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In the study of population coding in neurobiological systems, tracking unit identity may
be critical to assess possible changes in the coding properties of neuronal constituents
over prolonged periods of time. Ensuring unit stability is even more critical for reliable
neural decoding of motor variables in intra-cortically controlled brain-machine interfaces
(BMIs). Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity
over chronic use is a major challenge to maintaining this stability, requiring frequent daily
calibration of neural decoders in BMI sessions by an experienced human operator. Here,
we report on a unit-stability tracking algorithm that efficiently and autonomously identifies
putative single-units that are stable across many sessions using a relatively short duration
recording interval at the start of each session. The algorithm first builds a database of
features extracted from units’ average spike waveforms and firing patterns across many
days of recording. It then uses these features to decide whether spike occurrences on
the same channel on one day belong to the same unit recorded on another day or not.
We assessed the overall performance of the algorithm for different choices of features
and classifiers trained using human expert judgment, and quantified it as a function
of accuracy and execution time. Overall, we found a trade-off between accuracy and
execution time with increasing data volumes from chronically implanted rhesus macaques,
with an average of 12 s processing time per channel at ∼90% classification accuracy.
Furthermore, 77% of the resulting putative single-units matched those tracked by human
experts. These results demonstrate that over the span of a few months of recordings,
automated unit tracking can be performed with high accuracy and used to streamline
the calibration phase during BMI sessions. Our findings may be useful to the study of
population coding during learning, and to improve the reliability of BMI systems and
accelerate their deployment in clinical applications.
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1. INTRODUCTION
Invasive Brain Machine Interfaces (BMIs) for neuro-motor
prosthetics rely on neural signals recorded using chronically
implanted microelectrodes to actuate external devices (Serruya
et al., 2002; Kim et al., 2008; Velliste et al., 2008; Suminski
et al., 2010; Hochberg et al., 2012). In this setting, signal
and information stability play a crucial role in maintaining a
clinically viable BMI that subjects can use routinely in their
home environment. Recent evidence suggest that within-day
fluctuations in action potential amplitude and inter-spike inter-
vals recorded with microelectrode arrays implanted in humans
could result in a directional “bias” in the decoded neural
activity used to actuate an artificial device; and this results
in suboptimal performance (Perge et al., 2013). Other stud-
ies have shown that when subjects are repeatedly exposed to

a neural decoder presumably driven by the same population
across days, they build a stable map of cortical responses that
“fit” that particular decoder (Ganguly and Carmena, 2009,
2010; Koyama et al., 2010). As such, a fixed decoder model
paired with stable neural inputs may permit the consolida-
tion of the motor memory of that particular decoder during
BMI practice. Stability of neural recordings with penetrating
microelectrodes, however, is hard to maintain due to biotic and
abiotic factors beyond the experimenter’s control (Karumbaiah
et al., 2013). As such, state of the art BMIs lack reliability
and require human operators to frequently identify units and
to train new decoders on a daily basis- a process that can be
viewed as interference to motor-memory consolidation, which
diminishes the ability to retain motor skills and reduces BMI
robustness.
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The standard approach to mitigate this instability is to
rely on a human operator to ascertain that units intermit-
tently recorded on previous days remain the same on the cur-
rent day before the start of a BMI session. When changes do
occur, the operator has to select new populations and per-
haps train a new decoder by collecting a few minutes of neu-
ral data while subjects are asked to imagine or attempt limb
movements, or observe these movements from previous train-
ing sessions (Hochberg et al., 2012; Homer et al., 2013). A
fast, automatic, and efficient approach to assess stability of
these putative single-units at the start of every session would
be highly desirable to streamline the calibration phase with-
out much intervention from the human operator and with-
out imposing additional cognitive load on the subject. It could
also be beneficial in basic neuroscience investigations of learn-
ing and memory formation at the population level (Buzsáki,
2004).

In this study, we propose a fast and accurate algorithm to
assess unit stability across days with minimal human expert inter-
vention. We tested the performance of this algorithm on data
collected using fixed silicon microelectrode arrays chronically
implanted in primary motor cortex (M1) of Rhesus Macaques
(Macaca mulatta) over many months. The performance was
benchmarked against that of human experts who manually
labeled the data to provide practical ground truth.

2. MATERIALS AND METHODS
2.1. ALGORITHM OVERVIEW
An overview of the algorithm steps is shown in Figure 1. The algo-
rithm first builds a database of profiles of putative single-units
recorded across a multi-day interval set by the user. Each putative
single-unit profile (hereafter referred to as a profile for simplic-
ity) consists of a collection of spike occurrences from this putative
single-unit on each day. Such collection contains user-defined
information extracted from the single-unit activity, such as aver-
age waveform, spike timestamps, inter-spike interval histogram
(ISIH), firing rate, etc.

FIGURE 1 | Tracking Algorithm overview. The tracking module takes as
input the spike-sorted single unit discharge patterns and the stored profiles
for a given channel and calculates the dissimilarity between these units’
features and the stored profiles. It then assigns each unit to either an
existing profile or a new profile based on the dissimilarity computed. The
output is the updated set of profiles for that channel.

The tracking module has two main blocks: (1) feature extrac-
tion and (2) tracking classifier. The inputs to the tracking module
are the spike-sorted waveforms recorded on any given channel.
The module extracts features from these inputs, retrieves the
stored single-unit profiles for each channel, and finds the pairwise
dissimilarities between the input features and those in the stored
profiles. The dissimilarity vectors are then passed to the tracking
classifier that makes decisions on whether to add an input unit to
an existing profile (match) or to create a new profile (non-match).
The output of the tracking module is then a set of updated profiles
for each recording channel.

2.2. SINGLE-UNIT WAVEFORM CHARACTERISTICS
We selected four features to extract from each average spike
waveform in a unit’s profile. We also selected four dissimilarity
measures to quantify the difference between features from two
average spike waveforms, Wx and Wy, recorded from putative
single-units “x” and “y” on the same channel on different days.
The average waveform for unit x, Wx, is calculated as:

Wx =
[

l∑
i = 1

Wi
x(1)

l
. . .

l∑
i = 1

Wi
x(m)

l

]
, (1)

where l is the number of sample waveforms assigned to a single
unit x during spike sorting, and m is the number of samples in
the waveform.

Table 1 lists the chosen measures and the waveform features
that each of these measures relies upon to compute the dissimi-
larity.

Pearson correlation coefficient (PC) (Nikolić et al., 2012)
was used to compare the shape similarity of the waveforms. The
normalized peak-to-peak height difference (PH) was used to
quantify the difference in the amplitude of the two waveforms and
to normalize it to the amplitude of one of them as:

PH
(
Wx, Wy

) =
∣∣∣∣∣
(
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(
Wy

) − min
(
Wy

)) − (
max

(
Wx

) − min
(
Wx

))
(
max

(
Wy

) − min
(
Wy

))
∣∣∣∣∣ ,

(2)

where max and min are the waveform maximum and minimum
values, respectively. Therefore, a difference between the peak-to-
peak values of two high-amplitude units would result in a smaller
PH value than if the same difference was calculated between two
low-amplitude units. This is desirable in order to reflect that a

Table 1 | Waveform-derived dissimilarity measures.

Dissimilarity measure Feature

Correlation coefficient Waveform shape

Normalized peak-to-peak
height difference

Amplitude

Normalized peak-to-peak
time difference

Transition time between minimum and
maximum peaks

Peak matching Peaks shape
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large difference between two low amplitude units indicates higher
variability than the case of two high amplitude units. The nor-
malized peak-to-peak time difference (PT) was used to find
the difference in the transition time between the minimum and
maximum peaks of the waveform and was defined as:

PT
(
Wx, Wy

) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
argmax

i
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−
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(
Wx(i)

))
(

argmax
i

(
Wy(i)
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i

(
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3)

where argmax
i

and argmin
i

are operators that retrieve the sam-

ple number i (i.e., time index) corresponding to the waveform
maximum and minimum, respectively.

Combined with PH, we are essentially comparing the slopes of
the lines joining the minimum and maximum peaks of the two
waveforms. The Peak Matching (PM) is a measure developed by
Strelkov (2008) that heuristically computes the distance between
the shapes of the peaks of two signals. The algorithm finds the
peaks in both signals and assigns weights to each peak. It then
finds pairwise closeness factors (i.e., similarity measures) between
these peaks and finally calculates the total distance as the sum
of peak weights multiplied by the computed closeness factors.
Details of the calculation of each entity can be found in Strelkov
(2008). The symmetrized similarity between the two signals is
calculated as the geometric mean of the asymmetric similarities.

2.3. SINGLE-UNIT FIRING CHARACTERISTICS
Assuming negligible change in unit recruitment properties, dif-
ferences in firing patterns can be used as a metric to aid in

unit stability assessment (Liu et al., 1999; Chen and Fetz, 2005).
These differences can be quantified by computing the dissim-
ilarity between normalized ISIHs Hx and Hy (i.e., empirical
probability distributions of inter-spike intervals). We chose four
such dissimilarity measures to assess multiple aspects of the dif-
ference between two probability distributions. Table 2 lists the
chosen measures and the criterion that each of them uses to com-
pute the dissimilarity. The merit of each dissimilarity measure is
explained below.

It should be noted that while the Kullback-Leibler Divergence
(KLD) (Kullback and Leibler, 1951; Johnson and Sinanovic, 2001)
calculates the total divergence between two distributions, the
Kolmogorov-Smirnov Statistic (KS) (Gürel and Mehring, 2012)
approximates that divergence by including the maximum dif-
ference at any point in the cumulative distributions. Both the
KLD and the KS provide different perspectives when compar-
ing two distributions. The former measure overlooks individual
points and is only concerned with the total divergence across all
the points, while the latter measure does not. The Bhattacharyya
Distance (BD) (Bhattacharyya, 1943) quantifies the amount of
overlap between the two distributions to decide how similar they
are, while the Earth Mover’s Distance (EMD) (Rubner et al., 1998)
computes the minimum cost of converting one distribution to the
other.

2.4. THE TRACKING CLASSIFIER
Given a vector of dissimilarities between the features extracted
from two single units recorded on the same channel on two dif-
ferent days, the tracking classifier makes the binary decision of
whether these two single-units represent different instances of the
same single unit or not. Training a classifier requires supervision
and for this purpose two sets were defined:

• True positives (TP) are vectors of dissimilarities between
pairs of instances recorded from the same neuron across a
number of days. They were obtained by manual tracking

Table 2 | ISIH-derived dissimilarity measures.

Dissimilarity measure Calculation Dissimilarity criterion

Symmetrized KL-divergence D(Hx ||Hy ) =
l∑

i = 1

ln
(

Hx [i]
Hy [i]

)
Hx [i]

D(Hx , Hy ) = D(Hx ||Hy ) + D(Hy ||Hx )
2

Total information divergence

Bhattacharyya distance BD(Hx , Hy ) = − ln
l∑

i = 1

√
Hx [i]Hy [i] Amount of overlap

KS-statistic F[i] =
i∑

k = 1

H[k]

KS(Hx , Hy ) = max
i = 1...l

∣∣Fx [i] − Fy [i]∣∣
Maximum divergence

Earth mover’s distance EMD0 = 0
EMDi + 1 = (Hx [i] + EMDi ) − Hy [i]

EMD(Hx , Hy ) =
l∑

i = 1

∣∣EMDi
∣∣

Cost of turning one distribution to the other
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performed by two experts on the recorded data on those
days.

• True negatives (TN) are vectors of dissimilarities between
pairs of instances recorded from different neurons. They were
obtained using different units recorded on the same channel
on a given day. Units recorded simultaneously on the same
channel on a given day are different units.

For the waveform-based classifier, true positives and true neg-
atives were computed by comparing the average waveforms.
Figure 2 illustrates this process. The same process was applied for
training classifiers that used other single-unit characteristics (e.g.,
ISIHs).

The input to a classifier was a vector, x, of the dissimilar-
ities between the features extracted from two units recorded
on the same channel but on different days. The length, n, of
the dissimilarities vector is the number of dissimilarity mea-
sures used in the comparison. The classifiers’ decision is binary,
either to assign x to class 0 (c0), which corresponds to non-
matching units, or to class 1 (c1), which corresponds to matching
units. Several types of classifiers were compared in this study.
The following section provides a brief summary of the classifiers
used.

2.4.1. Support Vector Machine (SVM) classifier
The SVM classifier is a binary classifier that finds a high-
dimensional decision plane. This plane is inferred so as to maxi-
mize the distance between the plane and the training data points
of each class. The SVM model takes the form (Bishop, 2006)

y(x) = wTφ(x) + b, (4)

where, w defines the decision plane, x is the input dissimilarity
vector, φ(x) is a projection of the input onto the feature space
(basis function), and b is an offset term to account for any bias in
the training data.

FIGURE 2 | Process of training a waveform-based classifier. Using
spike-sorted units recorded across several days, human experts track the
units manually and produce pairs of matching average waveforms (true
positives). Using the same set of units, pairs of non-matching average
waveforms are generated by comparing spike-sorted units recorded
simultaneously on the same channel on a given day.

Although the SVM model in Equation (4) is linear, non-
linearity can be added to the model by the use of a non-linear
basis function (known as kernels) such a Gaussian radial basis
function (Bishop, 2006).

2.4.2. Relevance Vector Machine (RVM) classifier
The RVM calculates the classification probability rather than the
classification decision as in the case of the SVM. The model then
becomes of the form (Bishop, 2006)

y(x) = σ
(

wTφ(x) + b
)

, (5)

where σ (.) is the sigmoid function.

2.4.3. Maximum A Posteriori classification (MAP)
The MAP is a probabilistic classifier and is used to estimate how
likely a new point belongs to a distribution based on empirical
data.

Given the dissimilarity vector between two units, x =
[x1, . . . , xn]T , the MAP classification rule takes the form (Bishop,
2006):

p(x1, . . . , xn|c1)P(c1)
c1
≷
c0

p(x1, . . . , xn|c0)P(c0), (6)

where p(x1, . . . , xn|c0) and p(x1, . . . , xn|c1) are the likelihood
probabilities that x belongs to c0 and c1, respectively, and P(c0)
and P(c1) are the prior probabilities of c0 and c1, respectively.

The likelihood and prior probability distributions are com-
puted from the training data, where the true positives are
instances of c1 and the true negatives are instances of c0.

2.4.4. Naive Bayesian classification (NB)
The NB is a simple and effective probabilistic classifier that, unlike
the MAP, assumes independence between features (Domingos
and Pazzani, 1997). Therefore, instead of using a joint conditional
probability distribution as in the case of MAP, the NB uses mul-
tiple individual conditional probability distributions to infer its
decision. For a dissimilarity vector between two units, x, the NB
decision is (Manning et al., 2008):

n∏
i = 1

p(xi|c1)
c1
≷
c0

n∏
i = 1

p(xi|c0), (7)

where p(xi|c0) and p(xi|c1) are the conditional probability distri-
butions that the ith feature of x belongs to c0 and c1, respectively.

As in the MAP, the conditional probability distributions are
constructed using training data, where the true positives are
instances of c1 and the true negatives are instances of c0.

2.5. TRACKING ALGORITHM
The average waveforms were smoothed using a low-pass filter
with Gaussian kernel to reduce the high frequency components
that result from the short recording duration. Each unit profile
stores instances of the corresponding single unit recorded across
days. On a given day, units on an arbitrary channel c are spike
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sorted and passed to the feature extraction module. Pairwise dis-
similarity vectors are computed between the stored profiles on
channel c and the input spike sorted units. A dissimilarity vec-
tor is the concatenation of the dissimilarity measures computed
over an input unit and a stored profile instance.

A dissimilarity matrix is built using the pairwise dissimi-
larity vectors between the stored profiles and the spike sorted
units. The dissimilarity matrix is then input to the tracking clas-
sifier to build a membership matrix, where each cell indicates
whether a single unit from an input is another instance of a stored
profile. Figure 3 illustrates the structure of a waveform-based
classifier.

Denote the set of profiles stored on channel c as Pc, the set
of spike sorted input units on channel c as Uc, the dissimilarity
between the ith profile and the jth unit as Dis(Pc,i, Uc,j), and the
membership of the jth unit to the ith profile as Mem(Pc,i, Uc,j).

Assume there are m stored profiles on c, and n spike sorted
units on day x. The dissimilarity matrix is formed as:

DisMatc(P, U) =
⎡
⎢⎣

Dis(Pc,1, Uc,1) . . . Dis(Pc,1, Uc,n)
...

. . .
...

Dis(Pc,m, Uc,1) . . . Dis(Pc,m, Uc,n)

⎤
⎥⎦

And the membership matrix is:

MemMatc(P, U) =
⎡
⎢⎣

Mem(Pc,1, Uc,1) . . . Mem(Pc,1, Uc,n)
...

. . .
...

Mem(Pc,m, Uc,1) . . . Mem(Pc,m, Uc,n)

⎤
⎥⎦

Finally, the relationship between the dissimilarity and member-
ship matrices can be modeled as:

DisMatc(P, U) ⇒ TrackingClassifier ⇒ MemMatc(P, U) (8)

FIGURE 3 | Structure of a waveform-based classifier. On day x, the
spike-sorted units of channel c are compared to the stored profiles on the
same channel. Pairwise dissimilarity vectors are calculated from features
extracted from pairs of waveforms. The tracking classifier makes the
decision on whether to add the units to existing profiles or create new
profiles for them.

Units are added as instances of the profiles to which they belong.
If a new unit is identified, a new profile is initialized and the
unit instance is added to it. A profile is composed of all the
recorded instances of the single unit it represents. When an input
unit is compared to a profile to make the decision as to whether
the unit is another instance of the profile, the tracking classi-
fier decides which profile instance (i.e., from which day) to use
in such comparison. We developed two techniques—the “First
Matching Dissimilarity (FMD)” and the “Maximum Matching
Dissimilarity (MMD)” that use a “stability window” of 7 days
based on results in Dickey et al. (2009).

1. First Matching Dissimilarity (FMD): In this technique, the
most recent seven instances in a profile during the stability
window are used in the comparison, from newest to oldest.
Once the tracking classifier indicates that a profile instance
and the unit are recorded from the same single unit (a match),
the comparison stops and this instance is used for dissimilarity
vector calculations.

2. Maximum Matching Dissimilarity (MMD): In this technique,
the comparison is performed based on all the profile instances
that occurred within the stability window. The dissimilar-
ity vector resulting from this comparison is the dissimilarity
between the unit and the profile instance closest to it in terms
of the distance to the decision boundary.

The intuition behind the two techniques is to tolerate units that
undergo some minor instability for a short period of time, for
example due to noise from the electronic circuitry used in record-
ing on a given day, and then return to their stable state. We also
defined two classes of profiles: active and inactive. Active profiles
are those profiles whose single units have been recorded on any
day within the stability window. Inactive profiles, on the other
hand, are those profiles whose units did not appear in the record-
ing on all days during the stability window, in which case we
consider them “dropped units” and are not included in future
comparisons.

Training each classifier results in a membership matrix, where
each cell in this matrix indicates whether an input unit on a
given day should be added to a stored profile. In some cases,
the classifier might indicate that the input unit can be added to
more than one profile, for example because of misclassifications
in the spike sorting algorithm. A putative single-unit, however,
can only be added to one profile. Therefore, we developed a back-
tracking algorithm to find the best assignment of input single
units to existing profiles. Back-tracking is a standard general algo-
rithm for finding all the possible solutions to a problem and
then selecting one that most satisfies a set of user-defined objec-
tives (Cormen et al., 2001). In our case, the objectives were as
follows:

• Primary objective: Maximize the number of assigned units to
already existing stored profiles.

• Secondary objective: Maximize the total sum of distances to
the decision boundary of the assigned units, since the larger
the distance to the boundary, the more certain the decision of
the tracking classifier is.
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Algorithm 1 | Tracking algorithm.

Input: Signal recorded on all channels, database of stored single
unit profiles

Output: Updated database of stored single unit profiles
for each channel c do

Spike sort the signal recorded on c
Input the spike sorted units to the tracking module
Compute distance vectors between each of the input units
and the stored profiles associated with c
Using the distance vectors computed, build a membership
matrix between the input units and the stored profiles on c
using the tracking classifier
Using back-tracking, generate all possible assignments of the
input units to existing profiles
Select the assignment that maximizes the number of
assigned units to existing profiles
Create new profiles for unassigned units

end for

This way, the back-tracking algorithm finds the membership
matrix MemMat∗c (P, U) that meets both the primary and sec-
ondary objectives while assigning every input unit to one and only
one database profile. This means that if two unit assignment solu-
tions have the same number of units assigned to existing profiles,
the one with a larger sum of distances to the decision boundary is
selected. The relationship between the different data matrices can
be modeled as:

DisMatc(P, U) ⇒ TrackingClassifier ⇒ MemMatc(P, U)

⇒ Backtracking ⇒ MemMat∗c (P, U) (9)

The tracking algorithm is summarized in Algorithm 1

2.6. DATA ACQUISITION AND BEHAVIORAL TASK
Recordings were obtained using a 96-microelectrode silicon array
(Blackrock Microsystems, Inc., Salt Lake City, UT) chronically
implanted in the primary motor cortex (M1) of a rhesus macaque
(Macaca mulatta). The first recording used in this study was
made three months after the implant. The surgical and behav-
ioral procedures of this study were approved by the University
of Chicago Institutional Animal Care and Use Committee and
conform to the principles outlined in the Guide for the Care
and Use of Laboratory Animals. Spike sorting was done using
the Cerebus® Online Sorter (Blackrock microsystems, UT) and
the sorting templates were updated on a daily basis by a human
operator.

The subject performed a brain-controlled reach-to-grasp task.
Details of the behavioral task can be found in Balasubramanian
et al. (2013). Fifteen datasets, spanning a period of 26 days, were
used in training (seven datasets) and testing (eight datasets) the
tracking algorithm. We used only the first 15 min of each dataset,
which is equivalent to the period of updating the spike sorting
templates while the subject is not engaged in any behavioral task.
For execution time measurements, we used an Intel-i7 quad-core
processor (3.40 GHz) and 16 GB of RAM.

2.7. TRACKING ALGORITHM EVALUATION
The performance of the tracking algorithm was assessed based on
two metrics:

1. Classification Accuracy: The percentage of correct classifica-
tion made on a day-to-day basis compared to manual tracking.
A correct classification happens when a unit on day x is
matched with the correct putative single-unit profile on day
x − 1.

2. Percentage of Correct Profiles: The percentage of profiles that
were correctly tracked across all days of the testing datasets
compared to manual tracking. A correct profile is a pro-
file that has exactly the same single-unit instances as in the
corresponding manually tracked profile across all days.

Classifier implementations were provided by the newfolder
library (Torrione et al., 2011). We used a radial basis function
as the kernel for the SVM and RVM classifiers where the Gaussian
kernel sigma was set to the square root of the number of features.
The slack variable of the SVM classifer was defaulted to 1. We
compared the performance of the classifiers using four different
sets of features:

• Set 1: 4 waveform-based features (PC, PH, PT, PM) and 4 ISIH-
based features (KLD, BD, KS, EMD).

• Set 2: 3 waveform-based features (PH, PT, PM) and 3 ISIH-
based features (KLD, BD, KS).

• Set 3: 3 ISIH-based features (KLD, BD, KS).
• Set 4: 3 waveform-based features (PH, PT, PM).

Performing validation was challenging because the calendar-day
order of the datasets had to be maintained. This is because
changes in the characteristics of a single unit might be small over
two successive datasets (calendar-days) but much larger across
datasets with longer time separation. We distributed the fifteen
datasets (see section 2.6) into six validation datasets. Each valida-
tion dataset was divided into five training datasets and five testing
datasets. The first validation dataset contained datasets 1–10, the
second validation datasets contained datasets 2–11, and so on.

3. RESULTS
3.1. TRAINING FEATURES
Figures 4, 5 show the distributions of the waveform- and ISIH-
based dissimilarity measures applied to the TP and TN training
datasets. We found a variable degree of separability between the
distributions provided by each of the features selected. For exam-
ple, while the peak matching distance provided the best separa-
bility between matching and non-matching waveforms, the other
three waveform-based dissimilarity measures did not provide suf-
ficient separation between classes, except in regions where it was
very clear that there is a significant difference in the amplitude
or time between peaks. The inclusion of the other features, how-
ever, was necessary to account for cases when two waveforms had
very similar peak shapes, but significantly different amplitude- or
time-between-peaks, which occurred frequently in our data (see
Figure 6).
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FIGURE 4 | Probability distributions of the training true positives

(n = 900, blue) and true negatives (n = 600, red) for each of the four

waveform-based dissimilarity measures: Pearson correlation’s,

peak-to-peak height difference, peak-to-peak time difference, and peak

matching. The training data was obtained using human expert judgment.
The peak matching provided the best separability between matching and
non-matching waveforms.

On the other hand, all the ISIH-based dissimilarity measures
did not provide the same degree of separation between classes that
was provided by the peak matching. However, their inclusion as
features was necessary to account for cases where the waveform
shapes of two unit instances had subtle variability but their firing
properties remain similar (see Figure 7).

3.2. CLASSIFIERS EVALUATION
Figure 8 compares the tracking algorithm performance for the
testing datasets using the four feature sets and using the two
techniques proposed: FMD and MMD. A Two-way ANOVA test
revealed effects by both the type of classifier used (p < 0.01) and
the feature set used (p < 0.01). It is noticeable from Figure 8
that both the NB and MAP classifiers perform substantially worse
than both the RVM and SVM classifiers. We performed another
Two-way ANOVA test using only RVM and SVM data and it
revealed an effect by the feature set used (p < 0.01) with no effect
caused by the classifier used (p < 0.7). It is also noticeable from
Figure 8 that feature sets 1,2, and 4 provide better tracking than
feature set 3. Finally, we performed a Three-way ANOVA test to
determine which tracking strategy achieves a higher performance
(FMD or MMD). The test showed that both strategies performed
very similarly (p < 0.95). Execution times were similar for differ-
ent classifiers. Feature set 1 had the largest execution time, which
is expected because of the larger number of features used.

We then compared the receiver operating characteristics
(ROC) of the four classifiers by computing the area under the
curve (AUC) when using each of the four feature sets. A Two-way

FIGURE 5 | Probability distributions of the training TP (n = 900, blue)

and TN (n = 600, red) for each of the four ISIH-based dissimilarity

measures: KL-divergence, Bhattacharya distance, KS-distance, and

Earth Mover’s distance. The training data was obtained using human
expert judgment. All ISIH-based dissimilarity measures did not provide
enough separation between matching and non-matching ISIH.

FIGURE 6 | (A) An example of two average waveforms that have very
similar peak shapes but different peak-to-peak heights. (B) An example of
two average waveforms that have very similar peak shapes but different
peak-to-peak times.

ANOVA test showed that there was no effect by the type of classi-
fier used (p < 0.03). Note that although there was a significant
difference in the performance of the classifiers, they had simi-
lar ROC curves. The reason behind this is that the ROC curve
measures only a classifier’s performance in deciding whether two
single-units are a possible match, while the calculation of the
accuracy of the tracking algorithm measures also the performance
of the additional back-tracking step post-processing. Figure 9
shows the ROC curves of the four classifiers using the four feature
sets when trained on all seven training datasets. We also assessed
the ROC for an RVM classifier trained by randomly shuffling the
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FIGURE 7 | Example of two instances of a single-unit on two

successive days where the average waveform experienced subtle

change while the ISIHs remained similar.

labels of the training datasets and repeating the process 100 times
to establish chance level.

We then examined the tracking algorithm performance when
tested on additional datasets. Tables 3, 4 list the performance of
the tracking algorithm using different classifiers in terms of per-
centage correct classification and percentage of correct profiles
tracked when trained and tested using all 15 datasets described
in section 2.6 (i.e., without partitioning). Similarly, the RVM
and SVM classifiers performed much better than the NB and
MAP classifiers. The RVM classifier was our choice for sub-
sequent analysis due to its advantages of combining the SVM
features with probabilistic classification. Figure 10 illustrates two
single-unit profiles that were successfully tracked by the RVM
classifier.

We also found that the MMD approach had higher average
execution time per channel than the FMD due to the additional
number of comparisons the algorithm has to perform to find
the closest matching unit within the “stability window.” On the
other hand, Tables 3, 4 indicated that the MMD approach had
slightly higher classification accuracy than the FMD because it
was designed to find the closest match to the new unit. The
MMD approach was therefore the choice for the remainder of the
analysis.

We then investigated the trade-off between algorithm speed
and accuracy (as listed in Tables 3–5). Feature set 1 achieved
the highest performance but at the expense of longer execution
time on average. On the other hand, feature set 4 had a shorter
execution time than feature set 1 but at the expense of lower
accuracy (second highest accuracy among the four feature sets).
However, the benefit of using feature set 4 is greater than that of
using feature set 1, since the drop in accuracy is negligible (1%
drop) compared to the large increase in average execution time
per channel (17% increase). Therefore, we used feature set 4 for
further analysis.

Figure 11 shows that the average execution time per chan-
nel increases as more datasets are included on subsequent days
of recording until it reaches a plateau. This is expected because

generally new units are unlikely to appear as time increases post
implant, and thus the number of active profiles remains steady
after the initial period has passed. Furthermore, the larger varia-
tion in the average execution time per channel in early recording
sessions can be attributed to the lower number of comparisons
made, which is in turn caused by the small number of instances
in each profile and the small number of profiles created. Profiles
inactive for a long time (>seven datasets) were dropped and were
not included in the tracking.

4. DISCUSSION
Stability of neuronal signals has been traditionally assessed by
visual inspection of the similarity between units’ waveforms to
average waveforms from datasets collected across multiple days
of recording (Rousche and Normann, 1998; Nicolelis et al.,
2003; Carmena et al., 2005; Linderman et al., 2006; Chestek
et al., 2007; Ganguly and Carmena, 2009). Few studies, how-
ever, have attempted to develop automated, quantitative solu-
tions to the unit-stability tracking problem. Jackson and Fetz
(2007) devised an approach to track units using the peak of
the normalized cross-correlation between average spike wave-
forms. They reported that 80% of the stable units had correlation
values of >0.95 across days. Suner et al. (2005) compared the
signals recorded on the same channel across days by compar-
ing the centers of clusters in the principal components space
and used a Kolmogorov-Smirnov statistic between inter-spike
intervals histograms of the formed clusters to ascertain their
stability.

Tolias et al. (2007) determined the null distribution of pair-
wise distances between pairs of average waveforms by comparing
signals before and after adjusting the depth of movable tetrodes.
This distribution was then used to train a classifier that tracks the
stability of single-units. The method, however, is inapplicable in
the case of a fixed electrode array.

Dickey et al. (2009) trained a classifier on features extracted
from both the unit’s average waveform and ISIH. The authors
argued that using both the average waveforms and ISIHs resulted
in improved accuracy. However, they noted that the use of the
ISIH as a stability criterion may not apply when learning is taking
place. Furthermore, their method of comparing ISIHs is com-
putationally prohibitive, which makes it unfavorable for BMI
applications where the assessment of the single-unit stability from
short-duration neural recordings is ultimately desired.

Fraser and Schwartz (2012) used features extracted from func-
tional relations between units, such as pairwise cross correlo-
grams, to track units across days. This method, however, requires
the subject to be engaged in a behavioral task and may be sus-
ceptible to plasticity-mediated changes in functional connectivity
between units as learning progresses.

In this study, we presented an algorithm for automated track-
ing of multiple single units across many days that addresses most
of the aforementioned problems. In particular, it is applicable
to recordings from high-channel count microelectrode arrays.
Notably, the algorithm requires short-duration neural recordings
(15 min) without the need for the subject to be engaged in any
behavioral task. The algorithm is not computationally intensive
and, therefore, applicable in real time BMI applications.
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FIGURE 8 | Comparison of the classifiers’ performance using the FMD

and MMD methods. Four different sets of features were used and the 6
validation datasets were used (each had 5 training datasets and 5 testing
datasets). Error bars indicate the standard deviation (n = 6). Panels (A,C,E)

show the performance of the FMD, while Panels (B,D,F) show the
performance of the MMD. Using a Two-way ANOVA test, the RVM and SVM
were found to perform significantly better than the NB and MAP (p < 0.01)
and that feature set 3 is worse than all other feature sets (p < 0.01).

We compared the tracking algorithm accuracy when four clas-
sifiers were used: RVM, SVM, MAP, and NB. Both RVM and SVM
were superior to MAP and NB and there were no statistically sig-
nificant differences between their results. We recommend the use
of RVM since it combines the advantages of SVM with the notion
of a probabilistic classifier and in our experience it constantly
provided good tracking results.

We also compared model performance across four different
cases of input feature sets based on waveform features and firing
characteristics. We also proposed a technique to boost the per-
formance of the tracking algorithm by comparing newly recorded
single-units to multiple instances of a putative single-unit from its
stored profile across days and selecting the closest instance to the

new unit. When the algorithm was tested on eight datasets (corre-
sponding to 16 consecutive calendar-days), this strategy resulted
in a classification accuracy of ∼91% when using all the features
(feature set 1), and ∼90% when using only ∼37% of the features
(feature set 4). Additionally, 82 and 77% of the profiles tracked
by the algorithm matched the experts’ manual tracking using fea-
ture set 1 and feature set 4, respectively. The average execution
time was short and converged to ∼12 s per channel after ∼45 data
sets (with feature set 1 in use), though can be further reduced to
∼8 s per channel at a slightly lower accuracy (with feature set 4 in
use). Thus, as more recordings accumulate across days, the pro-
cess gets less demanding and can be executed more rapidly. The
poorest performance was obtained when we used the ISIH-based
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FIGURE 9 | ROC curves for different classifiers using different feature sets (sets 1 through 4 are shown in subfigures (A–D), respectively). A Two-way
ANOVA test on the AUC showed that there was no effect by the type of classifier used (p < 0.03).

Table 3 | Comparison between the classifiers’ performance using the Classification Accuracy when FMD and MMD were used.

Set/class RVM SVM NB MAP

Strategy FMD MMD FMD MMD FMD MMD FMD MMD

Set 1 90.51 91.67 87.44 88.05 51.26 50.98 50.85 52.28

Set 2 89.14 89.89 88.05 88.32 48.94 49.01 48.12 47.50

Set 3 61.16 62.11 61.92 67.84 22.45 22.45 16.65 16.99

Set 4 89.62 90.30 89.41 89.55 51.67 49.07 52.76 52.15

All of the 7 training datasets and 8 testing datasets were used to evaluate the classifiers over a longer duration of time. The results show that the performance

didn’t deteriorate significantly. MMD performed better than FMD in almost all the cases but with no statistical significance.

Table 4 | Comparison between the classifiers’ performance using the Percentage of Correct Profiles when FMD and MMD were used.

Set/class RVM SVM NB MAP

Strategy FMD MMD FMD MMD FMD MMD FMD MMD

Set 1 78.34 82.67 73.62 74.80 2.75 3.14 1.96 2.36

Set 2 74.01 75.98 72.83 74.80 3.14 3.14 3.54 2.75

Set 3 20.47 26.37 15.74 29.92 5.90 5.11 5.51 5.90

Set 4 75.98 77.16 77.16 75.19 1.96 1.57 2.36 1.57

All of the 7 training datasets and 8 testing datasets were used to evaluate the classifiers over a longer duration of time. The results show that the performance did

not deteriorate significantly. MMD performed better than FMD in almost all the cases but with no statistical significance.

features only. The results show that adding the ISIH-based fea-
tures can help improve the performance but cannot successfully
track single units on their own. This can be explained by the fact
that subjects were not over-trained on the Brain-control task, and

thus single units’ firing characteristics were largely variable during
the learning phase (Hikosaka et al., 2002). Given the speed-
accuracy tradeoff, we suggest using feature set 4 which includes
a subset of waveform-based dissimilarity measures: normalized
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FIGURE 10 | Example of two single-unit profiles tracked by the RVM

classifier across 15 datasets spanning a period of 26 days.

Table 5 | Average execution time per channel when the RVM was

used to track 15 datasets.

Feature set 1 2 3 4

Time (s) 5.24 4.03 0.62 4.48

peak-to-peak height difference, normalized peak-to-peak time
difference, and peak matching. In addition, using feature set 4
minimizes the adverse effect that variable ISIHs may have on
performance.

Our algorithm is based on one generic classifier that is used
for all channels. However, different channels may have different
characteristics. For example, units may vary on one (or more)
channel more than others. A human expert can capture the extent
of variability of a specific channel across days, while an auto-
mated method cannot because some training samples might be
outliers. One possible improvement in such case is to perform a
two-level classification paradigm. In this paradigm, a custom clas-
sifier for each channel is trained using features extracted from this
channel’s units only.

It is noteworthy that the single-unit stability tracking prob-
lem can be postulated as a Graph Matching or a Graph Cut
problem (Cormen et al., 2001). In particular, a node in the
graph would represent each single-unit occurrence on a given
day, and the edges between nodes would represent the dissimilar-
ity measure between the single-units appearing on two different
days. A graph matching procedure that matches single-units
across two different days is equivalent to Maximum Bipartite
Graph Matching (Cormen et al., 2001). Generalizing the tracking
problem to more than two recordings requires solving a Graph
Partition problem which generally falls in the category of NP-
hard problems (Bichot and Siarry, 2013). The algorithm provided
in this paper is a fast approximate solution to the single-unit
tracking problem.

We note that our algorithm performance was based on spike
data sorted online using the spike sorter tool in the Cerebus®
software (Blackrock microsystems, UT). Online spike sorters
that use the “hoops” method for labeling spikes based on time
and amplitude features of the waveforms perform poorer than
offline spike sorting algorithms that use more sophisticated fea-
ture extraction and clustering techniques, since spike-amplitude
instability is known to cause spike detection and sorting errors
for such methods (Perge et al., 2013). As such, it is expected

FIGURE 11 | Average execution time per channel when feature set 4,

the RVM classifier and the MMD method were used. The classifier was
applied on 35 datasets spanning 88 days.

that more sophisticated online spike detection (Oweiss, 2010) and
sorting techniques (Aghagolzadeh and Oweiss, 2009), particu-
larly those that permit efficient tracking using simple methods
(Aghagolzadeh et al., 2013) would result in an overall perfor-
mance gain compared to the traditional methods implemented
in commercially available systems.

The proposed technique may also improve the clinical viability
of BMI systems in a patient’s home settings. If single units can be
autonomously, accurately and rapidly tracked across days without
much supervision from a caregiver, this would ease its use, and
would facilitate maintaining a fixed mapping between the neural
input space and the decoded output, which may likely increase
the utility of the BMIs over the long term.

Finally, the application of the technique may extend well
beyond ensuring that a stable BMI is maintained over days.
In particular, studies of learning that aim to elucidate neu-
ral mechanisms of plasticity at the cellular and population
levels in vivo can significantly benefit from the proposed
approach. These studies, however, are in their infancy, pri-
marily due to the inability to validate unit identity in inter-
mittent extracellular recording sessions across multiple days.
As such, it is often assumed that units recorded on a given
day are not the same as the ones recorded on other days,
which “artificially inflates” the unit sample size. With tech-
nological advances that lead to ever increasing number of
electrodes, the approach provides a novel framework to stream-
line the process over consecutive days that can help assess
learning-induced plasticity in local and distributed neural
circuits.

In conclusion, we proposed a technique that could substan-
tially alleviate the burden on the caregiver as well as the patient
in a clinical BMI setting. By automating the tracking of multiple
single-units across many days of recordings from high-channel-
count microelectrode arrays, we’re essentially maximizing the
likelihood of maintaining a fixed mapping between the neural
input space and the decoded output, which in turn may accelerate
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BMI learning and reduce the cognitive load on the patient side.
This may improve the clinical viability and rapid adoption of BMI
systems in home settings by end users.
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