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Optogenetic channels have greatly expanded neuroscience’s experimental capabilities,
enabling precise genetic targeting and manipulation of neuron subpopulations in awake and
behaving animals. However, many barriers to entry remain for this technology – including
low-cost and effective hardware for combined optical stimulation and electrophysiologic
recording. To address this, we adapted the open-source NeuroRighter multichannel
electrophysiology platform for use in awake and behaving rodents in both open and closed-
loop stimulation experiments. Here, we present these cost-effective adaptations, including
commercially available LED light sources; custom-made optical ferrules; 3D printed ferrule
hardware and software to calibrate and standardize output intensity; and modifications to
commercially available electrode arrays enabling stimulation proximally and distally to the
recording target. We then demonstrate the capabilities and versatility of these adaptations
in several open and closed-loop experiments, demonstrate spectrographic methods of
analyzing the results, as well as discuss artifacts of stimulation.
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INTRODUCTION
Optogenetic techniques provide powerful tools for precise manip-
ulation of complex nervous system circuitry. Selective excitation
and inhibition with light of a genetically targeted neuron popu-
lation – without directly perturbing the neighboring untargeted
cells – has provided the means to elegantly explore a number of
important neuroscience questions (Aravanis et al., 2007; Carter
et al., 2009; Gradinaru et al., 2009; Kravitz et al., 2010; Yizhar et al.,
2011; Packer et al., 2012; Wykes et al., 2012; Paz et al., 2013). When
combined with electrophysiological recording techniques, opto-
genetic control can provide unprecedented insight into neural
connectivity and function (Bell et al., 2013), as well as suggest
potential therapeutic strategies (Gradinaru et al., 2009; Paz et al.,
2012; Wykes et al., 2012; Krook-Magnuson et al., 2013).

Optogenetics combines a number of techniques in molecular
biology, electrophysiology, optics, and neuroscience, the mastery
of which can prove a barrier to easy adoption. Significant efforts
have been made to expand the toolbox of optogenetic channels,
constructs, and viral techniques (Chow et al., 2010; Gunaydin
et al., 2010; Diester et al., 2011), as well as to develop complex
custom-designed optoelectric neural interfaces (Fan et al., 2013;
Voigts et al., 2013). However, commercial electrophysiology hard-
ware and software has lagged behind these developments, and
often fails to incorporate support for complex stimuli, real-time
multielectrode closed-loop control (Newman et al., 2013), and
customized experimental configurations in awake and behaving

animals. In addition, the cost of these systems is often prohibitive,
particularly for investigators looking to initiate a new line of
research with limited funding. Custom systems have been devel-
oped and reported previously (Armstrong et al., 2013; Nguyen
et al., 2014), but have been designed for a particular narrow
focus. As a result they can be limited in their customizability and
application to any particular experiment, particularly in regard
to stimulation parameters and patterns. The price of setting up
one of these custom systems may also be prohibitive, partic-
ularly if they use high-quality lasers for stimulation. There is
consequently a need for a customizable, adaptive, and low-cost
optoelectrophysiology system for in vivo experimentation.

NEURORIGHTER PLATFORM
We developed our optoelectrophysiology platform based on the
existing hardware and software for electrical stimulation and elec-
trophysiology, NeuroRighter. NeuroRighter is a low-cost open-
source electrophysiology system written in C-sharp and intended
for open and closed-loop neural interfacing in vivo and in vitro
(Rolston et al., 2009b,c, 2010a). The software, compatible with
32- and 64-bit Windows operating systems (Microsoft Corpora-
tion, Redmond, WA, USA) is free and the source code is available
on a publicly accessible repository1. The hardware is also open-
source, utilizing printed circuit boards (PCBs) and commercially

1http://code.google.com/p/neurorighter

Frontiers in Neuroengineering www.frontiersin.org October 2014 | Volume 7 | Article 40 | 1

http://www.frontiersin.org/Neuroengineering/
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroenrgineering/about
http://www.frontiersin.org/Journal/10.3389/fneng.2014.00040/abstract
http://community.frontiersin.org/people/u/6418
http://community.frontiersin.org/people/u/180371
http://community.frontiersin.org/people/u/9103
http://community.frontiersin.org/people/u/46872
http://community.frontiersin.org/people/u/41644
http://community.frontiersin.org/people/u/4211
mailto:rgross@emory.edu
http://code.google.com/p/neurorighter
http://www.frontiersin.org/Neuroengineering/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroengineering/archive


Laxpati et al. NeuroRighter optogenetics in vivo

available components, National Instruments (NI; National Instru-
ments Corporation, Austin, TX, USA) data acquisition hardware
(NI PCI-6259, PCI2-6259, PCI2-6353, and PCIe-6363 16-bit
1 M sample/sec) and driven with NI’s hardware control library,
DAQmx. The design, construction, and performance of this elec-
trophysiology platform – which meets or exceeds the performance
of many commercial alternatives – is well documented (Rolston
et al., 2009c; Newman et al., 2013).

Recently, the NeuroRighter platform has been enhanced
for improved usage with closed-loop multichannel interfacing
experiments for electrical stimulation (Newman et al., 2013),
as well as in vitro optogenetic stimulation (Tchumatchenko
et al., 2013). NeuroRighter is capable of recording single-unit
(Figure 1A) and local field potential (LFP; Figure 1B) activ-
ity from multielectrode extracellular arrays, as well as deliv-
ering complex and customizable patterns of electrical stimula-
tion through analog and digital outputs (Rolston et al., 2009c,
2010a; Newman et al., 2013). NeuroRighter is consequently
well-positioned to incorporate customized optogenetic hard-
ware and provide a low-cost solution to the problems facing
optoelectrophysiology.

Here, we summarize the adaptations we have made to Neu-
roRighter to produce a system that enables real-time optogenetic
neuromodulation and multielectrode electrophysiology in vivo
in awake and behaving rodents using low-cost components. We
describe two example experiments, one in which the site of optical
stimulation is distant from the electrode recordings (medial sep-
tum (MS) and dorsal hippocampus, respectively), and the other in
which optical stimulation and electrophysiologic recording is per-
formed in the same location (dorsal hippocampus). In the former,
we provide examples of the complex stimuli that can be performed
with NeuroRighter, and present descriptive results. In the lat-
ter, we demonstrate and discuss some of the issues concerning
optically induced artifacts.

DESIGN
DESIGN CRITERIA
We designed our optoelectrophysiology system to adapt the in
vivo capabilities of NeuroRighter into the optogenetic purview. In
so doing, we wished to maintain the standards established in its
original design – that the system be (1) inexpensive, interfacing
with commercially available hardware as well as custom-designed
solutions; (2) maintain the high spatial and temporal resolu-
tion required in electrophysiology; (3) function robustly in a
number of different experimental environments; and (4) be
open-source.

HARDWARE AND SOFTWARE FOR OPTICAL STIMULATION
While many of efforts with optogenetics relied on the use of lasers
(Yizhar et al., 2011; Armstrong et al., 2013), high-intensity light-
emitting diodes (LEDs) have increasingly proven an attractive
alternative, particularly for in vivo experiments (Cardin, 2012;
Nguyen et al., 2014). Lasers tend to be large and cumbersome,
and many setups require careful collimation and alignment for
proper function and maintenance of consistent output within and
between experiments. These designs are sensitive to the slight per-
turbations generated from connections to awake and behaving

animals. Collimated LEDs, however, are compact, robust, and
readily portable, making them easy to integrate into behavioral
experiments. In addition, LEDs have a more precise input/output
relationship than similarly-priced lasers. LED luminance output
can be well approximated by a logarithmic or linear function
with respect to input current. In contrast, similarly priced DPSS
lasers have a non-linear sigmoidal relationship with input voltage
(Figure 1C; Cardin, 2012). Furthermore, the light intensity gen-
erated by these lasers can be unstable and demonstrate transient
peaks and fluctuations (Cardin, 2012). The output intensity of
LEDs, in contrast, is much more stable and better approximates
a square wave, with much less variation over time. Indeed, we
have determined that the variability in 465 nm Blue LED out-
put intensity is less than that of a comparable-cost laser 475 nm
DPSS Laser (Shanghai Dream Lasers, China; Figure 1C). While
the standard deviation of the laser intensity output could be
over 10% of the maximum output, the standard deviation of
the LED intensity output was small enough to be obscured by
the datapoint marker. It should be noted that the outputs of
lasers and LEDs are influenced by temperature as well. With-
out proper heat dissipation, output efficiency will decrease and
consistency will no longer be maintained (Newman, 2013). Con-
troller properties also largely influence these input dynamics: more
advanced and more expensive controllers can linearize laser out-
puts, in particular when coupled with optical feedback. Indeed,
for experiments with both LEDs and lasers in which long-term
stimulation may warrant heat dissipation, it is recommended
that an optical feedback controller be used to maintain consis-
tency in optical stimulation output. High-intensity LEDs enable
precise experimental standardization and repeatability while also
retaining the high-intensity output and dynamic range that make
lasers desirable for optogenetic experiments. Consequently, we
designed our platform to make use of low-cost high intensity
LEDs in optogenetic in vivo experiments in awake and behaving
animals.

To this end, we made use of commercially available high-
intensity LEDs (Plexon Inc., Dallas, TX, USA; Figure 1D). Similar
LEDs are available from other suppliers (Thorlabs, Newton, NJ,
USA), and the cost of these is in a similar price range (∼$2000 total
with current driver), which makes the cost of the total NeuroR-
ighter system with optogenetics about $12,000. The 465 nm blue
LED was controlled by a voltage-to-current controller (Plexon
Inc.), and output light along a patch fiber cable connected via
FC/PC connection. The LED controller received input from one
channel of the analog output from a NI SCB-68 screw-terminal
connector box. This output ranged from 0 to 5 V, which was
converted by the controller to 0–300 mA of current. This system
was capable of driving 465 nm Blue LED light output at intensi-
ties of up to 80 mW/mm2 in custom-made implantable optical
ferrules (Figure 1E) – well within the acceptable window for
non-damaging optical stimulation (Cardin et al., 2010). As each
analog output of NeuroRighter can be accessed independently,
four LEDs can be simultaneously controlled with NeuroRighter
configuration on a single supported NI data acquisition card. The
modular nature of the system enables the addition of additional
NI data acquisition cards to increase the number of LED outputs,
in addition to recording inputs.
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FIGURE 1 | NeuroRighter software and hardware for calibration, optical

stimulation, and recording. NeuroRighter’s main application window
enables real-time isolation of single units (A) and local field potentials
(LFP; B) from multielectrode arrays, with real-time visualization of the
electrophysiologic response to optical stimulus (B, magenta arrow). (C) A
comparison between the mean (dot) and SD (error bars) normalized output
of a 473 nm blue DPSS Laser (Shanghai Dream Laser; red) and 465 nm
blue LED (Plexon, Inc.) output (black). Note the high variance associated
with the laser output as compared to the LED (present for the LED but
smaller than the data point marker), and the non-linear nature of the laser
output. (D) Plexon LED Driver, 465 nm blue LED module, and 200 μm
0.67 NA armored patch fiber cable. (E) Custom-made optical ferrules

utilizing 200 μm diameter 0.37 NA fiber optic. (F) 3D-printed Intensity
Chamber design (top) and fabricated with accompanying photodiode
(bottom). Custom-designed and fabricated ferrules (E) plug into the
chamber (F, bottom right) which overlays the S121C detector (F, bottom
left). (G) Labview-based program for Automated Ferrule Intensity
Calibration (C). (H) A 3D-printed implantation post has multiple modules to
enable ferrule implantation alone (H, bottom right) or coupled to an array
(H, top right, J). (I) TDT 16-channel MEA, which was implanted in the
dorsal hippocampus targeting CA1 and CA3 simultaneously. (J) A H-style
NeuroNexus 16 channel shank array was manually glued to a calibrated
ferrule (K), enabling simultaneous stimulation, and recording from the
same target site.
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Custom-made implantable optical ferrules (Figure 1E) were
constructed from 1.25 mm long 230 μm inner diameter ceramic
stick ferrules (Precision Fiber Products, Milpitas, CA, USA) in a
fashion based on a previously well-described design (Sparta et al.,
2012). 200 μm diameter 0.37 numerical aperture optical fiber
(Thorlabs) was carefully stripped of its protective coating and
cleaved. Heat-cure epoxy (Precision-Fiber Products) was mixed
and applied to the concave end of the ferrule, through which the
cleaved fiber segment was subsequently threaded. After wiping off
the excess, a heat gun was applied to quickly cure the epoxy, and
the ferrules were then allowed to finish curing overnight at room
temperature. The ferrule connector was polished using a polish-
ing disk and increasingly fine grades of polishing paper (Thorlabs),
with frequent inspection to ensure transmission quality. Once pol-
ished, the free end of the fiber was scored and cleaved to 10–12 mm
in length.

Custom hardware and software was designed in order to stan-
dardize the variations in output intensity and calibrate each
ferrule2. An intensity calibration device (ICD; Figure 1F, bottom)
was designed in Solidworks 2011 (Dassault Systèms Solidworks),
3D-printed on an Objet Eden 250 from FullCure 720 model resin,
and painted black. A S121C silicone diode (Thorlabs) was placed
within the central cavity of the ICD and connected to a PM100USB
intensity meter (Figure 1F, top). Custom-written LabVIEW 2009
software (National Instruments, Austin, TX,USA; Figure 1G) steps
the LED through user-defined output voltages and measures the
resultant power for a defined wavelength and number of points
on the S121C silicone diode. LED output power passing through
the ferrule is thus correlated to the analog input voltage signal
to the LED controller. The program then calculated intensity
from power based on the diameter of the fiber optic and linearly
correlated to the voltage input. This standardized the output of
each ferrule based on intensity rather than voltage input, enabling
precise stimulation at accurate intensities across all experimental
subjects. Custom-written Matlab scripts then converted standard
output intensities to the appropriate signal voltages for each test
subject.

Ferrules were attached to the patch fiber cable by means of
1.25 mm inner diameter ceramic split sleeves (Precision Fiber
Products). These were reinforced by threading them through
trimmed heat shrink tubing (Digi-Key, Thief River Falls, MN,
USA), and subsequently heating them. These reinforced sleeves
were superior to the bare split-sleeves in resisting breakage due
to vigorous movement of some subjects. This ceramic split sleeve
was the most common breaking point in the connection, con-
veniently leaving the implanted ferrule and patch fiber cables
intact.

ELECTRODE ARRAYS
Two electrode array configurations were used in these proof-
of-concept experiments. For recording of the dorsal hip-
pocampus while simultaneously stimulating the MS, 16-channel
microwire multielectrode arrays [Tucker Davis Technologies
(TDT), Alachua, FL., USA; MEA] were constructed from sixteen

2STL and SolidWorks files, as well as the labview ∗.vi, are available at https://sites.
google.com/site/neurorighter/share

33 μm diameter tungsten electrodes with polyimide insulation
(Figure 1I). The electrodes were arranged in two rows of eight
electrodes with 1 mm between rows and 175 μm of space between
the electrodes within a row. Ground and reference wires were sep-
arated on the array and routed through two stainless steel wires,
which were affixed to separate skull screws during the implanta-
tion surgery. The two rows were cut to different lengths, 4.0 and
3.0 mm, to target and record simultaneously from the hippocam-
pal CA3 and CA1 regions, respectively, enabling multiunit and
LFP recording from the hippocampus distantly from the optical
stimulation site in the MS.

NeuroNexus (Ann Arbor, Michigan, USA) 16-channel shank
arrays were coupled with optical ferrules to record and stimu-
late simultaneously in the hippocampus. A single-shank H-style
array was used, with 16 177 μm2 contacts spaced 100 μm apart
along a 5 mm shaft. This length was sufficient to record simulta-
neously from the CA1 and CA3 layers. The shaft was connected
to an Omnetics connector via a 21 mm flexible ribbon cable.
Ground and reference wires were again separated from the con-
tact sites and routed through stainless steel wires. NeuroNexus
“activated” the electrode contacts via iridium oxide – a process
that reduced impedance and they suggested would reduce optical
stimulation artifacts (personal communication). Both the Neu-
roNexus and TDT arrays made use of a magnet-based coupling
technique to the 16-channel 100 gain tethered recording headstage
(Triangle Biosystems, Durham, NC, USA) to reduce movement
artifacts (Figure 1J, red dots), a technique we have described
previously (Rolston et al., 2009c, 2010b). Once the magnet was
attached with superglue, the NeuroNexus array could be situated
onto our custom-designed and 3D-printed implantation holder3

(Figures 1H,J). This enabled the array shank and contacts to be
positioned in parallel to the optical fiber (Figure 1J), and cemented
in place with quick-drying super glue (Figure 1K). The fiber and
shank thus were stereotactically inserted together, maintaining a
fixed distance from each other throughout the experiment.

The implantation device consists of a single post compatible
with a Kopf Universal Holder (David Kopf Instruments, Tujunga,
CA, USA) with a single-prong plug that enabled easy swap-
ping and customization depending on the implant configuration
(Figure 1H). This allowed us to use the device to implant an opti-
cal ferrule in isolation – as in the MS – or in conjunction with a
NeuroNexus array (Figure 1J) – as in the dorsal hippocampus.

EXPERIMENTAL METHODS
SURGERIES
Two month old adult male Sprague–Dawley rats (250–300 g) were
purchased from Charles River Laboratories (Wilmington, MA,
USA). All animals were maintained within a 12/12 light/dark cycle
vivarium with unlimited access to food and water. This work was
conducted in accordance with Emory University’s Institute for
Animal Care and Use Committee.

Each subject underwent two surgical procedures. The first
survival surgery introduced the optogenetic viral vector to the
stimulation target – either the MS or the dorsal hippocampus.

3STL and SolidWorks files available at https://sites.google.com/site/neurorighter/
share
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For medial septal stimulation, rats were anesthetized with 1.5–4%
inhaled isoflurane, and a craniectomy was made 0.40 mm anterior
and 2.00 mm lateral to bregma on the right side of the skull. A
pulled-glass pipette attached to a stereotactically mounted injec-
tor (Nanoject; Drummond Scientific Co., Broomall, PA, USA)
was used to inject 1.8 μL of 1012 particles/mL AAV5-hSynapsin-
hChR2(H134R)-EYFP (UNC Vector Core Services, Chapel Hill,
NC, USA). AAV5-hSynapsin-EYFP (UNC Vector Core Services)
was used in control animals. The injection was made at a 20◦
angle to the dorsal-ventral axis (0.40 mm anterior, 2.12 mm lat-
eral at the 20◦ angle, 5.80 mm ventral to pia along the rotated
axis) in order to target the MS without damaging the medially
located central sinus. After 5 min of equilibration the injection
was made over 7 min with the pipette remaining in place an
additional 10 min post-injection to prevent reflux. Once with-
drawn, the scalp was stapled closed, ketofen was administered as an
analgesic (3–5 mg/kg) to minimize pain, and the rats were quaran-
tined for 72 h before returning to normal housing. Hippocampal
injections were similarly performed, but the craniectomy was
made 3.30 mm posterior and 3.20 mm lateral over the right dor-
sal hippocampus. An injection of 1.8 μL of 1012 particles/mL
AAV2-CaMKIIα-hChR2(H134R)-mCherry was made along the
dorsal–ventral axis at 3.10 mm depth to pia to target the hip-
pocampal pyramidal neurons. Identical closure and quarantine
procedures were performed.

The second survival surgery was performed two weeks later,
which we have found to provide ample time for robust chan-
nel expression. For the medial septal stimulation experiments, a
second craniectomy was made over the right dorsal hippocam-
pus centered at 3.50 mm posterior and 2.80 mm lateral to
bregma. The dura was incised with a sterile curved scalpel blade.
The TDT array was positioned at a 50◦ angle to midline, with
the posterior end swung laterally, to match the positioning of
the hippocampal pyramidal cell layers (Rolston et al., 2010b).
The MEA was lowered while simultaneously recording single
unit and LFP activity to attain the ideal positioning (Rolston
et al., 2009b). When the electrophysiologic recordings stabilized,
the original injection craniectomy was reopened, and a cali-
brated optical fiber ferrule was implanted at a 20◦ angle to
the dorsal–ventral axis (0.40 mm anterior, 2.12 mm lateral in
the rotated axis). Stimulation was performed as the ferrule was
implanted, with the resulting recordings immediately analyzed
spectrographically. Descent was halted when a strong stimulus-
response signal was observed in the spectrogram, or when the
optical ferrule reached a depth of 5.50 mm from pia along the
rotated axis.

For the hippocampal stimulation experiment, the previous
craniectomy was reopened and expanded, and the combined opti-
cal fiber and NeuroNexus electrode array (Figure 1J) was inserted
while similarly stimulating. Stimulation artifacts were noted in the
upper cortical layers where there was no viral expression, and were
recorded for later artifact analysis. A LFP response was visible in
the hippocampus in addition to the artifact and so the implanta-
tion was halted at 2.80 mm at the shank tip. In both experiments,
once the electrodes and ferrules were in place, the craniectomy
was sealed with dental acrylic (OrthoJet; Lang Dental; Wheeling,
IL, USA), securing the array/electrode and ferrule in place. The

rats were administered ketofen (3–5 mg/kg) to minimize pain and
returned to normal housing to recover for 3–5 days.

OPTICAL STIMULATION AND ELECTROPHYSIOLOGIC RECORDINGS
Using our adapted NeuroRighter system, electrophysiologic
recordings were sampled at 25 kHz with a 1–9,000 Hz bandwidth.
LFPs were isolated online with a 1–500 Hz 1-pole Butterworth
band-pass filter and downsampled to 2000 Hz. Action potentials
were isolated both online (Newman et al., 2013) and offline, with
the offline results presented here. Action potentials were detected
offline using custom-written adaptations to the automated spike-
sorting Wave_clus scripts (Quiroga et al., 2004). The raw data was
band-pass filtered offline from 500 to 5000 Hz. For the TDT elec-
trodes, the median signal was removed across the CA3 and CA1
electrodes, respectively. For the NeuroNexus Array, the median
signal was removed across all electrodes. Positive and negative
thresholds were applied at 5x the SD of the signal, and the resulting
waveforms were matched, sorted, and isolated using superparam-
agnetic clustering (Wave_clus; Quiroga et al., 2004). Power spectra
and spectrograms were computed using the Chronux suite of anal-
ysis tools and multitaper analysis (Bokil et al., 2010), with a moving
window size of 4 s stepping in 0.5 s increments, T = 4, W = 1,
and seven tapers. Data were recorded intraoperatively and for up
to 4 weeks postoperatively.

To stimulate awake and behaving animals, calibrated ferrules
were connected via armored patch fiber cables (200 μm diam-
eter, 0.67 NA, Plexon). Square-wave stimulation pulses varied
between 10, 30, and 50 mW/mm2; 7, 11 (theta), 17, 23, 35
(beta), and 42 (gamma) Hz; and 2, 5, and 10 ms pulse widths.
NeuroRighter enables custom-designed stimulation times and
amplitudes to be defined via Matlab script (Newman et al., 2013).
We leveraged this customizability to develop several other stimula-
tion patterns, including varying frequency, Poisson distributions,
and continuous sinusoids, which are described in more detail
as they are presented. In all cases, the experimental protocol
consisted of repeated 1 min recordings of 20 s of background,
20 s of stimulation with a particular pattern, and a subsequent
20 s of additional background. Stimulation protocols were per-
formed in random order and repeated numerous times over
several recording sessions. This setup was able to stimulate and
record LFP and single-unit responses from awake and behav-
ing animals uninterrupted for several hours and over several
days.

HISTOLOGY
Histology was performed after experimentation to verify micro-
electrode recording locations and light-sensitive ion channel
expression. Rats were deeply anesthetized with an overdose of
Euthasol (5 ml/kg, Virbac, Fort Worth, TX, USA) injected
intraperitoneally. They were then transcardially perfused with
0.9% saline followed by 4% paraformaldehyde in 0.1 M phosphate
buffer at pH 7.2. The heads, still containing the electrodes and
ferrules, were then separated and post-fixed at 4◦C overnight. The
next day, the brains were dissected out, removed, and cryopro-
tected with 30% sucrose at 4◦C. Frozen transverse (horizontal)
sections were made of 50 μm thickness on a sliding microtome
and collected in 0.1 M PBS. Sections were mounted on glass slides
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and mounted with Vectashield mounting medium with DAPI
(Burlingame, CA, USA) for visualization of nuclei. Sections were
imaged in the NIS-Elements software (Nikon Instruments, Inc.,
Melville, NY, USA) using a Nikon DS-Fil color digital camera on
a Nikon E400 microscope equipped with TRITC, FITC, and DAPI
fluorescence cubes.

RESULTS
HISTOLOGIC VALIDATION OF CHANNEL EXPRESSION AND ELECTRODE
PLACEMENT
Channelrhodopsin-2 expression in the MS (Figure 2A, green)
and hippocampus (Figure 2B, red) was robust upon histologic
evaluation. From the MS, axonal projections to the hippocampus
(Figures 2A, C) were readily apparent, coinciding with the passage
of the electrodes (Figure 2C, red and white arrows) and the hip-
pocampal pyramidal cell layer (yellow arrow). The NeuroNexus
array also passed alongside the expressing pyramidal cell layer of
the hippocampus (Figure 2B). Consequently, we would expect
our recordings to appropriately reflect the influence of optogenetic
stimulation on these respective neuron populations.

VALIDATION OF HIPPOCAMPAL RESPONSE TO PULSATILE
STIMULATION PATTERNS IN THE MEDIAL SEPTUM
To validate the effectiveness of the platform, we first explored
the LFP response in the dorsal hippocampus to square-wave
pulsatile stimulation of the MS (Figure 3). The MS has been
stimulated electrically previously, producing a stimulus-frequency
specific response (McNaughton et al., 2006) that we hypothe-
sized we would recapitulate. At 50 mW/mm2, stimulation of
the MS produced readily visible delayed pulsatile responses in
the hippocampal LFP in both the CA1 and CA3 layers during
the stimulation epoch (Figures 1B and 3A). These responses
did not persist into the post-stimulation epoch, but instead
were highly time-locked to the stimulus onset and offset. In
order to examine the waveform of the LFP response, a peris-
timulus average was constructed by determining the mean LFP
signal between 5 ms preceding and 40 ms following onset of
each stimulus pulse. These were calculated across every stim-
ulation parameter to produce the mean (solid line) and SD
(shaded area; Figure 3B). As expected, the stimulation param-
eter specifications had a large impact on response waveform
amplitude, shape, and timing. Increasing the amplitude of
the stimulus pulse tended to generate a quicker time to peak
response. Intriguingly, while increasing the pulse width at lower
frequencies increased the amplitude of the response, at higher fre-
quencies (23+ Hz) this was not the case. Indeed, the response
to a 35 or 42 Hz, 10 ms stimulus looked remarkably similar
regardless of stimulation intensities, with the primary differ-
ences manifesting in phase. Biphasic responses were also noted
at higher intensities and lower frequencies, whereas unipolar
depolarization was most common at 10 mW/mm2. At frequen-
cies greater than 35 Hz, the response waveform became largely
sinusoidal.

To further characterize the hippocampal LFP response to pul-
satile stimulation, we examined the spectral properties of the mean
signal from six trials of 50 mW/mm2, 10 ms stimulation pulses at
7, 23, and 35 Hz (Figure 4). In all cases, multitaper spectrograms

FIGURE 2 | Robust expression of ChR2 on transverse section histology

and verification of electrode placement. (A) AAV5-hSyn-ChR2-EYFP
injection into the medial septum (MS) produced robust ChR2-EYFP
expression (green). Axons from the MS express along the
septohippocampal pathway (S-H) and into the hippocampus (H). Scale
1 mm. (B) Similarly, injection of AAV2-CaMKIIα-ChR2-mCherry into the
dorsal hippocampus (red) selectively expressed in the pyramidal cell layer
and their projecting axons/dendrites. The NeuroNexus array implantation
site was localized alongside the pyramidal cell layer (shaded gray).
Distortion is a result of histologic processing. Scale 0.5 mm (C) TDT arrays
in the dorsal hippocampus were localized by tracking their passage (white
arrows) and endpoints (red arrows). Note the axons from the MS (green)
expressing ChR2-EYFP surrounding the pyramidal cell layer (yellow arrow)
and the electrode array. Scale 200 mm.

were generated using seven tapers (T = 4 W = 1) and a 4 s long
moving window iterating at 0.5 s. This wide temporal window
resulted in some temporal blurring of the stimulation onset and
offset into the non-stimulation epochs, but allowed us to more
precisely resolve the frequency domain. A clear increase in power
in the spectrum corresponding to the stimulation frequency was
apparent during the stimulation epoch as compared to the pre-
and post-stimulus epochs in all cases (Figures 4A,D,G). A spectro-
gram of each case revealed the temporal precision of this response
(Figures 4B,E,H), as well as some of the interactions with power
at other frequencies. In all cases low-frequency (1–10 Hz) power
was reduced as compared to the pre- and post-stimulus epochs,
presumably via stimulation-controlled hijacking of the LFP sig-
nal. Examining the mean autocorrelation lends further support to
this idea: during stimulation in all cases, the signal became highly
correlated at stimulation frequencies (Figures 4C,F,I). At higher
frequencies the oscillatory nature of the LFP response dominated
(Figure 3B), resulting in a highly correlated and almost sinusoidal
signal that indicated the LFP rhythm was largely dominated and
locked to the stimulus frequency and phase.

Aside from increases in power at the stimulation frequency,
there were concomitant increases of power at harmonics of that
frequency. In the case of 7 Hz stimulation, power was also
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FIGURE 3 | Peristimulus average hippocampal LFP responses to

medial septal stimulation reveal the influence of stimulation

parameters on waveform shape. (A) Hippocampal LFP response to
50 mW/mm2, 7 Hz, 10 ms square-wave optical stimulation of the MS

(magenta bar). (B) Responses to stimuli at different frequency (rows),
pulse width (columns), and intensities (blue, green, yellow,
respectively). Lines indicate the mean response and the shaded areas
indicate the SD.

increased at 14 Hz, 21 Hz, and so forth (Figures 4A,B). These har-
monics were neuronal in origin and a part of the response signal,
as they did not arise when we stimulated an AAV5-hSynapsin-
EYFP control animal (Figure 5A). It should also be noted that
the physical distance between the ferrule and the electrode array
(>2 mm) suggests against any photoelectric artifacts, due to the
propensity of light to scatter in neural tissue (Adamantidis et al.,
2007). However, we suspected that these were a result of the Fourier
decomposition of the response waveform, rather than originating
in a separate neuronal process or response. In order to distin-
guish the roles these harmonics play in the signal compared to
the primary response at the stimulation frequency, we systemati-
cally removed the harmonics from the LFP (rmlinesc.m, Chronux;
Bokil et al., 2010). With this algorithm, the time-series signal is
converted to frequency space, and then the spectrum is interpo-
lated across at the defined frequencies, removing significant sine
waves from continuously recorded data without altering phase
properties – as would occur with a notch filter. This has been used

previously to remove the line noise resulting from nearby elec-
tronics and power sources (Viswanathan and Freeman, 2007). As
we progressively removed harmonics from the LFP response to
50 mW/mm2, 7 Hz, 10 ms stimulation, the peristimulus average
became increasingly sinusoidal, centered on the stimulus fre-
quency (Figure 5B). The harmonics therefore play an integral
role in generating the waveform of the LFP pulse response, par-
ticularly as the waveform deviates from the pure sinusoid of the
stimulation frequency.

We next examined the system’s ability to detect hippocam-
pal single-unit responses to medial septal optogenetic stimulation
(Figure 6). NeuroRighter is capable of identifying and sorting
units online (Newman et al., 2013). NeuroRighter can also store
raw data for offline sorting, however, and so to demonstrate this
capability we isolated units offline from 25 kHz sampled data
using Matlab scripts combining wavelet transformation and super-
paramagnetic clustering (wave_clus; Quiroga et al., 2004). Two
example units were analyzed for waveform (Figures 6A,C) and
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FIGURE 4 | Spectral and correlational response to medial septal pulse

stimulation demonstrate time-locked and frequency specific responses.

Stimulation at 50 mW/mm2, 10 ms pulse width, and 7 Hz (A–C), 17 Hz (D–F),
and 35 Hz (G–I) each produced unique and frequency-specific responses in
the spectrum (A,D,G), spectrogram (B,E,H), and autocorrelation (C,F,I) of the

LFP signal time-locked to the stimulation. Blurred edges near stimulus onset
and offset are a result of a wide (4 s) moving window that better resolved the
frequency-specificity of the response. The autocorrelation demonstrates a
highly correlated LFP signal at stimulation time points, suggesting a locking of
oscillatory phase to the stimulus.

mean firing rate (Figures 6B,D) properties before, during, and
after a 50 mW/mm2, 23 Hz, 10 ms stimulus train.

In both cases the mean firing rate increased during the stim-
ulation epoch, as calculated across several trials. The firing rate
returned to baseline for the first unit (Figures 6A,B), whereas the
second unit maintained the new average firing rate during the
post-stimulus epoch (Figures 6C,D). As these are only examples
of the capabilities of NeuroRighter to explore single-unit activity,
this study was not powered to statistically compare these results,
but it was noted that several units demonstrated a trend toward
increased firing rate during the stimulation epoch.

ALTERNATIVE, CUSTOMIZABLE STIMULATION PATTERNS
NeuroRighter is capable of generating complex and customiz-
able stimulation patterns using scripted protocols (Newman et al.,
2013). In order to demonstrate examples of this capability, we
demonstrate how alternative optical stimulation patterns in the
MS could alter hippocampal neural activity in our in vivo septo-
hippocampal axis experiments. The results are presented from the
combined analysis of several trials.

5 Hz jitter
In Figures 4 and 5, each stimulus pulse occurred at the
same frequency during the stimulation epoch, producing a very
frequency-specific increase in power in the hippocampal LFP.
In the first experiment in alternative stimulation patterns, we
introduced a jitter in the interpulse interval based on a random

normal distribution of ±5 Hz surrounding the arbitrarily exam-
ined stimulus frequency of 23 Hz (Figure 7A). The resulting
50 mW/mm2, 10 ms pulsed stimulus produced similar depolar-
ization/hyperpolarization responses to that of the fixed-frequency
pulsed stimulation, as seen in the peristimulus averages generated
(Figure 7B), but notable differences were observed spectrograph-
ically (Figure 7C). First, the response was more broad and
effectively tracked the varying stimulation frequency. This is
reflective of the neural networks ability to track the variability
introduced into to the stimulation signal. This variability may be
more reflective of normal neurologic signals, which rarely have the
frequency-specificity of artificial stimulation. Note that a stimu-
lation harmonic is also apparent, with similar variability as seen
in the primary response signal. The spectrogram also demon-
strates an increase in power across frequencies greater than 25 Hz
during the stimulation, and a concomitant reduction in power at
frequencies less than 10 Hz.

Poisson distribution
In our next example experiment, we stimulated the MS with a
Poisson distribution of 10 ms pulses at 50 mW/mm2, generated
at an average frequency of 23 Hz independent of the previous
stimuli (Figure 7D). A similarly stereotyped peristimulus aver-
age response was observed (Figure 7E). However, the increase in
spectral power was much broader than that generated by fixed or
jittered-frequency stimulation (Figure 7F). A smear of increased
power was observed during the stimulation epoch, extending
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FIGURE 5 | Harmonic deconstruction demonstrates their participation in

non-oscillatory dynamics of the hippocampal pulse response to medial

septal stimulation. Harmonics and artifacts of stimulation are not present in
control subjects (A). Successively removing the harmonics noted in the

experimental animal (14, 21, 28, 35, and 42 Hz) results in an increasingly
sinusoidal response waveform – as demonstrated in the peristimulus average
(B). The harmonics are consequently necessary for the non-sinusoidal
aspects of the original response waveform.

from ∼15–70 Hz, peaking at the stimulation frequency average
of ∼23 Hz. Also observed was a reduced impact on low-frequency
(<10 Hz) power as compared to fixed and jittered stimulation
pulses.

Cross-frequency stimulation
Cross-frequency interactions, such as those between theta and
gamma frequencies, are thought to play an important role in
neural processing, such as perception and memory (Jensen and
Colgin, 2007). In order to try and artificially generate a theta–
gamma coupled state, we stimulated the MS at 50 mW/mm2 with
four 10 ms pulses at 42 Hz with the cycle occurring at a frequency
of 7 Hz (Figure 7G). This produced a highly sinusoidal pattern in

the LFP, as demonstrated by the peristimulus average (Figure 7H)
and consistent with what has been observed previously (Figure 3).
Spectral analysis demonstrated a complex response dominated by
power bands at 7 and 42 Hz (Figure 7I). Harmonics of the 7 Hz
response were visible, but the amplitude varied considerably and
in a pattern unlike that previously encountered (Figures 4 and 5).
It is likely that constructive and destructive interference between
the harmonics of the 7 and 42 Hz components of the response are
responsible for the particular patterning observed.

Continuous sinusoidal
Continuous optical stimuli, as opposed to pulsed stimuli, can
introduce stimulus currents that better mimic natural synaptic
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FIGURE 6 | Hippocampal single unit firing rates increase in response to

optical stimulation of the MS. Mean firing rates for two single units (A,C)

identified from 50 mW/mm2, 23 Hz, 10 ms stimulation trials. Mean firing
rate (B,D) tended to increase during the stimulation period. In the second
case (C), the increase in firing rate remained increased during the
post-stimulation epoch (D).

bombardment (Tchumatchenko et al., 2013). Therefore, we also
explored stimulating with a continuous 23 Hz sinusoidal signal
(Figure 7J). The average response was more sinusoidal than fixed
frequency (Figure 7K). As in other stimulation cases, power was
largely concentrated at the stimulus frequency as well, with a
reduced harmonic component as compared to the fixed-frequency
pulses (Figure 7L). Intriguingly, this stimulation pattern seemed
to alter the LFP at frequencies other than just the stimulation fre-
quency, with stimulation onset correlating with a consolidation of
power at theta frequencies into two discrete bands as calculated
across several trials.

VALIDATION OF HIPPOCAMPAL RESPONSE TO PULSATILE
STIMULATION PATTERNS IN THE HIPPOCAMPUS
In our second example experiment, we explored stimulation and
recording from the same site, namely, the dorsal hippocampus
(Figure 2B). NeuroRighter is compatible with a wide variety of
electrode configurations, as evidenced in our use of the combined
NeuroNexus array and optical ferrule in this example (Figure 1J).
Optically stimulating and electrically recording in the same loca-
tion does possess a significant caveat, in the form of optically
induced artifacts on the recording electrodes (Ayling et al., 2009;
Han et al., 2009; Cardin et al., 2010) that must be separated from
the true neurologic signal. This has long been a problem with
electrical stimulation and recording, where the multi-fold dif-
ference between the stimulation and recording regimes readily
obscures or saturates the signal (Wagenaar and Potter, 2002; Rol-
ston et al., 2010a). The photoelectrochemical artifact, or Becquerel
effect (Khurram and Seymour, 2013), is not of the same magni-
tude; it is typically on the same order as the electrophysiologic

signal. However, these artifacts still pose a potential problem – can
they be separated from the underlying neural signal in order to
resolve the LFP and single-unit responses to optical stimulation?

We first set out to characterize the artifact in vivo, and then
to separate the artifact from the underlying electrophysiologic
signals (Figure 8). Stimulating in non-ChR2-expressing cortical
tissue, we were able to define the stereotypical artifact wave-
form at 10, 30, and 50 mW/mm2, which appeared in the LFP as
charge/discharge depolarization/hyperpolarizations at the begin-
ning and end of the stimulus pulses (Figure 8A, red). We
did not note DC offsets as seen by Cardin et al. (2010), per-
haps due to our particular ground and reference configurations.
The electrodes also possessed an iridium oxide coating, as this
had been indicated by NeuroNexus Tech (personal communi-
cation) to potentially reduce optically induced artifacts. Note
that as the intensity increased, so too did the artifact amplitude,
but otherwise the waveform was largely stereotyped in appear-
ance. The immediacy, with which these artifacts appeared, as
well as the steps we took to prevent optically induced artifacts,
suggests that they were actually a result of direct electrical cou-
pling. Since these were unobserved on the TDT microwire arrays
and the impedance values between the arrays were similar, we
suspect that they resulted from the 21 mm ribbon cable attach-
ing the electrode shank to the Omnetics connector. The cable
could be acting as an antenna, picking up the driving current
to the LED, and amplifying this noise alongside the neurologic
signal.

In the ChR2-expressing regions of the LFP of the dorsal hip-
pocampus (Figure 8A, gray), a delayed LFP response to the
stimulation was apparent along with the artifact, peaking approx-
imately 11 ms after stimulus onset. Note that this LFP waveform
response was only observed in the ChR2-expressing hippocampus
(gray) not in the cortex (red). Similarly to medial septal stimu-
lation (Figure 4), these responses generated an increase in LFP
power at the stimulation frequency (Figure 8A, bottom). How-
ever, the artifact is still present in the recorded signal. Of note, the
artifact, based on its properties in the cortex, is of much smaller
amplitude than the neural response. While it could be ignored,
it would be unclear whether the changes in spectral power were
resulting from the artifact, or the electrophysiological response.
Isolating and removing the artifact, therefore, would better reflect
the neural response to stimulation.

In order to remove the artifact, we assumed that the artifact
would not significantly change between non-expressing tissue and
expressing tissue. The distance between the ferrule and the elec-
trodes was fixed during construction (Figures 1J,K), and assuming
the light-scattering properties of cortical and hippocampal tissue
are similar, photo-induced artifacts would largely be the same
within the two regions. Furthermore, electrical coupling between
the ribbon cable and the LED stimulation input signal would
not be expected to differ between the cortex and hippocampus.
Thus, to remove the artifact signal offline, we subtracted the mean
artifact recorded in the cortex – where there was no ChR2 expres-
sion – from the LFP recording in the hippocampus (Figure 8B).
As the neurophysiologic response was much larger amplitude than
the artifact, little appreciable change in spectrographic power was
noted (Figure 8B, bottom).
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FIGURE 7 | Hippocampal LFP response to alternative, customizable

optical stimulation patterns in the MS. (A–C) Jittering the frequency of
50 mW/mm2, 10 ms stimulation pulses ±5 Hz within a normal distribution
centered on 23 Hz (A) produced a peristimulus average waveform (B) similar
to fixed-frequency simulation (Figure 3), but with temporal variance in the
peak response frequency during stimulation (C). This stimulation reduced the
power at frequencies <10 Hz. (D–F) Poisson 50 mW/mm2 10 ms pulses
generated with a frequency of 23 Hz (D) demonstrated a similar LFP
peristimulus average response (E) and a broadband increase in power that did

not influence <10 Hz power (F). (G–I) Four 50 mW/mm2, 42 Hz, 10 ms
pulses generated at a 7 Hz burst frequency (G) produced a sinusoidal
peristimulus waveform (H) similar to constant 42 Hz stimulation (Figure 3).
Harmonics of the 7 Hz oscillation widely varied in amplitude (I), likely due to
constructive and destructive interference between the 42 and 7 Hz
stimulation response signals. (J–L) Continuous sinusoidal oscillation
(J) generated a sinusoidal peristimulus average (K), of lower amplitude than
pulsed stimulation. Power was concentrated at the stimulus frequency
(L), with reduced harmonic power.

While the artifacts in the LFP were readily identifiable from
the underlying neurophysiologic signal, the single-unit responses
proved difficult to resolve. While common median referencing
was employed to attempt to improve the signal to noise ratio of
the action potentials (Rolston et al., 2009a), it remained difficult
to distinguish true single-units from artifacts. This is demon-
strated in (Figures 8C–F), wherein a unit believed to be real,
and a unit believed to be an artifactual response, are presented.
The first detected unit (Figures 8C,D) had a basal firing rate pre-
ceding the stimulus that increased during the stimulation epoch
in successive trials. The second detected unit (Figures 8E,F) also
increased its firing rate during the stimulus, and appeared to be
largely locked to stimulus onset. However, the latter unit failed
to be detected outside of the stimulation epoch, and despite the
favorable appearance of its waveform, appeared to have been con-
sequent to high-pass filtering of the stimulation artifact on this

electrode. Without an accompanying intracellular waveform, or
a tetrode-based identification scheme, it remains very difficult to
clearly define a unit in this fashion. This is particularly a problem
if the unit only appears during stimulation, and is locked to the
stimulation frequency.

CLOSED-LOOP STIMULATION
We used NeuroRighter for closed-loop stimulation of MS in
which the hippocampal theta-rhythm was used as a control sig-
nal to trigger the stimulation of the MS. The control system
was implemented using a dynamic link library (DLL) based
on the NeuroRighter application programming interface (API;
Newman et al., 2013). The API contains a set of tools for inter-
acting with NeuroRighter’s input and output streams. In this
framework the DLL accesses the NeuroRighter data servers, per-
forms computation on the neural data, and then generates and
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FIGURE 8 | Stimulation and recording within the hippocampus with a

combined NeuroNexus array and ferrule produced a neurologic response

and stimulation artifacts. The dorsal hippocampus was stimulated with a
combined array and ferrule (Figure 1J) with 35 Hz, 10 ms pulses at 10, 30, and
50 mW/mm2. Artifacts of stimulation (A, red) that were intensity-dependent
were characterized in the cortex during implantation. The peristimulus average
of the hippocampal LFP (A, top) and spectrogram (A, bottom) thus reflect a

combination of a neural response and stimulation artifact. We removed the
mean artifact from each stimulation time point (B), which revealed the effect
of the artifact was negligible relative to the neural response. An example
single unit (C) increased in firing rate during stimulation (D), and returned to
basal firing rate post-stimulus. In contrast, (E) demonstrates an artifact from
the stimulation signal that resembles a single unit waveform, whose “firing
rate” was locked to the stimulation frequency (F).

introduces stimulation protocols into the stimulation servers,
enabling real-time and closed-loop functionality. Latency is largely
determined by the called hardware and software – NeuroR-
ighter’s double-buffered StimSrv output had a response latency
of 46.9 ± 3.1 ms – but this was reducible to 7–9 ms with
alternative triggers, stimulation hardware, and less-complex out-
puts (Newman et al., 2013). Our implementation made use of
StimSrv, which we found to be fast enough for most of our
closed-loop requirements, and nicely integrated with the exist-
ing LFP data stream without significant hardware or software
complexity4.

The LFPs from the 16 channel microelectrode array were sam-
pled by the API and analyzed in this fashion to estimate the power
spectral density of theta oscillations (6–10 Hz, Figure 9A) over
time, relative to the total power of the signal in each time win-
dow. The power spectral density was estimated using the signal
processing libraries of the Accord.net framework; an open-source
framework for building machine learning and signal processing
applications. When the normalized theta power dropped below a
defined threshold (3.4%) on four or more channels a predefined

4The custom dll file is available at https://sites.google.com/site/neurorighter/share

stimulation profile (50 mW/mm2, 35 Hz, 10 ms for 30 s) was gen-
erated and sent to the NeuroRighter stimulation servers. These
stimulation parameters were chosen for their ease of spectro-
graphic identification, rather than the neurologic or waveform
properties. The stimulation parameters and threshold can be
adjusted in run-time through a graphical user interface. This
arbitrarily designed example closed-loop experiment was effective
in generating readily identifiable 35 Hz oscillations in the hip-
pocampal CA3 LFP (Figure 9B), also demonstrated as increase in
power at 35 Hz in the spectrogram following detection (Figure 9C,
magenta arrow). Note that during the stimulation the DLL ignored
all low-power theta detections, instead stimulating for a predefined
period and pattern.

DISCUSSION
NeuroRighter has been demonstrated to be an adept and versatile
platform for real-time, in vivo awake and behaving experiments
with optogenetic neuromodulation and electrophysiologic record-
ings. It is capable of open- and closed-loop optical stimulation in a
wide variety of user-defined patterns, and provides single-unit and
LFP outputs, which are easily and readily analyzed. Through our
proof-of-concept experiments and analyses we have demonstrated
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FIGURE 9 | Closed-loop stimulation of the MS in response to decreased

theta power. A closed-loop DLL program examined theta power (6–10 Hz,
C, black dotted lines) for decreases in theta power below 3.4% of normal
(A, black). When this occurred on four or more channels (magenta bar), it
triggered a 30 s 50 mW/mm2, 35 Hz, 10 ms stimulus in the MS. These
pulses (B, magenta bars) drove a 35 Hz oscillation in the hippocampal CA3
LFP (B) that was readily identifiable in the spectrogram (C, magenta arrow).

the capabilities of this system, its potential application in sev-
eral different custom experimental paradigms, and suggest future
endeavors that are worthy of exploration.

As we suspected, the parameters of square-wave optical stimu-
lation in our medial septal stimulation experiments had a signif-
icant impact on response waveform properties (Figure 3). As we
are stimulating in the MS and recording in the hippocampus, the
LFP responses we detected were likely the result of post-synaptic
potentials generated via medial septal axons (Buzsáki et al., 2012).
At higher stimulation frequencies the response became increas-
ingly sinusoidal and decreased in amplitude. There has long been
evidence that ChR-2-infected neurons have difficulty following
stimulation patterns at >40 Hz (Yizhar et al., 2011). A decrease
in LFP response amplitude might therefore be assumed at fre-
quencies >40 Hz as a result of less reliable spike generation: fewer
neurons are following the stimulus and generating action poten-
tials, so the signal conducted to the hippocampus – manifested
in the hippocampal post-synaptic LFP – is reduced. However,

the stimulation frequencies we explored are within this experi-
mentally determined acceptable window. We hypothesize instead
that the pattern of decreasing amplitude with increasing stimu-
lation frequency is instead a consequence of the photocycle of
ChR2. ChR2 is believed to possess a four-stage photocycle con-
sisting of two open states with different ion conductances, and
two closed states (Berndt et al., 2010). The first open state, which
is triggered by sudden light intensity changes, results in the non-
specific conduction of several ionic species. The second open state,
which occurs with prolonged illumination, follows the first open
state and is associated with a decrease in the total conductance, in
part due to increased selectivity for H+ ions, as well as the accu-
mulation of channels in non-conducting states. The waveform
response properties we observed may then be a result of similar
accumulation of ChR2 channels in these non-conducting states,
whereas low-frequency stimulation is able to more maximally acti-
vate a recycled and conductive population of light-sensitive ion
channels. This hypothesis also provides an explanation for the
observation that longer pulse widths tended to alter the time-to-
peak responses with different intensities. With short pulse widths
the primary conductive mediator would be the first, fast open
state. With longer pulse widths the second, slower conducting
open state could come into play, delaying the time-to-peak with a
later contribution to the response waveform. Computer modeling
of these dynamics could provide more quantitative hypotheses
that would better reveal the influence of stimulation parame-
ters on these responses, as well as greater insight into the ChR2
channel.

The large influence of stimulation parameters on the response
waveform in these characterization experiments suggest that care
must be taken in experimental design. Intensity will influence the
volume of neural tissue activated, as has been modeled (Adaman-
tidis et al., 2007), but the frequency and pulse width of the
stimulation may also influence its impact. Longer pulse widths
may induce multiple response action potentials, and also provide
more time for the light to convert ChR2 channels into the open
and conducting state. In our experiments this produced a higher
amplitude response in the downstream LFP at frequencies <35 Hz.
At higher frequencies the amplitude of the waveform was indepen-
dent of intensity and the waveform was sinusoidal. The duty cycle
and intensity of the stimulus are consequently both highly influ-
ence the waveform response, and should be carefully chosen based
on the desired output.

In addition, alternative temporal patterns of stimulation can
also influence the neural response. Increasingly, alternative stim-
ulation patterns are being explored for use in clinical deep
brain stimulation therapies (Brocker et al., 2013). Indeed, the
regimented frequency-specificity of our existing therapies and
experiments appear quite artificial when compared with the natu-
ral oscillations within these neural circuits. Alternative stimulation
patterns that better approximate neurologic signals, such as those
presented here (Figure 7), may prove more effective in elicit-
ing behavioral and experimental outcomes. Normal physiologic
rhythms do not tend to have the frequency or phase specificity of
artificial stimulation, and more varied stimuli may consequently
affect neural networks differently. Poisson stimulation patterns
may better reflect the stochastic firing patterns of neurons and
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in some cases may prove more effective that constant-frequency
stimulation (Quinkert et al., 2010; Wyckhuys et al., 2010). Cross-
frequency coupling has a role in spatial memory (Shirvalkar et al.,
2010), and sinusoidal stimulation could provide less synchronizing
input to the neural network.

The artifacts of optical stimulation that we and others have
observed (Figure 8), while of significantly less magnitude than
equivalent electrical stimulation artifacts, do obscure and poten-
tially influence the underlying neurophysiologic activity. In our
hands these artifacts have proven very array-dependent, and others
have suggested some mechanisms for reducing and removing them
(Cardin et al., 2010). As they can prove quite insidious, leading to
false detections as single units, robust methods for preventing,
defining, and removing such artifacts will be necessary to limit
improper conclusions.

The NeuroRighter platform provides a low-cost, open-source,
real-time solution for optogenetic neuromodulation and multi-
electrode electrophysiology in awake and behaving animals. It is
readily customizable to a number of applications, including open-
and closed-loop experimentation with a variety of stimulation
patterns, recording electrodes, and behavioral tasks.
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