animals. Four rats were trained to hit a
retractable paddle (defined as a “hit”). Intra-cortical signals were obtained from electrodes
placed in the primary motor cortex. First, the signal-to-noise ratio was increased by wavelet
denoising. Action potentials were then detected using an adaptive threshold, counted in
three consecutive time intervals and were used as features to classify either a “hit” or
a “no-hit” (defined as an interval between two “hits”). We found that a “hit” could be
detected with an accuracy of 75 ± 6% when wavelet denoising was applied whereas the
accuracy dropped to 62 ± 5% without prior denoising. We compared our approach with the
common daily practice in BCI that consists of using a fixed, manually selected threshold for
spike detection without denoising. The results showed the feasibility of detecting a motor
task in a less restricted environment than commonly applied within invasive BCI research.
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INTRODUCTION
A brain–computer interface (BCI) aims to restore functional
movements in subjects with neuromuscular disorders by inter-
preting neural signals recorded from the brain and translating
the inferred information into control signals for external devices
such as a prosthetic limb or to guide electrical stimulation of the
patient’s own limbs (Taylor et al., 2002; Ethier et al., 2012; Vato
et al., 2012). A BCI typically obtain neural information from elec-
troencephalographic (EEG) signals recorded non-invasively with
electrodes placed on the scalp. However, signals may also be
recorded invasively from electrodes placed on the surface of the
brain or microelectrodes implanted directly inside the brain tissue
(Schwartz et al., 2006). These systems will be referred to as invasive
BCI systems in the present work.

While an EEG signal represents the summation of the neural
activity from thousands of neurons, intra-cortical microelectrodes
detect the extracellular activity of a smaller neuronal population
in the close vicinity of the recording site. Single-unit (SU) action
potentials (APs), multi-unit (MU), or local field potential (LFP)
recordings from the primary motor cortex (M1) have shown to
encode specific information about limb kinematics, such as posi-
tion (Amirikian and Georgopoulos, 2003), velocity (Reina et al.,
2001), or muscle activity (Morrow and Miller, 2003), and also
encode global information on the preparation of a movement
(Donoghue et al., 1998).

In the past, the development of invasive BCI systems has mainly
been driven by animal work and there has been a strong focus

on predicting real-time, three-dimensional kinematic informa-
tion for upper limb control using a center-out reaching task.
For example, primates have learned to control reaching tasks of
a robotic arm through information extracted from the motor
cortex (Taylor et al., 2002; Carmena et al., 2003; Vargas-Irwin
et al., 2010; Ifft et al., 2012). The neural encoding for this task
is relatively well understood within these strict experimental
paradigms. However, it is well known that the motor cortex encod-
ing is dependent on visual, auditory, and somatosensory feedback
(Salinas and Romo, 1998; Romo and Salinas, 2001). Therefore, an
invasive BCI system must have the ability to decode the cortical
signals reliably in a less controlled and ever changing environ-
ment (Mussa-Ivaldi and Miller, 2003; Musallam et al., 2004), and
the availability of robust decoding algorithms is therefore essen-
tial. The decoding algorithms include methods for optimizing
the signal-to-noise ratio (SNR) of the recordings, PA (or spike)
detection, and the means to relate the cortical signals to motor
tasks.

The majority of invasive BCIs today rely on detecting SU APs
from individual neurons which requires sorting the spikes before
decoding (see e.g., Laubach et al., 2000; Wessberg et al., 2000;
Donoghue, 2002; Musallam et al., 2004; Hu et al., 2005; Olson
et al., 2005; He, 2008; Truccolo et al., 2008). The spike sorting
typically add processing time that is proportional to the number
of detected neurons and number of recording channels (Ventura,
2008; Herzfeld and Beardsley, 2010). Furthermore, the number
and characteristics of the detected spikes may be subjected to
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daily change due to small changes at the neural interface (e.g.,
micro-motions of the brain or fibrosis formation around the
electrodes) or even cell death (Lewicki, 1998; Yu et al., 2012).

These drawbacks of using SU as input for decoding motor tasks
recently led to the investigation of invasive BCI systems based on
MU activity, which was found to provide either similar or greater
decoding accuracy compared to the invasive BCI systems based on
SU activities (Stark and Abeles, 2007; Fraser et al., 2009; Chestek
et al., 2011). Multi-unit recordings are often associated with high
levels of noise, originating from thermal, electrical, or biologi-
cal sources, which necessitates improving the SNR prior to spike
detection (Musial et al., 2002; Kim and McNames, 2007). Sources
of non-stationary noise may also potentially hamper the perfor-
mance of most filters. Linear, non-linear (Gozani and Miller, 1994;
Franke et al., 2010), template matching (Paralikar et al., 2008), and
Wiener filters have previously been used to improve the SNR of
intra-cortical signals, however they are very sensitive to the noise
properties (Oweiss and Anderson, 2001). Conversely, wavelets
have been proven to perform well in the presence of non-stationary
noise (Donoho, 1995; Oweiss and Anderson, 2001). The wavelet
technique removes noise from the signal by thresholding the trans-
formation coefficients in multiple frequency bandwidths. The use
of a wavelet transformation requires the selection of a mother
wavelet, which defines the decomposition filters and which is typ-
ically selected according to its similarity to the average shape of
APs to be detected (Farina et al., 2007).

In multi-unit recordings, spikes may be detected by threshold-
ing, template matching, or non-linear energy operators (Shalchyan
et al., 2012). Thresholding is the most commonly used method
due to the simplicity of its implementation (Rizk and Wolf, 2009),
however it often requires human intervention to determine the
threshold level (Nenadic and Burdick, 2005). Ideally, in com-
plete autonomous systems such intervention must be minimized
or completely eliminated. On the other hand, the use of unsu-
pervised, adaptive methods for threshold determination does not
require a priori knowledge of the noise levels and eliminates any
threshold bias resulting from high firing rate or amplitudes in the
data window compared to the threshold estimation using conven-
tional methods (e.g., root-mean square or visual estimation; Chan
et al., 2008). Adaptive thresholding has only been reported in few
studies (see Quiroga et al., 2004; Hochberg et al., 2012), and has
not been applied yet in multi-unit-based movement detection in
freely moving animals.

Our main objective of this study was to investigate the pos-
sibility of detecting motor tasks from multi-units recordings in
freely moving animals. The secondary objective was to analyze the
influence of using adaptive thresholding with and without wavelet
denoising on the accuracy of detecting the motor task. To eval-
uate the efficacy of our approach, we compared the results with
the accuracy of detecting motor tasks based on manually selected
thresholds for spike detection.

MATERIALS AND METHODS
Four adult, male Sprague-Dawley rats were included in the study
(age at inclusion time was 7 weeks, average weight of 200 g). All
experimental procedures carried out was approved by the Animal
Experiments Inspectorate under the Danish Ministry of Justice.

ANIMAL BEHAVIORAL TASK
Before the animals were implanted with cortical electrodes, we
used standard psychophysical behavioral techniques to train the
animals to reach their forelimb through a small opening to depress
a response paddle in return for a food reward (see Figure 1).
The restricted access to the paddle ensured that the rats rarely
shifted between the preferred and non-preferred limb (visual
observation).

The paddle lever (ENV-112CM, Med-Associates, Inc., USA)
was placed at a height of approximately 6 cm from the bottom of
the behavioral training cage. A transparent plastic wall was placed
at a distance of approximately 2 cm in front of the paddle and had
a 1-cm-wide by 7-cm-high opening. In addition, a platform was
placed in the cage to allow the rats to support themselves while
performing the hitting task. The food reward (Research Diets,
Inc., New Brunswick, USA) was delivered with a pellet dispenser
(ENV-203, Med-Associates, Inc., St. Albans, USA).

A paddle hit sequence was initiated by inserting the paddle into
the cage. A successful sequence was defined as three consecutive
hits (referred to as one trial) to exclude random events. After a
successful trial, the paddle lever was automatically retracted for
9 s to allow time for the rats to eat the delivered reward. We
thereby avoided possible interference of chewing artifacts and
muscle activity with the recorded cortical signals. The animals
were trained to hit the paddle as soon as it was protracted, but
the hitting sequence was self-paced and the timing between each
paddle hit was therefore not controlled. Each recording session
continued until the rats had performed approximately 100 correct
trials with their preferred limb.

In a number of cases, we defined the trials as failures, and they
were discarded from further analysis. We excluded cases where the
animals used their non-preferred forelimb paw and cases where
they attempted to hit before the paddle lever was fully protracted.
Finally, we excluded data where two consecutive paddle hits were

FIGURE 1 | Schematic overview of the experimental setup. The animals
were trained to hit a response paddle by reaching through a 1-cm-wide slot
in a transparent wall placed in front of the paddle. During the workout, the
intra-cortical signals were recorded using the multi-channel recording
system (RX5 Pentusa), and the paddle response was streamed to LabView
via a data acquisition card (DAQ).
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less than 200 ms apart to avoid overlapping of the neural informa-
tion encoding the individual hits. This resulted in a total of 1514
accepted trials across all rats, with a mean of 59 ± 21 trials per
session. Only the first hit from every successful trial was selected
for further data processing.

During the training and experiment sessions, the animals were
kept food-restricted and were maintained on 90% of their normal
body weight. Water was always provided ad libitum, and additional
food was provided to maintain the targeted weight. The animals
were housed in 12/12 h day/night cycle. The average training time
was 3–4 weeks (30 min training sessions for 3–4 days per week).

IMPLANT PROCEDURES
We used an anesthetic cocktail of ketamine (100 mg kg−1),
xylazine (5 mg kg−1), and acepromazine (2.5 mg kg−1) in doses
of 0.1 ml/100 g of body weight. A craniectomy was performed and
the dura was removed over the primary motor cortex (M1) related
to the forelimb movement contra-lateral to the preferred paw of
each rat. An electrode array was implanted in the area related to
forelimb movement (2 mm anterior and 2 mm lateral to Bregma
at a depth of 1.6 mm; Deschênes et al., 1994; Jensen and Rousche,
2006). Two stainless steel bone screws were mounted on the skull
2–3 mm posterior and lateral to Bregma. The bone screw on the
ipsilateral side of the electrode was used as a recording reference
and the other was used for increasing the mechanical stability of
the array by bridging the array and the screw with dental acrylic.
After electrode implantation, the exposed brain was covered with
collagen-based gel-foam (Johnson and Johnson, UK), and the
electrode was fixed to the skull with dental acrylic (Heraeus,
Germany).

The implanted electrodes were custom-made 4 × 4 tungsten
micro-wire electrode arrays (2 × 2 mm, Teflon coated, diame-
ter = 50 μm, length = 2–3 cm, spacing ∼500 μm, A-M system,
Inc., Sequim, USA). Each electrode shank was cut by laser to gen-
erate even surfaces to a total length of 0.5 cm. The wires were cut
at 90◦ angle in relation to the longitudinal direction of the wires
such that they had blunt tips. The laser used was a Ti:Sapphire
amplified to 1 KHz beam at 800 nm, Tsunami, Spectra-Physics,
Santa Clara, USA.

DATA COLLECTION PROCEDURES
A total of 25 sessions were obtained from the four rats over
an approximately 4-week period. The physiological signals and
behavioral events were recorded using a multi-channel recording
system (RX5 Pentusa, Tucker Davis Technology, Alachua, USA).
The intra-cortical signals were band-pass filtered between 0.8 and
8 kHz and sampled at 24.414 kHz. The paddle events were simulta-
neously streamed to LabView through a data acquisition card (NI
USB-6259 BNC, National Instruments, Austin, USA) to control
the paddle lever (see Figure 1).

To assess the neural origin of the recorded intra-cortical activ-
ity, all rats were electrically stimulated after all recording were
performed through the cortical electrodes (monophasic stimu-
lus train = 100 Hz, pulse width = 200 μs, pulse amplitude
ranged between 100 and 1500 μA). The stimulus was delivered
at each channel, and the bone screw was used as the return ref-
erence. During this procedure, the animals were awake and were

held by the experimenter in a fixed, prone position. The stim-
ulus was delivered when the animal relaxed, did not move and
the limbs were not supported. We mainly observed four different
types of movements, which were categorized as “paw movements”
(34%),“mixture of paw and neck movements”(19%),“neck move-
ments” (11%), or “no response” (36%). Only the channels that
showed paw movement response were selected for further data
processing.

DATA ANALYSIS
To analyze the influence of using adaptive thresholding for spike
detection and wavelet denoising on the accuracy of detecting a
“hit” we compared three cases, as explained in the following.

Case A: Action potentials were detected using an adaptive
threshold (i.e., re-calculated at specific time intervals), and
counted as an estimation of the global firing rate. We used spike
counts in defined time intervals as features to identify the motor
tasks. The firing rate was used as feature to classify either a “hit”
or a “no-hit” (defined as an interval between two “hits”).

Case B: This case was similar to Case A, except that in this case
we first utilized a wavelet transformation for denoising to improve
the SNR of the data.

Case C: To compare the efficacy of Case A and Case B with
the frequently used method in BCI research of manually set-
ting the threshold levels for spike detection, we performed the
MU spike detection without prior denoising the raw data and by
using pre-determined thresholds registered by the experimenters
at the beginning of each recording session (referred to as manual
thresholding (MT) in the following).

As such, the data analysis consisted of the following steps (1)
signal denoising with wavelets (only in Case B), (2) MU spike
detection (using adaptive thresholding in Case A and B and MT for
Case C), (3) feature extraction, (4) classification of the presence or
absence of a “hit” using quadratic discrimination analysis, and (5)
statistical evaluation of the classification results. All data analyses
were carried out offline using Matlab (MathWorks, Natick, USA).

Signal denoising with wavelets
As a first step, we implemented a discrete wavelet transform to
improve the SNR of the recorded intra-cortical signals. In brief,
the signal was first transformed and decomposed into the wavelet
domain, a threshold was applied to the wavelet coefficients to sup-
press the noise, and the denoised signal was transformed back
to the time domain (a comprehensive description of the use
of wavelets for denoising can be found in, e.g., Donoho, 1995;
Diedrich et al., 2003; Kim and Kim, 2003). We selected 10 wavelets
to be tested [Daubechie (2, 4, 6), Coiflets (2, 4, 5), Symlets (2,
4, 6), and Haar] mainly based on the resemblance between the
wavelet shape and the shape of an AP. We applied a soft thresh-
old (Donoho, 1995) and five decomposition levels. The effect and
quality of the denoising considerably depends on the noise thresh-
old (Donoho, 1995). In the present work, we used the following
equation to estimate a threshold, Th, based on the noise level:

Th = γσ
√

2ln(N) (1)

where γ is a threshold correction factor, σ is the standard deviation
of the noise estimated from the quantile–quantile plot, and N is
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the length of the data vector (Kamavuako et al., 2009). We tested
10 threshold levels, which were obtained by varying the threshold
correction factor γ between 0.4 and 2.

To assess the effect of the wavelet denoising on the intra-cortical
signal, we computed an estimate of the SNR in a 400 ms time
window related to a “hit” (further specified in the paragraph below
describing the feature extraction):

SNRestim = 20 log10
As

An
, (2)

where As is the maximum, absolute signal amplitude (also contain-
ing the noise), and An is the estimated noise amplitude calculated
based on equation 3 below.

MU spike detection
In step 2 of the analysis the APs (or spikes) were detected using
MT or adaptive thresholding.

In the case of the MT (Case C), the noise threshold level of
each channel was visually estimated and registered once by the
experimenters at the beginning of each recording session.

In the case of the adaptive thresholding (Case A or Case B), the
detection threshold level, ThrD, was computed according to the
equations described in (Donoho and Johnstone, 1993):

ThrD = 4σD (3)

σD = median|x|
0.6745

, (4)

where σD is the standard deviation of the data x. The duration of
each data window was 400 ms. The estimation of the noise level
was based on a median value to avoid the drawback of elevating the
noise level due to high firing rates or high amplitude APs (Quiroga
et al., 2004). We implemented a refractory period of 1 ms between
detected spikes to minimize the number of false positives (Quiroga
et al., 2004).

Feature extraction
In step 3 of the analysis, the task was to create and extract
features from the intra-cortical responses so that we may later
detect and classify whether a hit (referred to as “hit”) had
occurred or not (referred to as “no-hit”). We based the selec-
tion of the “hit” time window on a study by Hyland and Jordan
(1997) where it was demonstrated that muscle activity dur-
ing reach tasks in rats initiates approximately 300 ms before
the reach and continues up to 50 ms after. Thus, the corti-
cal neural activity should precede any physical muscle activity.
We based the selection of the “no-hit” time interval on visual
observations during the experiment from which we concluded
that this time window was a transition time for the rats to
prepare to initiate a new hitting sequence. To incorporate infor-
mation about temporal changes in the cortical neural activity,
a “hit” was represented by spike counts in three 120 ms inter-
vals (“Int1,” “Int2,” and “Int3”) up to −400 ms before the hit. A
“no-hit” was correspondingly represented by three 120 ms inter-
vals (“Int1,” “Int2,” and “Int3”) but up to −900 ms before the
hit.

Classification
In step 4, the classification of the behavioral task was performed
using a quadratic discrimination analysis, which has been widely
used in BCI to classify multivariate data (Chapin, 2004). The
quadratic discriminator maps the input features into a quadratic
dimensional space and then uses a linear equation to classify the
input data into different classes (Semmlow, 2009). For each trial
of a session, the 3 spike counts in “Int1,” “Int2,” and “Int3” of the
channels corresponding to paw movements were used as classifi-
cation features. We implemented five-fold cross validation where
80% of the session’s data were used for training and the remaining
data were used for testing.

Statistical analysis
As a final step, the outcome of the analysis was evaluated. The
classification error was used to study the influence of the mother
wavelet and threshold level. We further analyzed the classifica-
tion error itself by defining a true positive (TP) classification as
a “hit” that has been correctly classified as a “hit,” a false nega-
tive (FN) as a “hit” that has been misclassified as “no-hit,” a true
negative (TN) as a “no-hit” that has been correctly classified as
a “no-hit” and a false positive (FP) as a “no-hit” that has been
misclassified as a “hit.” In each of the five folds, the fold classifi-
cation error was calculated as the percentage of misclassified trials
of a test set divided by the total number of trials in the test set,
i.e., (FN + FP)/(TP + FN + TN + FP). Hence, the classifica-
tion error was the average of the five folds’ classification errors.
We calculated the sensitivity and specificity as TP/(TP + FN) and
TN/(TN + FP), respectively, to evaluate the classifier’s perfor-
mance. Generally, a good classifier is one that simultaneously has
sensitivity and specificity values close to 100% (Semmlow, 2009).
The accuracy of the classification was defined as 100% minus
the classification error. A one-way analysis of variance (ANOVA)
was utilized to compare the differences between the “no-hit” and
“hit”classifications without denoising (Case A) and with denoising
(Case B) and also to compare the differences between classification
between Case B and C. The confidence interval of all statistical tests
was 95%.

RESULTS
COMPARISON OF THE CORTICAL SIGNALS ENCODING A “HIT” AND A
“NO-HIT”
A visual, qualitative evaluation of the raw data showed differences
in the cortical coding between a “hit” and “no-hit.” In Figure 2,
an example of raw data is depicted with and without denoising
(example data from one channel from one rat). Higher ampli-
tude activity was typically observed during a “no-hit” window
compared to during a “hit” window.

CLASSIFICATION OF A “HIT” AND A “NO-HIT”
We analyzed the influence of using adaptive thresholding without
(Case A) and with (Case B) wavelet denoising on the accuracy
of detecting the motor task. The classification of the behav-
ioral task was performed by using the quadratic classification,
and the results were validated with the five-fold cross valida-
tion. We found that the wavelet denoising had a positive effect
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FIGURE 2 | An example of raw data obtained from one intra-cortical

electrode’s channel from one rat. The rat hit the paddle at 0 s. The time
windows used to extract information about “hit” vs. “no-hit” classification
(each is divided into three subintervals, “Int1,” “Int2,” and “Int3,” of 120 ms)

are indicated. The yellow lines depict the noise threshold level (calculated over
a 400-ms interval). (A,B) show the data before and after the wavelet
denoising using Daubechie 6 and a denoising threshold factor (γ) of 0.8. (C,D)

are close ups of selected data segments from (A,B).

on our ability to detect a “hit”. As such, the average classifica-
tion errors across session decreased (Case A: rat 1 = 33.9 ± 4%,
rat 2 = 32.9 ± 3%, rat 3 = 44.8 ± 5%, and rat 4 = 36.2 ± 5%, Case
B: rat 1 = 21.3 ± 4%, rat 2 = 22 ± 2%, rat 3 = 31.2 ± 5%,
and rat 4 = 23.8 ± 4%). This decrease was found to be
statistically significant (p < 0.01). In Figure 3, the classifi-
cation error found for each session is illustrated. In Case B,
where wavelet denoising was applied, the minimum classifica-
tion error obtained across wavelets and denoising thresholds are
illustrated.

To evaluate the efficacy of applying adaptive thresholding we
compared the results with the error of detecting motor tasks based
on manually selected thresholds for spike detection (Case C).
The average classification error across sessions in Case C were;
rat 1 = 30.4 ± 6%, rat 2 = 27.6 ± 4%, rat 3 = 40.9 ± 5%, and
rat 4 = 32.4 ± 6%). We found that the adaptive thresholding
yielded a lower classification error in the majority of the cases.
As such, adaptive thresholding with denoising (Case B) always
provided the best classification, whereas adaptive thresholding
without denoising (Case A) only performed better than MT (Case
C) for two of four rats [in rat 1 and rat 2 the difference was signifi-
cant (p ≤ 0.04), in rat 3 and rat 4 there was no statistical significant
difference (p ≥ 0.182)].

These findings were supported by calculating sensitivities and
specificities. We found an average sensitivity of 77 ± 4% and an
average specificity of 74.8 ± 6% after wavelet denoising (Case B).
The same measures using MT (Case C) were found to be 73.3 ± 7%
and 77.5 ± 6%, respectively, across all rats (see Table 1). We found

the classification accuracy increased to 75 ± 6% after wavelet
denoising (Case B) compared to 63.5 ± 4% without denoising
(Case A), corresponding. In the case of the MT (Case C) the
accuracy was 70 ± 6%.

EFFECT OF WAVELET DENOISING
To evaluate the effect of the wavelet denoising on the intra-cortical
signals, we compared the SNRestim of the “no-hit” and “hit” before
and after denoising (see Table 2). The SNRestim represents the
average of the SNRestim values computed from all combinations
of mother wavelets and denoising thresholds. We observed a sta-
tistically significant increase in the SNRestim as an effect of the
denoising (p < 0.002 in all cases).

We further investigated the effect of different combinations of
mother wavelets and denoising thresholds to see if one particu-
lar combination could be chosen as the optimal. We found that
each had a variable effect on the task classification from session
to session and from animal to animal. As such, 23/25 recording
sessions the combination of mother wavelet and denoising thresh-
old that yielded the smallest classification error was unique. In
Figure 4, a three-dimensional plot showing the average classifica-
tion error for different combinations of the mother wavelet and
denoising thresholds over seven recording sessions for one rat has
been shown as an example (data from rat 4).

DISCUSSION
In the present work, we investigated the possibility of detect-
ing motor tasks from multi-units recordings in freely moving
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FIGURE 3 | Illustration of the error rate of a “hit” detection for each rat

and each recording sessions (between five and seven sessions recorded

on separate days). The solid lines represent the classification error in Case A
before wavelet denoising (BWD) while applying adaptive thresholds for spike

detection. Dashed lines are the minimum classification errors in Case B that
were obtained after the wavelet denoising (AWD). Dotted lines are
classification errors in Case C using manual thresholding (MT) for spike
detection without denoising the data.

Table 1 |The sensitivities and specificities of the classification after

wavelet denoising (Case B, AWD) or after using MT (Case C, MT).

Sensitivity Specificity

Case B

(AWD) (%)

Case C

(MT) (%)

Case B

(AWD) (%)

Case C

(MT) (%)

Rat 1 83 ± 3 62 ± 12 79 ± 5 76 ± 6

Rat 2 78 ± 7 76 ± 5 78 ± 5 69 ± 8

Rat 3 71 ± 6 73 ± 7 65 ± 6 79 ± 9

Rat 4 76 ± 4 82 ± 7 77 ± 5 86 ± 8

animal. We analyzed the influence of using adaptive threshold-
ing for spike detection with and without prior denoising on the
accuracy of detecting the motor task (referred to as Case A and
Case B). We compared efficacy of our approach with the more
traditional approach of detecting motor tasks based on, manu-
ally selected thresholds for spike detection (referred to as Case
C). We found that using adaptive thresholding for spike detection
together with wavelet denoising provided the highest classification
rate.

Table 2 | Comparison of the average signal-to-noise ratios estimated

for the cases of “no-hit” and “hit” before and after denoising.

“No-hit” SNRestim (dB) “Hit” SNRestim (dB)

BWD AWD BWD AWD

Rat 1 10.6 ± 2.2 25.9 ± 3.6 7.8 ± 1.6 23 ± 2.6

Rat 2 10.2 ± 0.7 26.3 ± 1.2 6.8 ± 0.7 22.5 ± 0.9

Rat 3 8.4 ± 1.3 23.4 ± 2.1 6.4 ± 1.6 20.6 ± 2.2

Rat 4 7.1 ± 0.6 21.7 ± 0.8 5.4 ± 0.5 19.5 ± 0.8

BWD stands for before wavelet denoising and AWD stands for after wavelet
denoising.

ON THE METHODOLOGICAL APPROACHES
The forelimb task consisted of paddle hit. As such, we decoded
a type of “on–off” information, and no kinematics of specific
limb positions was decoded. This decoding may be translated to a
real-world application to detect the intention to activate an exter-
nal device. We observed that the recorded amplitude activity was
typically higher during a “no-hit” compared to during a “hit.”
This is believed to be a result of the difference in motor behavior
between the two cases. During a “hit,” the animal is more likely to
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FIGURE 4 | A three-dimensional plot showing the average

classification error for different combinations of the mother wavelet

and denoising thresholds over seven recording sessions for one rat

(rat 4).

only be moving one forelimb whereas in the “no-hit” case, the rat
was more likely to be moving around in the cage or chewing.

We only included the channels that encoded “paw movements”
(i.e., forelimb movements) during cortical microstimulation. The
channels that revealed encoding of a mixture of “paw and neck
movements” or “neck movements” were excluded because they
likely included the contribution of neck-controlling neurons. The
primary motor and somatosensory cortex areas, which repre-
sent forelimb movements and sensations, are partly overlapping
in the rat and as such, “paw movement” responses may include
somatosensory input originating from palmar contact with the
paddle.

The majority of invasive BCIs reported in the literature rely on
spike sorting to decode motor tasks (see e.g., Laubach et al., 2000;
Wessberg et al., 2000; Donoghue, 2002; Musallam et al., 2004; Hu
et al., 2005; Olson et al., 2005; He, 2008; Truccolo et al., 2008).
However, it has been demonstrated that multi-unit data may also
be used for accurate prediction and may be superior to spikes
or local field potentials. For example, Stark and Abeles (2007)
demonstrated a prediction accuracy of the hand movement direc-
tion and grasping of up to 90% based on MU recordings while the
accuracy was only 70% using SU data.

Spike sorting requires complex signal processing to identify
individual cells and separate them according to their waveforms. It
has been estimated that 10–100 neurons are typically necessary to
obtain accurate performance (Brown et al., 2004). This procedure
requires time, power and, often, human intervention. Secondly,
detection of SUs must be done frequently, since the recording of
SUs is more prone to day-to-day variability.

In the current study, we detected the spikes and used that detec-
tion to count the occurrences of spikes in predefined windows.
However, no additional spike sorting was performed in this study.

This MU approach led to an approximately 75% correct classi-
fication in case B during free-moving tasks across the four rats
included in the study. The results indicate the possibility of using
invasive BCIs in less restricted environments, where the cortical
signals may contain higher levels of background noise (such as
noise from other biological sources) than what is typically found
in classic laboratory conditions.

EFFECT OF WAVELET DENOISING ON CLASSIFICATION OF A MOTOR
TASK
We found that the SNR (i.e., comparison of calculated
SNRestimvalues) of the data improved significantly by denois-
ing the data using wavelets. As expected, the results showed
also that different combinations of mother wavelet and denois-
ing resulted in the lowest classification errors across rats and
sessions and no unique or optimal combination could be iden-
tified a priori. The inconsistency in the selection of a particular
combination of a mother wavelet and denoising threshold factor
may be related to the daily variation of the data, i.e., if the num-
ber of APs that may appear in the recordings or the amplitude
changes, this may cause different mother wavelets to be selected
as the best match at different recording sessions. We found that
the noise estimate threshold and/or the mother wavelet directly
influenced the number of detected spikes. As such, if the num-
ber of detected spikes went down (i.e., very few spikes were
detected), this corresponded to that less information was avail-
able to the classifier and the classification error increased. Our
results support the fact that methods need to be developed to a
priori identify and select this unique combination for each rat
and each session as suggested in e.g., Kamavuako et al. (2010) and
Shalchyan et al. (2012).

EFFECT OF ADAPTIVE VS. MT FOR SPIKE DETECTION ON
CLASSIFICATION OF THE MOTOR TASK
Our approach of using adaptive thresholding only yielded consis-
tent lower classification error rates in the case where the data had
first been subjected to denoising (Case B). Without prior denois-
ing (Case A) the classification error rate was only better in two of
four rats. As such, our results indicate that the classification accu-
racy may decrease if the adaptive thresholding is applied on noisy
recordings. However, if the SNR of the recordings is increased
with, e.g., wavelet denoising, as suggested in the present work,
adaptive thresholding is a potential tool for developing an invasive
BCI with minimal human interventions.

Stark and Abeles (2007) demonstrated that by using MU
recordings from dorsal premotor cortex and ventral premotor
cortex, reach and grasp may be predicted with ∼90% accuracy.
In another study, Fraser et al. (2009) demonstrated by using MU
from the primary motor cortex the velocity of a hand movement
could be accurately detected in 78 and 96% of the cases in two
monkeys performing a standard center-out movement task. How-
ever, both studies were carried out under restricted lab conditions
and experimenters set the threshold levels at the beginning of
the recording session. The classification accuracy obtained in the
present study is, as such, comparable.

Several decoding methods have been used in the past including
linear (e.g., Kalman and Wiener filters), non-linear (e.g., support
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vector machines, SVMs and artificial neural networks, ANN), and
statistical methods (e.g., Bayesian and hidden Markov models). In
a previous study (Hammad et al., 2012), we reported on the use
of an ANN and a support vector machine (SVM) to decode intra-
cortical signals in a similar experimental paradigm, i.e., to detect
if a “hit” had occurred. We found that the performance of ANN
and SVM were comparable and also similar to the classification
results obtained in the present study. The results indicate that the
decoding methods perform equally well, and, as such, the quality
of intra-cortical signals is of higher importance in the design of a
robust and reliable invasive BCI system than the actual choice of
the decoding method.

CONCLUSION
We showed that a motor task can be detected with relatively high
accuracy by analyzing multi-unit recordings from the M1 region of
freely moving rats while applying adaptive thresholding. We also
showed the positive impact of the wavelet denoising for improv-
ing the classification accuracy. However, our approach of using
adaptive thresholding only yielded consistent lower classification
error rates in the case where the data had first been subjected to
denoising. For the future we recommend investigating the auto-
matic selection of the wavelet and threshold for denoising. The
work adds to the field on invasive BCI systems by demonstrat-
ing the possibility of exporting brain interfaces to less constrained
conditions than in previous experimental paradigms.
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