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Flow is a highly motivated and affectively positive state in which a person is deeply

engaged in an activity and feeling enjoyment from it. In collaborative activities, it

would be optimal if all participants were in a state of flow. However, flow states

fluctuate amongst individuals due to differences in the dynamics of motivation and

cognition. To explore the possibility that inter-brain synchronization can provide a

quantitative measure of the convergence and divergence of collective motivational

dynamics, we conducted a pilot study to investigate the relationship between inter-brain

synchronization and the interpersonal similarity of flow state dynamics during the

collaborative learning process. In two English as a Foreign Language (EFL) classes,

students were divided into groups of three-four and seated at desks facing each

other while conducting a 60-min group work. In both classes, two groups with four

members were randomly selected, and their medial prefrontal neural activities were

measured simultaneously using wireless functional near-infrared spectroscopy (fNIRS)

devices. Later the participants observed their own activities on recorded videos and

retrospectively rated their subjective degree of flow state on a seven-point scale for

each 2-min period. For the pairs of students whose neural activities were measured, the

similarity of their flow experience dynamics was evaluated by the temporal correlation

between their flow ratings. Prefrontal inter-brain synchronization of the same student

pairs during group work was evaluated using wavelet transform coherence. Statistical

analyses revealed that: (1) flow dynamics were significantly more similar for the

student pairs within the same group compared to the pairs of students assigned

across different groups; (2) prefrontal inter-brain synchronization in the relatively short

time scale (9.3–13.9 s) was significantly higher for the within-group pairs than for

the cross-group pairs; and (3) the prefrontal inter-brain synchronization at the same

short time scale was significantly and positively correlated with the similarity of flow
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dynamics, even after controlling for the effects of within- vs. cross-group pair types from

the two variables. These suggest that inter-brain synchronization can indeed provide

a quantitative measure for converging and diverging collective motivational dynamics

during collaborative learning, with higher inter-brain synchronization corresponding to a

more convergent flow experience.

Keywords: shared flow, inter-brain synchronization, fNIRS hyperscanning, collaborative learning, engagement,

dynamics

INTRODUCTION

In psychology, flow is a state of deeply and energetically
engaging in and enjoying an activity at hand (Csikszentmihalyi,
1997). People generally experience flow when: (1) the perceived
challenge of an activity is high and in balance with their own
capacities or skills; (2) they receive immediate feedback about
how well they are doing; and (3) the goal is clear. Flow is also
linked to intrinsic motivation, which is instrumental in achieving
various goals (Deci and Ryan, 2000). In education, in addition to
the challenge-skill balance, the experience of flow is promoted by
active participation rather than passive reception of information
(Shernoff et al., 2003). Flow experience in learning can also
improve a students’ psychological well-being, perceived learning,
satisfaction, and learning performance (Rossin et al., 2009; Steele
and Fullagar, 2009; Landhäußer and Keller, 2012; Buil et al.,
2019).

In group learning, such as in classrooms, teachers find it
optimal when the entire class functions together in the state of
flow, being in synch with one another (Kent, 2013). However,
the degree of flow fluctuates from moment to moment and
varies among learners. The cause of divergent flow dynamics
between learners can be due to some students being distracted,
not sufficiently engaged, or perceiving the task at hand to be too
difficult or too easy for their capabilities. Whatever the cause, if
convergence and divergence of flow experience between learners
can be detected using an objective measure, it may help to achieve
optimal educational situations. For example, if a detection system
identifies a student in a collaborative learning project who
diverges from the other group members in terms of their flow
state, the teacher can be alerted to instigate countermeasures,
such as guiding the student to focus more, or changing the
group composition to make the members’ capability levels more
compatible with one another. Alternatively, giving feedback on
shared flow dynamics to the learners themselves could facilitate
behavioral changes that lead to better collaborations.

Recently, the hyperscanning technique, in which the brain
activity of multiple people is simultaneously recorded, has been
increasingly applied to objectively characterize a wide range of
social interactions (Nam et al., 2020). Hyperscanning studies
on natural verbal communications have shown that inter-
brain synchronization between communication partners reflects
various aspects of communication, such as the existence of
face-to-face communication (Jiang et al., 2012; Nozawa et al.,
2016), emergence of leader-follower relationships (Jiang et al.,
2015), and agreement vs. disagreement (Hirsch et al., 2021).

Specifically, studies on real educational classroom settings using
electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS) hyperscanning have shown that inter-
brain synchronization is associated with higher engagement
amongst students (Yamamoto et al., 2015; Dikker et al., 2017;
Bevilacqua et al., 2018; Brockington et al., 2018). Based on these
results, we hypothesized that the convergence and divergence
of dynamically changing flow states between learners could also
be associated with inter-brain synchronization between learners,
with those pairs who share flow dynamics showing higher inter-
brain synchronization.

To test our hypothesis, we applied fNIRS hyperscanning
to real active learning activities held in English as a Foreign
Language (EFL) class at a university in Japan, and investigated
the relationship between the similarity of flow dynamics between
learners and their medial prefrontal inter-brain synchronization.
The medial prefrontal cortex (mPFC) has been implicated in
social cognition and communication (Gilbert et al., 2006; Suda
et al., 2010), and inter-brain synchronization in the mPFC
has been shown to reflect different communication modes and
quality (Nozawa et al., 2016; Liu et al., 2019). In addition,
the mPFC is easily accessible for the wireless fNIRS recording
(see Methods). We targeted a collaborative group learning
setting because group dynamics and shared engagement are
especially important in collaborative learning (Järvelä et al.,
2010). Furthermore, the division into groups enabled us to
compare within-group and cross-group learning pairs. This
approach allowed us to test the following hypotheses: (1) flow
dynamics are more convergent (i.e., temporally more correlated)
between members of the same group who work together
than between learners belonging to different groups; (2) inter-
brain synchronization is higher between group members, who
collaborate with each other, than between cross-group learners
who share the same class but do not directly collaborate; and
(3) the higher the inter-brain synchronization between a pair of
learners, the more similar their dynamics of experienced flow
would be; thus, inter-brain synchronization would provide an
objective indicator of shared flow dynamics.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Ethics Committee of Tohoku
University Graduate School of Medicine and was conducted in
accordance with the Declaration of Helsinki. All participants
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were briefed on the experimental procedure and provided written
informed consent prior to participating in the experiments.

Participants
Two English as foreign language (EFL) active learning classes at
the Kyoto University of Foreign Studies, Japan, participated in
this study. The two classes consisted of 1st- or 2nd-grade students
(27 in one class and 29 in the other). Among them, 16 students
(age 19–22 years; 11 females and five males) were subjected to
the fNIRS measurement and the retrospective evaluation of flow
dynamics (see section fNIRS Brain Activity Measurements).

Experimental Procedures
In each class, students were divided into groups of four or three
members and seated at desks facing each other (Figure 1A).
In the preparation phase, students were asked to read and
understand the script of a speech by Steve Jobs. They then
watched a video of the actual speech given by Steve Jobs to
deepen their understanding of their reading. Subsequently, they
conducted a 60-min group study session, which consisted of four
group work activities (GW1-4): GW1 “Connecting the Dots,”
they picked out important events from Jobs’ personal history and
created connected dots of his life; GW2 “Reading a supplemental
article,” in turn they read aloud a supplemental text on college
dropout in the U.S.; GW3 “Linking Readings One and Two,” they
synthesized information from the two readings and completed
a worksheet together; and GW4 “Evaluative Discussion,” they
discussed college dropout in Japan, comparing different opinions
and making judgments. The task switch timings between the four
group activities were the same across the groups in each class,
but the pacing within each activity was decided by each group.
The group work activities were video-recorded for the later
retrospective evaluation (see section Retrospective Evaluation of
Subjective Flow Dynamics).

fNIRS Brain Activity Measurements
In each of the two classes, we randomly selected two groups of
four members and simultaneously recorded their brain activities
throughout the group work. Gender constitution of the four
groups were: four females; three females and one male; three
females and one male; and one female and three females. We
measured the neural activities of the mPFC in eight students
using a wireless continuous-wave fNIRS device (Yamamoto et al.,
2015; Nozawa et al., 2016; Ikeda et al., 2017). The fNIRS device
is lightweight (100 g including battery), comfort-to-wear, and
enables the simultaneous measurement of prefrontal neural
activities of interacting people. The optode component of the
device contains one infrared light source (wavelength 810 nm)
and two light detectors at a distance of 1.0 and 3.0 cm from
the light source. Using the modified Beer-Lambert law (Delpy
et al., 1988; Scholkmann et al., 2014), changes in the detected
light intensities were converted to the concentration changes
of total hemoglobin on the optical path of the source-detector.
Signals were sampled at a frequency of 10Hz and transmitted
to a host computer using the ZigBee wireless network protocol.
This system enables the simultaneous measurement of up to 20

individuals. See Nozawa et al. (2016) for more details on the
fNIRS device.

The placement of the fNIRS device followed that of a previous
study (Nozawa et al., 2016). The center of the optode component
was positioned at the center between FP1 and FP2 according
to the international 10-20 system for EEG electrode placement,
which covers the rostral limit of the superior frontal gyrus
(Homan et al., 1987). The light source was placed on the subject’s
left-hand side, a light detector with a 3 cm distance from the
source was on the right-hand side, and a light detector with a 1 cm
distance from the source was placed between them. Any makeup
on the measurement position was removed and hair brushed
away to ensure good optode-skin contact. The optode component
was covered with black rubber to shield it from external light.
The students were instructed to adopt and maintain a relaxed
posture in the seat, and to avoid rapid head movements as much
as possible.

Retrospective Evaluation of Subjective
Flow Dynamics
The 16 students who were subjected to the fNIRS recording
conducted a retrospective evaluation of their subjective flow
dynamics. They were first explained about the concept of flow,
based on the description by Csikszentmihalyi (1997), with flow
described as “a state in which you are so involved in the activity
at hand that nothing else seems to matter. The experience itself
is so enjoyable that you will continue the activity for the sheer
sake of doing it. In this state, you simultaneously experience
concentration, interest, and enjoyment. It is also referred to as
“being in the zone.”” Then, watching the video recording of
themselves performing the group work, they retrospectively rated
their flow level for every 2-min segment on a seven-level scale
from 1 (“very low”) through 4 (“neutral”) to 7 (“very high”). This
resulted in a series of 30 time points of flow level for the 60-min
group work.

Analyses of Flow Dynamics Similarity and
Inter-Brain Synchronization
We calculated the similarity of flow dynamics and prefrontal
inter-brain synchronization for all possible pairs of eight students
in each class (Figure 1B). Thus, we had 24 pairs (6 pairs/group
× 2 groups/class × 2 classes) of students in the same group
(“within-group pairs”) and 32 pairs (4 × 4 pairs/class × 2
classes) of students who belonged to different groups (“cross-
group pairs”).

The similarity of the flow dynamics of each student pair
was evaluated using the Pearson correlation of their flow-
level time series. To enhance the normality of the distribution
of the sample correlation coefficients, Fisher z-transformation
z = arctanh(r) was applied to the coefficients. Then, the
flow dynamics correlation values were compared between the
pair types to test hypothesis (1) that the flow dynamics are
more convergent (i.e., correlation is higher) for the within-group
pairs than for the cross-group pairs. Taking into account the
dependence structure in the pairwise similarity data, we used a
non-parametric permutation test to evaluate the significance of
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FIGURE 1 | (A) Snapshot of a working collaborative learning group with their mPFC activities being measured with wireless fNIRS devices. (B) Illustration of student

pair types. Within-group pairs and cross-group pairs are indicated in red and blue lines, respectively. For visibility, only six out of 16 cross-group pairs are illustrated.
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difference between the pair types (Pesarin and Salmaso, 2010;
Winkler et al., 2015). First, all possible random permutations
re-assigning the eight students into two groups within each
class were generated and combined for the two classes. Then,
the difference of mean similarity values between the within-
group and cross-group pairs for each instance of permutation
was gathered to generate the null distribution. Finally, the p-
value of the observed difference of means was calculated as the
proportion of permutation-based differences at least as extreme
as the observed difference value. Furthermore, the correlation
values were also used to test the relationship between shared flow
dynamics and prefrontal inter-brain synchronization (see below).

The fNIRS signals were preprocessed using MATLAB
(MathWorks Inc.). First, the drift components were removed
from each signal using detrending. Second, wavelet-basedmotion
artifact reduction (Molavi and Dumont, 2012; Brigadoi et al.,
2014), implemented as “hmrMotionCorrectWavelet” function
in the HomER2 toolbox (Huppert et al., 2009), was applied
to correct for spike-like artifacts. Then, dual source-detector
regression (Saager et al., 2011) was applied to regress out
the shallow-tissue signal component, which is dominated by
non-neuronal systemic and motion-related noises and can be
captured by the 1 cm source-detector channel (Fukui et al.,
2003; Strangman et al., 2014), from the 3 cm source-detector
signal that contains both the non-neuronal shallow and
brain-originated deep components, thus extracting the brain-
originated component.

With the neural signals extracted through the preprocessing
steps above, the prefrontal inter-brain synchronization for
each pair of students was calculated using wavelet transform
coherence (WTC) (Torrence and Compo, 1998; Grinsted et al.,
2004). WTC evaluates a localized correlation coefficient in time-
frequency space and is thus suitable for capturing transient and
bi-directional synchronization, which is expected in unstructured
naturalistic communications involving multiple individuals,
such as collaborative learning settings. WTC has been used
in many fNIRS hyperscanning studies to evaluate inter-brain
synchronization (Scholkmann et al., 2013;Minagawa et al., 2018).
For the computation, the cross wavelet and wavelet coherence
toolbox (http://grinsted.github.io/wavelet-coherence/) was used.

For each student pair, inter-brain synchronization at each
Fourier period (inverse of Fourier frequency) was temporally
averaged over the entire duration of the group activities,
except for the time points within the cone of influence to
avoid any contaminating influences from edge effects (Torrence
and Compo, 1998). Cerebral blood flow signals in the time
scales of the so-called low-frequency oscillations (0.01–0.198Hz)
have been shown to produce more reliable estimates of
within-brain neuronal synchronization than higher frequencies
(Zuo et al., 2010). Furthermore, fNIRS signals in shorter
time scales are known to be susceptible to cardiac pulsatory
(0.8–2.5Hz) and respiratory (0.15–0.3Hz) noise components
(Matthews et al., 2008; Lu et al., 2010). Thus, we focused on
inter-brain synchronization in the period range of 6.7–100 s
(equivalent to 0.01–0.15Hz). The temporally averaged inter-
brain synchronization values at each period in this range were
subjected to the same permutation method as above to test

hypothesis (2) that the prefrontal inter-brain synchronization
is higher for within-group pairs than for cross-group pairs.
False discovery rate (FDR) adjustment (Benjamini andHochberg,
1995) was applied for multiple testing of the periods, and the test
results were regarded as significant with q < 0.05.

To test hypothesis (3) that higher prefrontal inter-brain
synchronization is positively associated with more similar
flow dynamics, we conducted a correlation analysis. Based
on the test of hypothesis (2) above, we identified the period
range in which inter-brain synchronization was significantly
higher for within-group than for cross-group pairs (thus
sensitive to the collaborative interaction) as the period of
interest. The inter-brain synchronization values in the period
of interest were averaged for each pair of students and
correlated with the similarity values of flow dynamics. A
non-parametric permutation method was used to evaluate the
significance (p-value) of the correlation. We generated 10,000
random permutations shuffling the students in each class. Each
permutation of subjects produces a possible permutation of pairs.
We tested the significance of the observed correlation against the
null distribution of correlation values between the original inter-
brain synchronization values and the flow dynamics similarities
with the permutated pair labels. Furthermore, we also tested
the correlation between inter-brain synchronization and flow
dynamics after controlling for the effects of within- and cross-
group pair types from the two variables (i.e., partial correlation).

We additionally evaluated the interpersonal synchronization
of the non-neuronal shallow signals that were obtained
from the 1 cm source-detector channel and subjected to the
same preprocessing procedure, except for the dual source-
detector regression. Then, for this interpersonal shallow signal
synchronization, we repeated the same analyses corresponding
to the testing of hypotheses (2) and (3) above. The comparison
of the results with inter-brain synchronization and with
interpersonal shallow signal synchronization helped us to check
whether the obtained inter-brain synchronization results were
indeed of neural origin.

RESULTS

Subjective Flow Dynamics
Figure 2A shows an example of the flow dynamics for a group
of four students. In this group, Student 2’s flow dynamics were
relatively divergent from the othermembers, with lower temporal
correlation values with other members (z1,2 = 0.27, z2,3 = 0.30,
z2,4 = 0.22), compared to the more convergent flow dynamics
between the other three (z1,3 = 0.63, z1,4 = 0.76, z3,4 = 0.54;
Figure 2B).

For hypothesis (1) that flow dynamics would be more
convergent for the within-group pairs than for the cross-group
pairs, we compared the similarity of flow dynamics between
within-group and cross-group pairs. A permutation test showed
that the temporal correlation of flow time series between the
student pairs within the same learning group was significantly
higher than that between the pairs of students assigned across
different learning groups (difference of means = 0.204, 95% CI
= 0.019–0.388, p = 0.036, Cohen’s d = 0.59; Figure 3). This
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FIGURE 2 | (A) Example of retrospectively rated flow dynamics in a group. (B) Flow dynamics similarity values between the members of the same group, evaluated by

Fisher z-transformed temporal correlation.

indicates that the flow dynamics were significantly more similar
for members of the same group than for those in different groups.

Inter-brain Synchronization Within and
Between Groups
For hypothesis (2) that inter-brain synchronization would be
higher for within-group pairs than for cross-group pairs, we
compared the medial prefrontal inter-brain synchronization
between the within-group and cross-group pairs. On average,
a higher inter-brain synchronization was found between the
members of a same groups over a wide range of time scales
(Figure 4). Permutation tests at each Fourier period indicated
that the inter-brain synchronization difference was significant in
the range of periods 9.3–13.9 s (FDR-adjusted q < 0.05). This
indicates that inter-brain synchronization across these time scales
was sensitive to the collaborative interaction. The mean inter-
brain synchronization in this period of interest was used in the
subsequent correlation analyses.

In addition, we compared the non-neuronal interpersonal
shallow signal synchronization from the 1 cm source-detector
channels between the within-group and cross-group pairs. No
significant differences were found in interpersonal shallow signal
synchronization in the period of interest identified above, though
some significant differences were observed across longer time
scales (35.0–44.1 s; Figure 5).

Correlation Between Flow Dynamics
Similarity and Inter-brain Synchronization
Regarding hypothesis (3) that higher prefrontal inter-brain
synchronization is positively associated with more similar flow
dynamics, we tested the correlation between mean inter-brain

synchronization in the period of interest (9.3–13.9 s) and the
similarity in flow dynamics amongst pairs of students. This
revealed a significant positive correlation (r = 0.36, p = 0.004;
Figure 6A). Since both the similarity of flow dynamics and the
inter-brain synchronization were higher for the within-group
than cross-group pairs, this correlation would have been at least
partially mediated by the effects of pair types (within- vs. cross-
group). Therefore, we also tested amodified version of hypothesis
(3), which is orthogonal to hypotheses (1) and (2) by evaluating
the partial correlation between flow dynamics similarity and
inter-brain synchronization after controlling for the effects of
pair types. The result remained significant (r = 0.28, p = 0.022;
Figure 6B), indicating a direct positive association between inter-
brain synchronization and flow dynamics similarity.

Correlation analyses were repeated with the non-neuronal
interpersonal shallow signal synchronization. There were
no significant correlations with flow dynamics similarity
(Figures 7A–D), supporting the neural origin of the observed
association between inter-brain synchronization and shared
flow dynamics.

DISCUSSION

In this study, we analyzed the similarity or sharing of fluctuating
flow experiences and prefrontal inter-brain synchronization
among students in real collaborative learning activities held
in EFL classes in university education. In accordance with
our hypotheses, we found that (1) flow dynamics were more
convergent for the within-group than the cross-group pairs; (2)
prefrontal inter-brain synchronization was higher among group
members who directly collaborated than between cross-group

Frontiers in Neuroergonomics | www.frontiersin.org 6 June 2021 | Volume 2 | Article 686596

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Nozawa et al. Inter-brain Synchrony and Flow Dynamics

-1.0

-0.5

0.0

0.5

1.0

Within-group Cross-group

Pair type

F
lo

w
 d

y
n
a
m

ic
s
 s

im
ila

ri
ty

 

*

FIGURE 3 | Similarity of flow dynamics between pairs of students within the same active-learning group (within-group) vs. across different groups (cross-group).

Asterisk indicates significant difference (p < 0.05) between the pair types.

learners who were just in the same class; and (3) prefrontal inter-
brain synchronization was significantly positively correlated with
the flow dynamics similarity, even after controlling for the
effects of pair types. Below, we discuss the possible mechanisms
and implications of these results, along with limitations and
future directions.

Shared Flow Dynamics in Collaboration
We observed that the temporal correlation of the flow state
fluctuation was higher for the within-group pairs, indicating that
collaborative learning enhanced the sharing of flow dynamics.
Multiple and inter-related processes can lead to shared flow
dynamics in collaborating groups. First, as participants do the
group work together, they face objectively easy and difficult
parts at the same time. This will lead to a temporal alignment
of perceived challenges, especially among group members with
similar skill levels. Furthermore, collaboration leads to the
assimilation of effective skills and perceived challenges between
members. For example, when a task is too difficult for a
student to solve alone, help from other group members can
work as a type of “scaffolding” and effectively boost the
student’s skill level to meet the challenge. In comparison,
even when the task is too easy for one member, helping and

guiding a peer who is having difficulties will pose additional
challenges and make the moment less boring. This kind of
mutual adjustment toward the challenge-skill balance can be a
function of collaborative learning (Watanabe and Swain, 2007;
Storch, 2009; Walker, 2010). In addition, group members share
moments of perceived achievement, and interaction can also
cause emotional contagion (Barsade, 2002), both of which lead
to temporally aligned affective processes. Taken together, the
shared flow dynamics in collaborative learning groups could be
regarded as a signature of high integration and unity between
group members.

We should note that the shared flow dynamics invoked in
this study are based on the existence of temporal fluctuations
in individual flow states and their similarity between learners.
Thus, even if the average flow level of the two learners
was high, the similarity of flow dynamics could have been
low if their fluctuations were not temporally aligned. Our
shared flow dynamics also overlap with the concept of
“group flow.” However, the definition of group flow is
not limited to sharing of individual flow and is more
heterogeneous, with different emphasis on various individual
and collective perspectives depending on the study context
(Pels et al., 2018).

Frontiers in Neuroergonomics | www.frontiersin.org 7 June 2021 | Volume 2 | Article 686596

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Nozawa et al. Inter-brain Synchrony and Flow Dynamics

****************0.28

0.30

0.32

0.34

10 30 100

Period (s)

P
re

fr
o
n
ta

l 
IB

S
 (

W
T

C
 

)

Pair type Within-group Cross-group

FIGURE 4 | Prefrontal inter-brain synchronization (IBS) between pairs of students within the same active-learning group (within-group) and across different groups

(cross-group). Solid lines show the mean and shaded areas the standard error of the mean for each pair type. Asterisks at the bottom indicates periods with a

significant difference (q < 0.05; FDR-adjusted) between the pair types.

Inter-brain Synchronization and Its
Relation to Shared Flow Dynamics
Prefrontal inter-brain synchronization was also higher in the
within-group than in the cross-group pairs. This result is
consistent with previous hyperscanning studies that found
both verbal and non-verbal cooperative interactions enhance
prefrontal inter-brain synchronization between interacting
individuals (Cui et al., 2012; Liu et al., 2016; Nozawa et al.,
2016, 2019; Ikeda et al., 2017; Li et al., 2020; Sun et al., 2020).
The underlying mechanisms for the enhanced inter-brain
synchronization between group members may include the
temporally aligned perception of challenge and achievement,
which were discussed above as the likely processes underlying
shared flow dynamics. In addition, temporal alignment of
more fundamental cognitive processes during collaborative
interactions, such as perception and understanding of each
other’s utterances, mentalizing each other’s thoughts and
intentions, and shared attention to tasks and salient events
during the group activity, could also contribute to higher
inter-brain synchronization within learning groups in high
mutual engagement.

Among the time scales of low frequency oscillations (Zuo
et al., 2010), the inter-brain synchronization differences between

the within-group and cross-group pairs was significant in a

relatively short time scale, overlapping with the so-called “slow-

3” sub-band (0.073–0.198Hz or 5.1–13.7 s), but not in the longer

time scales. This is perhaps not surprising given that the same

group work was carried out in parallel among the groups in
the same class. Furthermore, all the students shared major

cognitive events at longer time scales, such as the switch timings

between group activities (GW1–4), general from-beginning-to-
end progress pattern in each group work, and instructions and

advice given by the teacher to the whole class. On the other hand,

occurrences and timings of more detailed interaction events,
challenges, and their solutions/achievements would have been
more likely to vary among groups, leading to higher within-group
inter-brain synchronization on a shorter time scale.

Finally, we observed that the prefrontal inter-brain
synchronization at the time scale with sensitivity to the
within-group collaborative interaction was significantly and
positively correlated with the similarity of flow dynamics over
the pairs. This remained true even after controlling for the
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mediating effects of the pair types on the two variables, and
thus supports our hypothesis that convergence and divergence
of flow dynamics between learners in collaborative tasks
are reflected in the prefrontal inter-brain synchronization.
From a neuroergonomic viewpoint, our results suggest a
promising possibility of utilizing the prefrontal inter-brain
synchronization for detection of an “isolated learner” in terms
of their flow dynamics within a group (as exemplified in
Figure 2). In addition, prefrontal inter-brain synchronization
could be used for comparative and longitudinal evaluation of
convergent/divergent flow dynamics on a group level. Such
information could help teachers in deciding to take specific
actions to facilitate flow, as well as learners to improve their
manner of collaboration.

Additional analysis revealed that the interpersonal
synchronization of the non-neuronal shallow signals was
significantly higher for the within-group than for the cross-
group pairs in the period range of 35.0–44.1 s. This time scale
was longer than the period of interest (9.3–13.9 s) in which
the significantly enhanced inter-brain synchronization for the
within group was observed. A previous study on the frequency
content of skin blood flow (Söderström et al., 2003) showed

that sympathetic nerve control is involved in oscillations of
skin blood flow signals in the overlapping time scale (“interval
II”; 0.02–0.05Hz or 20–50 s). Consistently, another study
(Kirilina et al., 2013) identified a significant contribution
of the scalp blood flow fluctuations in the forehead at the
corresponding time scale (“A-band”; 0.02–0.04Hz or 25–50 s)
to the forehead fNIRS signals, and called for caution on the
potential influence of sympathetic control. These suggest that the
collaborative interaction induced interpersonal synchronization
in sympathetic nerve regulation. On the other hand, the
interpersonal shallow signal synchronization in either the
shorter or longer time scales revealed no significant correlation
with flow dynamics similarity. These results indicate that the
sharing of flow dynamics is better captured by the interpersonal
synchronization of the prefrontal cortical activities rather than
that of the autonomic blood flow regulation processes.

Limitations and Future Directions
The limitations of this study and possible future research
directions should be noted. First, this study used a relatively
small sample size and a specific activity design for collaborative
learning. It is left for future studies to replicate the current
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results in a wider range of learning situations. In addition, we
conducted the analyses using the student pair or dyad as a unit,
because it is the basic unit whereby the sharing of flow dynamics
and inter-brain synchronization can be defined. (Note that the
statistical dependence structure in the dyadic data has been
controlled for by the subject-based permutation procedures.)
On the other hand, investigating the relationship between
the inter-brain synchronization and shared flow dynamics at
the group level would be interesting since students work as
groups on collaborative learning. For this purpose, a larger
sample with more groups or a repetition of multiple classroom
sessions will be needed. Second, the fNIRS recording site in
this study was limited to the mPFC. It will be meaningful
to shed light on the relationship between the shared flow
dynamics and the inter-brain synchronization in other cortical
areas involved in social cognitions and interaction, such as
the temporoparietal junction, superior temporal gyrus/sulcus,
inferior frontal gyrus and so on. In addition, it would be
more convincing to demonstrate that some areas contribute
to the shared experience, whereas other areas do not. Next,
although the degree of subjective experience sharing and inter-
brain synchronization were correlated, this does not prove
that inter-brain synchronization is the mechanism behind a
shared flow experience. To understand the dynamic process of
sharing flow and to determine how much significant role inter-
brain synchronization plays in the process as “hidden variables”
that cannot be observed externally (Kingsbury and Hong,
2020), simultaneous measurement of behavioral interactions
between learners as well as individual systemic physiological
activities could help. This can lead to the further endeavor of

exploring how informative those peripheral signals could be
in predicting flow and its sharing, and how such information
could be overlapping with or independent from the information
conveyed by inter-brain synchronization. (The video recordings
for retrospective rating of flow dynamics in this study were
limited and uneven in terms of the view coverage and directions
for the target group members, thus not adequate for such
behavioral analysis.) Another remaining issue is the impact of
shared flow on various outcomes in group learning. Recent
studies have begun to elucidate how inter-brain synchronization
captured by EEG and fNIRS hyperscanning correlates with better
team performance in several settings, including visual search
tasks (Szymanski et al., 2017), collaborative problem solving
(Antonenko et al., 2019; Reinero et al., 2021), and learning
success in teacher-student settings (Holper et al., 2013; Pan
et al., 2018, 2020; Liu et al., 2019). However, it remains to be
confirmed whether shared experiences with peers, as marked by
the prefrontal inter-brain synchronization, can inform success or
failure in a learner achieving their goals.

Despite the above limitations, to the best of our knowledge,
this is the first study to demonstrate that prefrontal inter-
brain synchronization during collaborative learning can be an
objective marker for the convergence and divergence of flow
dynamics between learners. In the future, prefrontal inter-
brain synchronization could be used to evaluate the convergent
engagement of students in active group learning tasks, with
proper feedback provided to the teacher or the students
themselves to facilitate further collaboration. The technology
may also be applicable to the detection of left-behind students
in lecture-style learning settings as well as in the promotion of a
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interval, respectively. No significant correlations were observed.

wider range of collaborative activities. We are hoping to extend
this study toward such practical neuroergonomic applications in
the field of education. This pursuit will be benefited from and
contribute to the wide effort to overcome the grand challenges
for neuroergonomics in general, such as the improvement and
combining of sensors, incorporation of advanced analytical
methods and artificial intelligence approaches, development of
design principles and techniques for better user experience, and

consensus building for privacy and ethical issues (Dehais et al.,
2020; Fairclough and Lotte, 2020).
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