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Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices 
has been proposed as a strategy for achieving natural motor control and sensory perception 
of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-
electrode arrays placed in the brain and peripheral nerves have been used successfully to convey 
neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, 
axonopathy and excessive infl ammation currently limit their long-term use. Here we demonstrate 
that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, 
after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural 
recordings and to enhance long-term interfacing of nerve activity. Non-restrictive electrode 
arrays placed in the path of regenerating nerve fi bers allowed the recording of action potentials 
as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some 
animals, and with minimal infl ammation at the nerve tissue-metal electrode interface. Our 
fi ndings suggest that regenerative multi-electrode arrays of open design allow early and stable 
interfacing of neural activity from amputated peripheral nerves and might contribute towards 
conveying full neural control and sensory feedback to users of robotic prosthetic devices.
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Different types of multi-electrode arrays have been developed 
to obtain high spatial and temporal resolution sampling of motor 
neuronal activity (reviewed by Cheung, 2007). Unfortunately, irre-
spective of the probe design, current electrodes provide limited 
long-term effi cacy due to progressive reduction in the number 
of active sites over time. This reduction is presumably a result of 
poor tissue-electrode interface, tissue damage by probe micro-
motion within the soft nerve tissue, and electrode insulation due 
to tissue scar formation (Biran et al., 2005, 2007; Leung et al., 
2008; Williams et al., 2007). These limitations obligate the need 
for neurointerface recalibration prior to each recording session 
and gradual increase in the voltage needed to maintain neural 
responses over time, which in turn raise the risk of electrolytic 
tissue damage and further compromise the long-term stability of 
the neurointerface.

Regenerative sieve electrodes were proposed more than three 
decades ago as a viable alternative to interface motor and sensory 
nerve fi bers (Dario et al., 1998; Edell et al., 1982; Mannard et al., 
1974), and have been shown to be useful in obtaining neural record-
ings after long-term (i.e., 2–6 months) implantation (Klinge et al., 
2001; Lago et al., 2007; Panetsos et al., 2008). Unfortunately, neural 
activity seems to be obtained only from a fraction of the animals 
tested, and only a low proportion of the electrodes on the sieve seem 
to provide recordable signals (Lago et al., 2005). Furthermore, the 
initial functional recovery reported in implanted animals worsens 
over time, which seems to be caused by compressive axonopathy due 
to mechanical injury and the inability of the ring-electrode design to 
accommodate the normal increase in axon size during maturation 
and re-myelination (Castro et al., 2008; Lago et al., 2007).

INTRODUCTION
Over 1.7 million people suffer from limb loss in the United States 
and this number is estimated to increase by 185,000 a year for 
upper extremity loss alone (Owings and Kozak, 1998). Interfacing 
advanced robotic prosthetic devices with the nervous system of 
amputees offers the possibility of functionally replacing their miss-
ing limbs by enabling them to naturally control and feel a bionic 
substitute. Robotic limb replacement for chronic amputees has been 
recently achieved using electromyographic signals obtained from 
reinervated targeted chest muscles to control the robotic prosthesis 
(Hijjawi et al., 2006; Miller et al., 2008).

This approach successfully provides gross voluntary control of 
the prosthetic limb, but offers limited incorporation of sensory 
feedback to the nerve needed for precise control and natural sensa-
tion of the artifi cial limb. Regenerated arm sensation overlaps with 
chest sensations, and when elicited by either touch or electrical 
stimulation, conveys referred sensations of large areas or multiple 
disparate sensations across the hand (Kuiken et al., 2007). This 
limitation obligates the users to rely on visual feedback to move 
and position their prosthetic limbs, which places a cognitive bur-
den on the use of such devices. Recent compelling evidence has 
demonstrated that voluntary movement of robotic prosthetic limbs 
can be achieved with dexterity by extracting planned movement 
information from the motor cerebral cortex or the peripheral nerve 
via multi-electrode array neurointerfaces (Hochberg et al., 2006; 
Normann, 2007). Moreover, sensory feedback can also be directly 
conveyed to amputees via electrical microstimulation of the sensory 
cortex (Fitzsimmons et al., 2007) or peripheral nerves (Dhillon and 
Horch, 2005; Normann, 2007).
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The present study tested the hypothesis that multi-electrode 
arrays placed in the path of regenerating nerve fi bers with mini-
mal or no restriction to the regenerative process, would provide 
improved neural interfaces to the amputated peripheral nervous 
system. We demonstrate that non-obstructive regenerative neu-
rointerfaces can be used to successfully obtain early neural record-
ings and to enhance long-term electrophysiological recordings from 
acutely or chronically amputated nerves.

MATERIALS AND METHODS
MULTI-ELECTRODE ARRAY NERVE GUIDE
Custom-made fl oating arrays with 18-pin Parylene-C insulated 
platinum/iridium electrodes were used (150–250 kohm impedance 
at 1 kHz, Microprobes Inc, MD, USA). Individual electrodes were 
approximately 50 µm in diameter at the shank, varied in height 
(0.5–0.9 mm with 2 µm active tips), and were placed 400 µm apart 
to maximize contact with the regenerating nerve fi bers. The array 
cable was fabricated from Palylene-C insulated 25 µm gold wires 
wound in helix and coated with MDX4-4210 silicone elastomer 
and was 17 cm in length. Microarrays were placed in the lumen 
of polyurethane nerve guide tubes prior to implantation (Micro-
Renathane®, Braintree Scientifi c, Inc; OD 3 mm, ID 1.75 mm, and 
7 mm in length). The entire assembly was sterilized and the lumen 
fi lled with collagen I/III (0.3% Chemicon, Tamacula, CA, USA) 
prior to surgery (Figure 1A).

ANIMAL SURGERY
Eighteen adult Lewis rats (150–250 kg), divided in four groups, 
were used in this study: Non-injured controls (I; n = 4), acutely 
implanted animals after sciatic nerve injury with either a simple 
tube (II; n = 4) or the electrode array nerve guide (III; n = 5), and 
animals implanted with the electrode nerve guide after chronic 
sciatic nerve injury (IV; n = 5). The animals were anaesthetized 
(ketamine/medetomidine, 87 mg/kg i.p.) before being subjected to 
sciatic nerve transection injury. After acute (same day; Figure 1C) 
or chronic (180 days later; Figure 1D) nerve injury, the multi-
 electrode nerve guide was implanted and sutured at proximal and 
distal ends leaving a nerve gap of approximately 5 mm. The array 
was then connected to an 18-pin headcap (Omnetics Connection 
Co.) via subcutaneous gold microwires (Figure 1B). To model 
chronic nerve amputation and limb loss, the sciatic nerve that nor-
mally innervates the gastrocnemious, tibial, and common peroneal 
muscles was transected and sutured to the biceps femoris (abnor-
mal target), 6 months prior to implantation of the neural interface. 
Animals were placed in cages with soft cellu-dri bedding and kept 
in a humidity/temperature controlled room with a 12-h light/dark 
cycle with food and water ad libitum. Animal care and surgical pro-
cedures were performed in accordance to the Institutional Animal 
Care and Use Committee at UT Southwestern Medical Center.

ELECTROPHYSIOLOGY
Neural activity was recorded weekly for 45 min in freely moving 
animals with a 16-channel recorder with the capacity to record 
from 64 neurons simultaneously (i.e. 4 per channel at 25 s pre-
cision and 40 kHz resolution). The recorded signals were ampli-
fi ed and digitized by a multichannel acquisition processor (MAP; 
Plexon Inc, Dallas) according to published methodology (Nicolelis, 

2003). Visual inspection of the analog signal on the oscilloscope 
and the digitized 16-channel MAPs were used to identify events 
above the noise level that were then recorded and further proc-
essed using a Data Offl ine Spike Sorter program (OFSS, Plexon) 
to isolate single units from the noise by 3-component Principal 
Component Analysis. All the channels had independent control 
over gain, notch fi lters and reference to maximize the extraction 
of information from the neuronal activity. Sorted waveforms were 
further analyzed using NeuroExplorer/Spike Histogram Software 
(Nex Technologies, Littelton, MA, USA) to evaluate changes in the 
pattern of fi ring (bursting or spiking) of the regenerated axons.

BEHAVIORAL ANALYSIS
Sensory and motor tests to ascertain functional recovery were per-
formed as previously described (Romero et al., 2000). Briefl y, nocic-
eptive function was evaluated by eliciting foot withdrawal response 
after noxious heat stimulation using the Ugo Basile plantar device. 
The infrared thermal probe was positioned under the plantar sur-
face of the paw to apply incremental heat to a maximum of 55°C 
for 20 s. The paw withdraw latency was measured twice at 10-min 
intervals. A paw licking response elicited by the thermal stimula-
tion was also scored as either present or absent. A toe spreading 
assay was also performed as reported to evaluate motor function 
recovery (Romero et al., 2007). The extent of toe spread was ana-
lyzed by measuring the distance between the fi rst and fi fth toes 
bilaterally, and the toe spread index estimated by calculating the 
ratio of injured-to-non-injured sides.

HISTOLOGY
Animals were euthanized at 21–240 days after implantation accord-
ing to multi-electrode array function (median = 58 days). The 
sciatic nerve was carefully dissected and fi xed overnight in 4% 
paraformaldehyde. The multi-electrode array was then carefully 
removed, the proximal and distal ends of the nerve were labeled, 
and the tissue processed for paraffi n embedding. Serial 4 µm sec-
tions were obtained and immunostained for specifi c markers for 
Schwann cells (polyclonal anti-S100 1:300; DAKO Z0311), neurons 
(mouse anti-200 KD Neurofi lament Protein 1:300; Dako M0762, 
rabbit anti-β-tubulin 1:500 and anti-calcitonin gene-related peptide 
1:1500; Chemicon Int.), activated macrophages (mouse anti-ED1 
1:50; Chemicon Int.) and myelin (anti-MBP; 1:50; Chemicon Int.). 
Tissue sections from all experimental groups were processed simul-
taneously using identical incubating solutions. Immunodetection 
of these markers was visualized by DAB used as an HRP substrate. 
Mayers-Hematoxylin treatment followed by ammonia water was 
used as a counter-stain. For immunofl uorsecence studies, the 
deparaffi nized sections were blocked with 5% normal goat serum 
incubated overnight with the primary antibodies, and reacted with 
Cy2 Goat anti-Rabbit 1:250, Cy3 and Cy2 Goat anti-Mouse 1:500; 
Cy3 Goat anti-Rat 1:400 (Jackson labs) for visualization. Sections 
were mounted using Vectashield containing the nuclear label DAPI 
(Molecular Probes).

DIGITAL IMAGE ANALYSIS
The proximity of regenerating axons to the surface electrode was 
evaluated from NFP-stained sections at 40× magnifi cation using 
light microscopy. The distance from the electrode shaft and  nearest 
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axon per electrode was measured using the Axiovision analysis 
software (Axiovision Inc). The extent of infl ammation near the 
electrodes was also determined by measuring the length of ED1 
immunoreactivity in four different quadrants (x–x′; y–y′) around 
the circular area of each electrode as visualized from the stained 
horizontal sections. Data was obtained from 5–17 electrodes per 
animal. To determine the extent of nerve regeneration through 
the electrode nerve guide, the regenerated nerve obtained from 

animals with acute implantation of the array were immulolabeled 
for β-tubulin and measured in triplicate for optical densitometry 
in areas approximately 1 mm proximal and distal from the array.

STATISTICAL ANALYSIS
All data were reported as the mean and the standard error of the 
mean (SEM). An unpaired Student’s t-test was used to determine 
statistical differences. In multiple group comparisons, one-way 

FIGURE 1 | Multi-electrode array nerve implants. (A) Illustration of the 
electrode array nerve guide and head cap connection. Schematic 
representation of the acute and chronic injury/implantation paradigm [(B) arrow 
indicates denervation induced atrophy of the normal target muscle]. (C) Top 
view of the 18 pin multi-electrode array mounted in a tubular nerve guide (top 
removed for clarity). The length of the electrodes varied from 0.5–0.9 mm, 

with the taller ones placed in the center of the array (insert). (D) Photograph 
of the regenerated nerve through the electrode-conduit assembly in an 
acute animal 3 weeks post-implantation. (E) Photograph showing the 
perforations left by the MEA in a chronic injured implanted animal (arrows in 
insert) and (F) through a collagen-fi lled tube. Scale bar = 2 mm (C), 5 mm (D) 
and 800 µm (E).
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ANOVA was used followed by Neuman-Keuls multiple compari-
son post hoc evaluation (Prism 4, GraphPad). p-Values ≤ 0.05 were 
considered signifi cant.

RESULTS
Nerve regeneration was observed in all animals along the multi-
electrode nerve guide; both after acute implantation or after graft-
ing onto chronically amputated nerves. In most animals (8/10) 
the regenerated tissue covered the nerve guide lumen (Figure 1D), 
whereas in two animals the regenerated tissue was found partially 
covering the multi-electrode array (i.e., the tips of the larger elec-
trodes were exposed as the regenerated nerve did not fi ll the lumen 
of the tube). Several weeks (4–12) after implantation, the entire 
nerve guide including the electrode base was found to be encap-
sulated by vascularized fi brous tissue. Dissection of the fi brotic 
tissue and removal of the array revealed normal healing and tissue 
regeneration through the electrode array (Figure 1E), which was 
comparable with those animals with simple tubularization repairs 
(Figure 1F), indicating that the placement of the electrodes in the 
lumen of the nerve guide did not drastically hamper the nerve 
regenerative process.

To directly demonstrate axonal regeneration through the 
multi-electrode nerve guide, paraffi n sections of the regenerated 
tissue at proximal, middle, and distal levels of the nerve guide 
were immunolabeled for the specifi c neuronal marker β- tubulin. 
Representative sections from animals either implanted at the 
time of injury (Figures 2A–C), or after chronic nerve amputation 
(Figures 2D–F) showed abundant axons of normal morphology 
circumventing the electrodes at the middle of the array and into 
the distal nerve stump, demonstrating that regenerating neurons 
successfully traversed the multi-electrode array placed in the 
lumen of the nerve guide. Quantifi cation of nerve  regeneration 

through the electrode nerve guide as determined by β-tubulin 
densitometry at the proximal and distal ends of the regenerate, 
indicated that 64.58 ± 7.42% of the axons were able to transverse 
the electrode array in animals with acute nerve injuries. The cause 
of reduced nerve regeneration in the distal tissue of chronically 
amputated animals (Figure 2F) is unclear. However, it might 
refl ect the reported diminished capacity of neurons to regenerate 
after chronic denervation (Fu and Gordon, 1995).

Regenerating axons visualized by immunodetection of the neu-
rofi lament protein (NFP) revealed nerve fi ber growth in close 
proximity to the electrodes. On average, axons were found to 
be closer to the electrode shafts in the acute repaired animals 
(12.13 ± 3.03 µm), compared to those that received the implant 
after several weeks of nerve amputation (28.28 ± 12.18 µm). 
Axonal profi les were also found to be separated from the elec-
trodes by a well organized three to eight cell layer (Figures 3A,B), 
suggesting some degree of tissue encapsulation of the foreign 
body.

We confi rmed that Schwann cells were localized along the regen-
erated axons by the co-localization of β-tubulin with S-100 near 
the electrodes (Figures 3C,D). We then evaluated whether nerve 
regeneration across the multi-electrode nerve guide was success-
ful for both small diameter unmyelinated fi bers as well as large 
diameter myelinated axons. Tissue sections were stained for the 
visualization of a specifi c marker for myelinated axons; myelin 
basic protein (MBP; Figure 3E), and that of TrkA+ nociceptive 
pain fi bers; calcitonin gene-related peptide (CGRP; Figure 3F). The 
results indicated that both types of neurons, likely sensory and 
motor axons, were able to regenerate in near proximity to the active 
recording sites of the array. Furthermore, visualization of nodes of 
Ranvier near the electrodes suggested normal myelination of the 
regenerated nerve fi bers.

FIGURE 2 | Nerve regeneration through the multi-electrode array. Specifi c neuronal labeling by β-tubulin immunostaining (green) demonstrates axonal 
regeneration around the electrodes (asterisks) in both acute (A–C) and chronic (D–F) injured nerves. DAPI (blue) counter staining. Scale bar = 50 µm.
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LIMITED MACROPHAGE ACTIVATION AT THE ELECTRODE-TISSUE 
INTERFACE
The presence of cells at the tissue-electrode interface suggested 
some degree of infl ammation. To evaluate such response we visu-
alized activated macrophages by immunodetection of the specifi c 
ED-1 marker at both horizontal and coronal planes (Figure 4A). 
Qualitative analysis revealed a relatively low number of macro-
phages in the area directly in contact with the electrodes, which 
marked precisely the localization of the electrodes in the regen-
erated tissue (Figures 4B,C). The accumulation of macrophages 
around the electrodes was consistent in all animals and limited to 
two to fi ve cell layers at the bio-abio interface. Quantifi cation of the 

infl ammation area as determined by the length of ED-1 immuno-
reactivity from the electrode surface to the last positive cell in cross 
section, revealed a slightly but signifi cantly larger infl ammation 
around the multi-electrode array in chronically injured animals 
(30 ± 1 µm) compared to those implanted at the time of injury 
(20 ± 5 µm; Figure 4D).

To determine if the presence of activated macrophages affected 
axonal growth or re-myelination, we evaluated the co-localization 
of ED-1 with NFP and MBP, respectively. As shown in Figure 5, 
after acute (Figures 5A,B) or chronic (Figures 5C,D) injury to the 
nerve, regenerated axons were separated from the electrodes by a 
layer of macrophages. However, ED-1/MBP co-staining  suggested 

FIGURE 3 | Regeneration of myelinated and unmyelinated fi bers. 
Neurofi lament immunostaining labeled axons regenerating around the shaft of 
the electrodes [asterisks (A,B)]. Schwann cells (S-100+) were visualized along 
regenerated axons [β-tubulin+ (C,D)]. Both myelinated [(E) MBP+; red] 

and unmyelinated (pain) fi bers [(F) CGRP+; green] were visualized in 
close proximity to the electrodes (dotted line). Nodes of Ranvier were 
observed near the electrodes [arrows in (E)]. Scale bars = 50 µm (A,C) and 
25 µm (B,D–F).
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normal myelination of axons adjacent to the ED-1 positive cells 
(Figure 5B) as indicated by the normal nerve morphology despite 
the presence of the infl ammatory cells. Together, the histological 
data demonstrate nerve regeneration across a guide deploying an 
array of 18 needle electrodes with no evidence of tissue damage 
or axonal compression, and with minimal infl ammation at the 
tissue-electrode interface.

REGENERATIVE NEUROINTERFACES REVEALED EARLY AND STABLE 
NEURAL ACTIVITY
We successfully recorded from 7/10 animals and were able to detect 
neural activity at most of the active sites, in some cases for more 
than 3 months after implantation. Spontaneous neural activity 
from the regenerated peripheral neurons was obtained as early as 
8 days post-implantation. A total of six units from four electrodes 
were recorded at this very early time of regeneration. The signal to 
noise ratio was estimated to be 6:1 with a mean background noise 
of 300 µV and neuron action potential amplitudes ranging from 0.3 
to 1 mV. Figure 6 shows examples of single (Figure 6A) and multi-
unit activity (Figure 6C) isolated either after acute injury (Figures 
6A–D) or after 223 days of nerve amputation (Figures 6G,H). The 
earliest recording was obtained 1 week after implantation, where 
one of the animals showed single units with typical extracellular 
signal shapes in 5/16 electrodes, and multi-unit detection in two 

additional electrodes. Principal component analysis was used to 
identify distinct 3D spatial cluster distribution neural activity and 
confi rm the presence of separate action potentials within a multi-
unit detection. As expected, neural activity was elicited upon vol-
untary movement or evoked by thermal or mechanical (i.e., Von 
Frey fi lament and joint stretch) sensory stimulation (Figures 6B,C). 
With time, an increasing trend in the number of active recording 
sites was apparent in most animals, likely refl ecting an increasing 
number of regenerated axons. However, in some of the electrodes, 
the ability to record single unit spiking decreased after a few weeks 
(Figure 6G vs. Figure 6H).

FUNCTIONAL RECOVERY IN END-TO-END NEUROINTERFACES
The amount of nerve regeneration observed through the regenera-
tive neurointerface suggested that the multi-electrode array might 
have allowed target reinnervation and functional recovery after 
implantation into the peripheral nerve. In order to confi rm this 
possibility, we evaluated motor functional recovery in a cohort of 
animals in which the array was acutely implanted into short nerve 
gaps with preserved normal target innervations, and compared to 
those in which nerve reinnervaton was prevented. We evaluated 
the ability of the implanted animals to recover refl ex-elicited toe 
abduction as estimated by the injured-to-non-injured toe spread 
index (TSI). Compared to normal animals in which toe extension 
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FIGURE 4 | Minimal infl ammation elicited by the multi-electrode array. 
(A) Schematic of the multi-electrode array mounted in the nerve guide showing 
the sectioning planes (a-horizontal; b-coronal) used for analysis. Representative 
coronal (B) and horizontal (C) tissue sections show highly localized ED-1 

immunolabeling around the electrodes. (D) Quantifi cation of ED-1+ cellular 
thickness in such areas revealed a slight but signifi cant increase in the 
infl ammatory response of animals with chronic nerve injuries compared to acute 
implanted animals. Scale bars = 100 µm (B) and 50 µm (C). NF = nerve fascicle.
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was similar in both paws of control animals (Figures 7A,D), injured 
animals in which nerve regeneration to their original target was 
prevented by connecting the transected nerve to an aberrant muscle 
(i.e., bicep femoris), showed “claw” toes and approximately 70% 
reduction in toe extension (Figures 7B,D). Conversely, animals in 
which the multi-electrode array was used to repair an acute gap 
injury with normal target innervations (i.e., gastrocnemious mus-
cle) recovered their motor function as indicated by the signifi cant 
improvement in toe spreading compared to denervated animals 
(Figures 7C,D; p ≤ 0.03). This data correlated with the presence of 
acetylcholine receptors in the neuromuscular junctions of the gas-
trocnemius muscle (data not shown). In addition, pain perception 
in these animals was evaluated by eliciting a paw licking response 
after exposure of the plantar surface to a noxious thermal stimulus. 
As expected, injured animals in which normal target reinnervation 
was prevented showed no sensory response with a paw withdrawal 
latency (PWL) of 17.45 ± 1.41 s, compared to non-injured con-
trols (PWL = 10.23 ± 0.97 s). In contrast, animals with end-to-end 
repairs showed a licking behavior comparable to that observed in 
non-injured animals with PWL responses of 8.75 ± 2.02 s in the 
implanted limb. The data is consistent with the notion that inter-
facing the peripheral nerve with non-obstructive multi-electrode 
arrays would allow them to reconnect with their original target 
organs and to mediate functional recovery. However, it does not 
completely rule out the possibility of a behavioral response elicited 
by stimulation of the saphenous nerve in some of the animals.

DISCUSSION
Neural control of robotic prosthesis has progressed dramatically 
in recent years with animal and clinical studies demonstrating the 
feasibility of voluntary motor neural control of artifi cial limbs 
(Hochberg et al., 2006; Lebedev and Nicolelis, 2006; Normann, 
2007). However, developing a stable and long-lasting neurointerface 
that would allow for specifi c multichannel recording/stimulation 
remains to be achieved (Navarro et al., 2005). Edell et al. (1982) 
exploited the natural ability of peripheral nerves for spontane-
ous regeneration to develop a sieve multi-electrode array aimed at 
providing improved neurointerfacing. Unfortunately, only a small 
fraction of regenerating axons, mostly sensory in nature, appears 
to be able to grow through the sieve electrode. In addition, the 
long-term use of this neurointerface is limited due to compression 
axonopathy and distal degeneration (Castro et al., 2008).

Here we report that peripheral nerves, whether acutely injured 
or implanted after months of chronic amputation, can be inter-
faced early by enticing them to grow in close proximity to elec-
trodes placed in a tridimensional open regenerative setting. This 
was demonstrated by the ability to record 300–1000 µV action 
potentials as early as 8 days post-implantation in this study. The 
obtained recorded neural activity seemed larger and more read-
ily available compared to those reported using sieve electrodes 
(i.e., 100–200 µV with early recordings obtained at 29 days post-
implantation) (Mensinger et al., 2000). Action potential ampli-
tudes, however, are known to vary greatly depending on the type 

FIGURE 5 | Activated macrophages at the nerve-electrode interface. Animals 
implanted at the time of injury (A,B) or 6 months after nerve amputation (C,D), 
showed axonal regeneration and the immune response elicited by the electrodes 

as indicated by the co-labeling of axons [β-tubulin (A,C) and MBP (B,D)] and 
activated macrophages (ED-1+) at the tissue-electrode interface, both near the tip 
(A,C) or the base (B,D) of the electrode shaft. Scale bar = 50 µm.
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of electrodes and the recorded tissue. Michigan electrodes have 
recorded amplitudes ranging from 50–800 µV in brain (Vetter et al., 
2004). In the peripheral nerve the recorded action potentials range 
from 150–600 µV in early reports of regenerative interfaces using 
the sieve electrode (Edell et al., 1982), 15–300 µV using the Utah 
multi-electrode arrays (Vetter et al., 2004), and 20–40 µV using 
intrafascicular electrodes (Dhillon et al., 2004).

We favor the interpretation that the increased signal amplitude 
in our study results from axons regenerating in close proximity to 
the electrodes, as it is well known that extracellular depolarization 
amplitude falls over the square of distance. This notion is supported 
by the following observations: First, the multi-electrode array did not 

seem to obstruct nerve regeneration as axons readily grew through 
the array circumventing the electrodes, and functional recovery was 
achieved if implants were connected distally to their appropriate 
target organs. Second, the number of active electrodes increased over 
time reaching stability in number within the fi rst 3 weeks, correlat-
ing with the time needed for axonal regeneration through the nerve 
guide. Third, neural recordings were obtained as early as 1 week after 
implantation of the electrode array in animals with either acute injury 
or 5–6 months after nerve amputation. Fourth, minimal infl amma-
tion was observed at the neuron/electrode interface.

Despite such indications, the early neural signals recorded in 
this study progressively reduced in amplitude over time, suggesting 

FIGURE 6 | Neural activity recorded from freely moving animals. Single 
(A,B) and multiple (C) spike activity could be detected in both acute (A–C) 
and chronic (G) injured animals as early as 8 days post-implantation. The 
amplitude of the neural spike varied in both types of animals [compared 
(A) vs. (B) and (B) vs. (G)]. Identifi cation of separate units was confi rmed 

by principal component analysis and 3-D cluster plot (C–E). Spike 
frequency is shown in (F). Overall, the amplitude of neural activity 
recorded at the same electrode at 8 days (G) and 48 days (H) of 
implantation showed attenuation of signal overtime. X scale = 100 µV and 
Y scale = 100 µs.
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that factors such as electrode insulation by activated macrophages 
and myelination, need to be minimized in order to increase further 
the sensitivity and long-term stability of regenerative peripheral 
nerve interfaces.

LIMITING THE FOREIGN BODY RESPONSE TO THE METAL ELECTRODES
A discrete cell layer of activated macrophages was found adjacent 
to the metal electrodes in this study, extending over a 35 and 65 µm 
radius in the acute and chronically injured animals, respectively. The 
observed infl ammatory response elicited by the electrodes seems 
reduced compared to those in brain recordings using convention-
ally tethered silicon microarrays and in the peripheral nerve using 
chronically implanted indwelling multi-electrode arrays. In the brain, 
ED1+ reactive cells are known to extend over a 100–250 µm radius 
from the electrodes (Biran et al., 2007) and in the PNS approximately 
430 µm of collagen are deposited at the base of the array and 34 µm 
at the electrode shaft (Branner et al., 2004; Lago et al., 2007). The 
limited infl ammation observed in the present study might be related 
to the formation of a nerve/electrode array monolithic structure 
resulting from the fi brotic encapsulation of the implant, which is 

less  susceptible to use-related damage due to tethering forces and 
mechanical damage normally associated to all the indwelling elec-
trodes (Polikov et al., 2005). Therefore, macrophage activation in the 
present study seems likely to be evoked primarily by a foreign body 
response at the bio-abio interface. Overcoming this limitation will 
likely require the incorporation of strategies aimed at increasing the 
biocompatibility of the metal electrodes. In that line of thought, it has 
been recently reported that coating metal electrodes with the extra-
cellular matrix protein laminin, signifi cantly reduces macrophage 
activation in rat brain tissue (He et al., 2006). Thus, similar strategies 
might offer a viable alternative to further reduce the infl ammation 
elicited by the multi-electrode array in the transected peripheral 
nerve. While standard immunossupresion techniques can be incor-
porated to minimize the immunological response to the electrodes 
(Kim and Martin, 2006; Polikov et al., 2005), they are also likely to 
interfere with the regenerative process.

ALTERNATIVE REGENERATIVE ELECTRODE ARRAY DESIGNS
Here we demonstrate that electrode arrays which do not restrict 
the growth of the regenerating nerve fi bers offer a viable 
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 alternative for neurointerfacing amputated peripheral nerves. 
Although we used needle-shape multi-electrodes in this study, 
tissue  penetration is obviously not required during nerve regen-
eration. Therefore, alternative electrode designs such as fi bers, 
pillars,  cylinders, semicircles, or spirals, might represent a better 
alternative for developing more sensitive regenerative neurointer-
faces as they might better incorporate the necessary character-
istics to amplify the amplitude of the recorded nerve signals as 
predicted by mathematical simulation studies (Fitzgerald et al., 
2008; Loeb et al., 1977).

Both sensitivity and long-term stability of the neurointerface 
can potentially be further enhanced by the incorporation of neu-
rotrophic factors (Rejali et al., 2007; Seymour and Kipke, 2007; 
Yamagata et al., 2004), and coating the metal electrode with con-
ductive polymers (Ludwig et al., 2006; Richardson et al., 2007) or 
nanomaterials (Wang et al., 2006; Yu et al., 2007). We and others 
have demonstrated that pristine (Galvan-Garcia et al., 2007) or 
chemically modifi ed (Mattson et al., 2000; Ni et al., 2005) carbon 
nanotubes (CNTs) can serve as enticing material for neural growth 
and as viable substrates for neuron recording and stimulation in 
vitro (Lovat et al., 2005; Mazzatenta et al., 2007). Recently, Keefer 
et al. (2008) have demonstrated that electroplating platinum elec-
trodes with CNTs-gold or CNTs-polypyrrole signifi cantly enhances 
the electrical characteristics of the electrodes by decreasing the 
impedance and increasing the sensitivity and charge storage capac-
ity. Thus, it is likely that future electrode designs that incorporate 
biological and nanomaterial components will provide improved 
electrical properties in capacitance, and signal-to-noise ratio, which 
will further improve the sensitivity and long-term stability of either 
peripheral or central neural interfaces.

As with other reports using wired peripheral neurointerfaces, 
most failures in this study were found to be due to breaks in the 
wire either at the junction with the multi-electrode array or at 
the head connector. Moreover, the subcutaneous wiring and head 
cap were areas commonly associated with irritation and infec-
tion, which also limited the survival times for some animals in 
this study. The development of polyimide thin-fi lm electrode 
arrays (Clements et al., 2007) and wireless neurointerfaces bear 
great promise in obviating some of these limitations and allow-
ing the stable recording/stimulation of long-term preparations 
(Ghovanloo and Najafi , 2007).

In summary, our fi ndings indicate that non-obstructive regen-
erative multi-electrode arrays can guide nerve regeneration in close 
proximity to their active recording sites, eliciting minimal infl am-
mation and providing early and relatively stable neurointerfacing 
to both acute and chronic injured peripheral nerves. Such proper-
ties might be advantageous in providing neural control and func-
tional feedback information to users of robotic prosthetic devices. 
In addition, functional target reinnervation in end-to-end acute 
neurointerfacing suggests that regenerative electrode arrays might 
be useful for applications in which chronic neurostimulation and 
preservation of the normal target innervation (i.e., pain manage-
ment and bladder control restoration) is desired.
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