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Pain tolerance can be increased by the introduction of an active distraction, such as a

computer game. This effect has been found to be moderated by game demand, i.e.,

increased game demand = higher pain tolerance. A study was performed to classify the

level of game demand and the presence of pain using implicit measures from functional

Near-InfraRed Spectroscopy (fNIRS) and heart rate features from an electrocardiogram

(ECG). Twenty participants played a racing game that was configured to induce low

(Easy) or high (Hard) levels of demand. Both Easy and Hard levels of game demand

were played with or without the presence of experimental pain using the cold pressor

test protocol. Eight channels of fNIRS data were recorded from a montage of frontal and

central-parietal sites located on the midline. Features were generated from these data,

a subset of which were selected for classification using the RELIEFF method. Classifiers

for game demand (Easy vs. Hard) and pain (pain vs. no-pain) were developed using five

methods: Support Vector Machine (SVM), k-Nearest Neighbour (kNN), Naive Bayes (NB)

and Random Forest (RF). These models were validated using a ten fold cross-validation

procedure. The SVM approach using features derived from fNIRS was the only method

that classified game demand at higher than chance levels (accuracy = 0.66, F1 = 0.68).

It was not possible to classify pain vs. no-pain at higher than chance level. The results

demonstrate the viability of utilising fNIRS data to classify levels of game demand and

the difficulty of classifying pain when another task is present.

Keywords: fNIRS, games, pain, ECG, neuroadaptive technology

INTRODUCTION

Awareness of pain and the ability to tolerate pain are influenced by selective attention (Torta
et al., 2017). When attention is directed toward painful stimulation, awareness intensifies and pain
tolerance declines (Bantick et al., 2002; Chayadi andMcConnell, 2019). Conversely, when attention
is distracted by a task unrelated to pain, the perceived intensity of pain declines and increased
connectivity is observed between the default mode network and periaqueductal grey area (Kucyi
et al., 2013). The influence of attention on the experience of pain is explained by a neurocognitive
model with supporting evidence from neuroimaging research (Legrain et al., 2009, 2012).
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This model of attention and pain can be exploited
therapeutically by employing distraction to mitigate patients’
experience of pain (Koller and Goldman, 2012; Williams and
Ishimine, 2016). Neuroimaging research has demonstrated
that distracting stimuli reduce activation in areas associated
with acute pain, e.g., thalamus, somatosensory cortices, insula,
anterior cingulate cortex (Birnie et al., 2017). Distraction
techniques are deployed within paediatric medicine in both
active and passive forms (Nilsson et al., 2013); the former
corresponds to active engagement with task-related activity,
such as a computer game, whereas the latter describes simply
looking at pictures or watching a cartoon. The available
evidence indicates that active forms of distraction are most
effective (Wohlheiter and Dahlquist, 2013; Inan and Inal,
2019), presumably due to engagement of top-down attentional
regulation that prioritises goal-related task stimuli over the
bottom-up attentional processes triggered by the presence of
pain (Legrain et al., 2009).

Technology is a highly effective form of distraction from pain,
particularly Virtual Reality (VR) (Morris et al., 2009; Malloy
and Milling, 2010; Trost et al., 2021) and computer games
(Raudenbush et al., 2009; Jameson et al., 2011; Law et al., 2011).
Technology distracts from painful stimulation by inducing an
intense state of top-down attentional regulation in the player,
which has been called immersion (Jennett et al., 2008) and
flow (Csikszentmihalyi, 1990)—see Michailidis et al. (2018) for
a discussion of both terms. For a game to induce a state of
flow, it is important to consider how the skill level of the player
must be balanced by the demand posed by the game, see Keller
and Landhäußer (2012) for summary. Top-down mechanisms
of attentional engagement are fully engaged and distraction
from pain is maximal when: (a) challenge posed by the task
can be matched by the skills of the person, (b) task goals are
desirable, and (c) feedback on performance is present in an
unambiguous form (Cowley et al., 2019). A systematic series of
studies demonstrated that pain tolerance for experimental pain
was found to increase in a linear fashion with game difficulty
due to increased immersion (Fairclough et al., 2020). However,
the need to sustain balance between challenge and skill places
inherent limits on this relationship. Numerous studies (Richter
et al., 2016) have demonstrated that task-related effort will decline
if the person perceives success likelihood to be low, and this
phenomenon has implications for the ability of a game to distract
from pain. For example, perceived pain intensity decreased with
increased game demand when patients in a burns clinic played
a racing game, however, when game demand was increased to
a level beyond the skill levels of the patients, their ratings of
pain intensity reverted to baseline/no-game levels (Poole et al.,
2014). This study illustrates the problem of using computer
games to mitigate painful experiences. If the individual perceives
the degree of challenge to be too easy or too difficult, top-
down attentional engagement will erode and the game fails to
function as an active distraction from pain. For a computer
game to reliably mitigate the experience of pain, the game must
adapt the level of demand to the skill level of the individual
player, e.g., dynamic difficulty adjustment (DDA) (Zohaib, 2018).
This type of personalised gaming experience can be achieved

by a closed-loop approach to neuroadaptive gaming, wherein
neurophysiological measures are collected (Liu et al., 2009; Ewing
et al., 2016; Fernández et al., 2017) and analysed to create a
real-time model of player state, which is subsequently used to
dynamically adjust game demand to match the skills of the
individual player.

The objective of the current paper is to assess the sensitivity
of fNIRS (functional Near-InfraRed Spectroscopy) to monitor
attentional engagement with game demand and the presence
of pain. fNIRS has been selected as a potential measure for
neuroadaptive gaming in this context for two reasons, firstly,
earlier studies have demonstrated that neurovascular activation,
particularly in the prefrontal cortex, is sensitive to increased
demand during cognitive tasks, specifically: working memory
load (Baker et al., 2018; Meidenbauer et al., 2021), increased
task difficulty (Causse et al., 2017), and flow states when playing
computer games (Harmat et al., 2015; de Sampaio Barros et al.,
2018). Machine learning approaches have been utilised to classify
levels of cognitive demand using laboratory-based (Naseer et al.,
2016; Lu et al., 2020) and real-world tasks (Gateau et al.,
2015; Verdière et al., 2018; Benerradi et al., 2019). There is
also evidence of superior classification performance when using
deep learning techniques (e.g., convolutional/artificial neural
networks) to analyse fNIRS data in this context compared to
classic machine learning approaches (e.g., k-Nearest Neighbours,
Linear Discriminant Models, Support Vector Machine) (Naseer
et al., 2016; Benerradi et al., 2019). Nevertheless, other studies
have also reported superior classification performance using
Support Vector Machines (SVM) (Lu et al., 2020) and Shrinkage
Linear Discriminant Analysis (LDA) (Verdière et al., 2018),
hence there is no clear consensus in the existing research
literature. If fNIRS can distinguish periods of low from high
attentional engagement in real-time, the resulting classification
can be used to adjust the game difficulty upwards or downwards
to sustain a state of flow or immersion.

fNIRS has also been used to measure cortical activation in
response to painful stimulation using both clinical (Gentile et al.,
2020) and non-clinical (Bandeira et al., 2019) groups. A small
number of studies have applied machine learning techniques to
fNIRS data in order to detect the presence of pain. A number of
classification techniques were used to distinguish no-pain control
from electrical pain stimulation using fNIRS data from prefrontal
cortex (Lopez-Martinez et al., 2019), revealing superiority for
a hierarchical Bayesian logistic regression compared to SVM.
Fernandez Rojas et al. (2019) used fNIRS data to distinguish
four types of sensory pain stimulations and found SVM to
deliver high accuracy as a biomarker of pain, e.g., >89%. While
these studies demonstrate the sensitivity of fNIRS to painful
stimulation, it should be noted that classification accuracies were
optimised by using data from a “pure” comparison between a
rest condition and painful stimulation, i.e., no other sensory
or cognitive stimulation is present except for the introduction
of painful stimuli; therefore, it is uncertain whether fNIRS-
based classification of pain would be viable in the presence
of another active task, such as playing a game or any other
simultaneous cognitive activity. If an acceptable classification
of pain can be achieved while the person is engaged with a
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game, a neuroadaptive game using fNIRS would be able to assess
the status of the player with reference to painful experience in
addition to high/low engagement with the game.

An experiment was designed to explore the application
of machine learning techniques to fNIRS data in order to:
(1) classify levels of game demand, and (2) distinguish the
presence of experimental pain from a non-pain condition while
participants are engaged in a concurrent cognitive activity.
The context for our experiment is a real-world application,
i.e., development of a neuroadaptive gaming application for
use in a pain clinic, hence we have deployed a sparse fNIRS
montage, with respect to the number of optodes, to minimise the
implementation requirements of a system that is to be used in a
clinic. As a secondary goal, we wish to explore the sensitivity of
fNIRS with reference to another category of measurement with a
lower level of intrusiveness as a point of comparison; therefore,
we also captured data from an electrocardiogram (ECG) because
heart rate and heart rate variability can also be sensitive to
cognitive demand (Forte et al., 2019) and pain (Koenig et al.,
2014). The sensitivity of features derived from fNIRS and ECG
to game demand and experimental pain were assessed as 20
participants played a racing game at two levels of demand (Easy,
Hard), with and without the cold pressor test. The study utilised
the RELIEFF algorithm (Kononenko et al., 1997) as a process
of feature selection, which has been used in previous fNIRS
research (Biswas et al., 2017; Aydin, 2020). The resulting features
were used to classify game demand and pain using leave one
out cross validation in combination with supervised learning
from four machine learning techniques, namely, Support Vector
Machine (SVM), k-Nearest Neighbour (kNN), naïve Bayes (NB),
and Random Forest (RF).

METHOD

Participants
Data were collected from 20 participants (including 6
participants identifying as females) who were aged between 19
and 29 years (M= 22.75, SD= 3.23). Exclusion criteria included
any history of cardiovascular disease, fainting, seizures, chronic
or current pain, Reynaud’s disease, or diabetes. Participants
who were pregnant or had fractures, open cuts or sores on the
feet or calves were also excluded. Approval for the study was
obtained from the institutional research ethics committee prior
to data collection. All participants were provided with a detailed
Participant Information Sheet and provided written consent in
advance of data collection.

Design
The study was conducted as a within-participants design. All
participants were exposed to two levels of game demand (Easy,
Hard), under two conditions—with or without experimental
pain via the cold-pressor test (CPT). As such, there were four
conditions in the experimental design: Easy game, Hard game,
Easy game+ CPT, Hard game+ CPT. The presentation order of
all four conditions was counterbalanced across participants.

fNIRS Recording
fNIRS data were collected using an Artinis Oxymon Mk III
device using a montage that included two sources and eight
detectors. Four channels were created between one source (Fz)
and four detectors (F1, AFZ, F2, and FCz). This four-channel
configuration was repeated at central-parietal sites, with a source
at CPz and four detectors (CP1, Cz, CP2, and Pz) (see Figure 1).
Table 1 provides the Montreal Neurological Institute (MNI)
coordinates for each source-detector pair [48]. Source optodes
emitted light at 847 and 761 nm wavelengths, with an inter-
optode distance that varied between 2.85 and 3.90 cm when
calculated as a Euclidean distance (see Table 1). The device was
configured to sample at 10Hz, and the Oxysoft data recording
software (Artinis) was used for data capture.

Accelerometer
A Shimmer3TM inertial measurement unit (IMU) was used to
record head movement data via a three-axis accelerometer. This
accelerometer data was used to remove the effects of head
movement from the fNIRS signal (see section Procedure). The
IMU had a sampling rate of 512Hz and was worn over the
fNIRS cap using an elasticated band. The Shimmer3TM band
was positioned around the rear and centre of the head, with the
accelerometer device located just above the inion.

Electrocardiogram
Raw electrocardiogram (ECG) was collected using a Zephyr
BioHarness device, which collected data at a sampling rate of
250Hz. This device was fitted to an elasticated strap and was
worn by the participant under their clothing at the centre of
their chest.

Cold Pressor Test
A bespoke device was created (Dancer Designs) to administer
the Cold Pressor Test (CPT). This device consisted of two
water tanks, pumps, and a thermostat. One tank was designed
for immersion of a limb (in this case, the foot to the depth
of the ankle) during the test. The temperature of the water
in the immersion tank was regulated via a negative control
loop to sustain a constant temperature of 2◦C. The purpose of
the second tank was to “feed” the immersion tank with cold
water in order that temperature in the latter was sustained at
a constant temperature. Participants were instructed to place
a foot in the immersion tank until the sensation of pain was
too uncomfortable to bear. A stopwatch was used to record the
amount of time that the foot remained immersed in the water.

This procedure was repeated for both levels of game demand
experienced by participants in the game + pain condition. It
should be noted that: (1) left and right feet were both used,
allowing participants to alternate limbs between consecutive
tests, (2) on completion of the cold pressor test, participants
immersed the affected limb in a bowl of room temperature water
to help restore normal circulation, and (3) due to the protocol
(see Procedure section), there was an interval of at least 8min
between each application of the CPT to the same foot.
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FIGURE 1 | fNIRS montage with 2 sources (yellow circled) and 8 detectors (blue circled), illustrated with reference to the International 10–20 system (Jasper, 1958).

All channel numbers are indicated in red text.

TABLE 1 | MNI coordinates for the fNIRS montage used during the study with

approximate inter optode distances calculated as euclidean distance (cm).

x y z Distance

Channel 1 Transmitter–Fz 0.312 58.512 66.462 3.82

Receiver–AFZ 0.231 80.771 35.417

Channel 2 Transmitter–Fz 0.312 58.512 66.462 3.02

Receiver–F2 29.514 57.602 59.540

Channel 3 Transmitter–Fz 0.312 58.512 66.462 3.82

Receiver–FCz 0.376 27.390 88.668

Channel 4 Transmitter–Fz 0.312 58.512 66.462 2.85

Receiver–F1 −27.495 56.931 60.342

Channel 5 Transmitter–CPZ 0.386 −47.318 99.432 3.82

Receiver–Cz 0.401 −9.167 100.244

Channel 6 Transmitter–CPZ 0.386 −47.318 99.432 3.90

Receiver–CP2 38.384 −47.073 90.695

Channel 7 Transmitter–CPZ 0.386 −47.318 99.432 3.77

Receiver–Pz 0.325 −81.115 82.615

Channel 8 Transmitter–CPZ 0.386 −47.318 99.432 3.68

Receiver–CP1 −35.515 −47.292 91.315

Racing Game
A racing game called “Space Ribbon” (Onteca Ltd.) was used for
this study, which ran on a MacBook Pro. The game involved
racing against computer-controlled opponents on a twisting track
that floated in space (see Figure 2). The goal of the game was to
win by achieving first position in the race, each of which lasted for
∼180 s. Participants had at least three routes to winning the race:

FIGURE 2 | Screenshot of the racing game used in the study.

(1) superior handling of the vehicle, (2) using the slipstream of
opponents to boost speed, and (3) pick up weapons that could be
activated to temporarily disable opponents. Control of the vehicle
during the game was achieved via a Sony PlayStation controller.
Participants used the left joystick to control the position of the
vehicle and the “X” button to accelerate.

Two levels of game difficulty were created in Space Ribbon
for the purpose of experimentation, which were Easy and
Hard. Game demand was manipulated by a combination of
variables: (i) increasing the number of computerised opponents,
(ii) enhancing the AI of the opponents (i.e., more efficient
manoeuvring and strategic use of weapons), (iii) increasing the
speed of all vehicles in the race, and (iv) increasing themanoeuvre
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FIGURE 3 | Timeline of procedure.

speed of all vehicles. It was expected that all participants would
easily achieve and maintain 1st place position during the Easy
condition, whereas achieving a finishing position in the top four
was highly unlikely during the Hard condition. A pilot test was
performed (N = 5) whereby participants provided a self-reported
ranking of game difficulty to ensure that the lowest ranking was
associated with the Easy settings and the highest ranking was
associated with the Hard settings.

Subjective Questionnaires
Several questionnaires were included in the study to measure
mental workload, motivation, and subjective immersion. The
NASA Task Load Index (TLX) was used as a measure of
subjective mental workload and consisted of six questions
relating to mental demand, physical demand, temporal demand,
performance, effort, and frustration (Hart and Staveland, 1988).
The Motivation scale included eight questions and was derived
from the Dundee State Stress Questionnaire (DSSQ) (Matthews,
2016). The final questionnaire was the Immersive Experience
Questionnaire (IEQ), which was used as a measure of subjective
immersion. The IEQ consisted of a 32-item questionnaire that
related to aspects of gameplay, such as: attentional engagement,
immersive experience, and enjoyment (Jennett et al., 2008). The
IEQ, TLX, andMotivation scales were completed after each of the
four experimental conditions.

Procedure
On arrival at the laboratory, each participant was required to read
an information sheet that explained the experiment procedures
prior to signing a consent form. After consent was obtained,
participants experienced the cold pressor test procedure purely
as a familiarisation exercise, i.e., no data were recorded. They
were subsequently required to perform a demo race of the Space
Ribbon game to familiarise themselves with the game mechanics
and associated controls. After familiarisation with the cold
pressor test and game controls, participants were fitted with the
BioHarness device, and the electrocardiogram signal was checked
by the experimenter. The next phase of the protocol involved
fitting the head cap and Oxymon sensors to the head of the
participant. Once the fNIRS device had been attached and signal
quality checked, the experimenter attached the accelerometer
device to the headcap.

Participants experienced each level of game demand in
accordance with the same procedure (see Figure 3): (1) a 90-s
baseline where participant sat with eyes open, (2) a cold pressor
test with no game, (3) a 90-s baseline, (4) Condition 1 where
Easy or Hard game played with or without cold pressor test,
(5) complete subjective questionnaires—and then this cycle is

repeated for Condition 2, i.e., Easy or Hard game played with or
without cold pressor test. The same cycle shown in Figure 3 was
repeated for Conditions 3 and 4.

The presentation order of all four conditions was
counterbalanced across participants. Half of the participants
experienced the Easy game with and without the cold pressor
test as their first condition followed by the Hard game and vice
versa. The presentation of Game and Game + Pain conditions
were counterbalanced within each level of game demand. With
respect to those games where participants experienced the cold
pressor test, participants were instructed to place their foot in
the immersion tank during the countdown at the beginning of
each game. When the sensation of pain was too uncomfortable
to bear, they removed their foot from the water and continued
to play until the end of the race. When the participants had
completed all four experimental conditions, the fNIRS and other
sensors were removed, they were thanked for their participation
and debriefed.

Signal Processing
The raw ECG signal from the BioHarness was processed
and corrected for artefacts using a bespoke signal processing
algorithm developed within our institution. For a detailed
description, see Dobbins and Fairclough (2018). After artefacts
were identified and corrected, the algorithm calculated heart rate
(HR) from the clean signal.

Several philtres and algorithms were also applied to the fNIRS
data that were developed as a bespoke signal processing pipeline
in MATLAB. In order to determine neurovascular activation in
the target cortices, Optical Density data were converted into
levels of oxygenated haemoglobin (HbO) and deoxygenated
haemoglobin (Hbb), using the modified Beer Lambert Law
(mBLL) (Baker et al., 2014). These data were subsequently
filtered using a 6th Order Chebyshev philtre, with passband edge
frequencies of 0.09 and 0.01Hz for low and high pass filtering;
for discussion on selection of cut-off bands for fNIRS filtering,
see Pinti et al. (2019).

Both fNIRS and accelerometer data were processed using
the Acceleration-BasedMovement Artefact ReductionAlgorithm
(AMARA) (Metz et al., 2015). AMARA detects periods of
movement within an accelerometer signal and then compares
these periods of movement to the fNIRS data. If the moving
standard deviation (MSD) from the fNIRS signal has changed
significantly during the same period that movement has been
detected within the accelerometer signal, these segments of fNIRS
data are marked as artefact segments. Reconstruction of artefact
segments uses forward and backward baseline adjustments
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and interpolation to reconstruct the entire signal to correct
for movement artefacts. After the application of the AMARA
algorithm, the Correlation Based Signal Improvement (CBSI)
algorithm (Cui et al., 2010) was applied to the data. The
application of CBSI effectively renders HbO and Hbb negatively
correlated and only HbO was subsequently used in the analyses.

Feature Extraction
Anumber of statistical heart rate features were extracted from the
processed ECG signal, which were calculated across windows of
8-s and included: average, median, maximum, minimum, range,
and standard deviation.

Features for HbO were also extracted from the 8-s
analysis windows. This 8-s window was selected because the
haemodynamic response takes ∼7-s to reach its maximum
amplitude (Kamran et al., 2016). fNIRS data were recorded
continuously throughout both Easy and Hard games, yielding
a maximum of 23 epochs, i.e., 180 s (total duration of each
game)/8 s (time window for calculation of features). These 23
epochs were utilised in the classification of Easy vs. Hard game
demand alongside 23 epochs of ECG data.

A number of descriptive statistics were generated for HbO
based on the calculations described in Verdière et al. (2018),
including: Mean, Peak, Skew, Variance, and Area Under the
Curve (AUC). As the eight channels of the montage were
split evenly between the Prefrontal and Somatosensory cortex,
associations between the different channels of HbO have also
been investigated. Connectivity features were extracted based on
28 possible connexions between the eight recorded channels,
e.g., Ch1 × Ch2, Ch1 × Ch3, Ch1 × Ch4, Ch1 × Ch5 etc.
Two measures of connectivity were calculated for every 8 s
window, including Pearson’s Correlation Coefficient andWavelet
Coherence. Pearson’s Correlation Coefficient (see equation 1)
is the covariance for two signals, normalised by their standard
deviation. In this equation, x = the values from the first channel
(i.e., Ch1) and y= the values from the second channel (i.e., Ch2).

Pearson
(

x, y
)

=
COV(x,y)

std(x)∗std(y)
(1)

Values fromwavelet coherence (see equation 2) were averaged for
frequencies between 0.3125 and 0.08Hz, as recommended by the
fNIRS literature (Cui et al., 2012; Verdière et al., 2018). In this
equation, S = fNIRS signal, W = wavelet, and x and y = fNIRS
channels (i.e., Ch1 and Ch2) respectively.

R2n (s) =
|S(s−1W

xy
n (s)|

2

S
(

s−1|Wx
n(s)|

2
)

S

(

s−1
∣

∣

∣
W

y
n(s)

∣

∣

∣

2
)

(2)

To create datasets for classification of pain vs. no-pain condition
in both Easy and Hard demand conditions, we required two
data files of the same duration at each level of game demand.
This was a challenge because the duration of the game + pain
condition (i.e., the maximum duration that the participant kept
the foot in the cold water) varied across participants and game
demand. Therefore, it was necessary to reduce the size of the
data file from the no-pain/game only condition to match the

maximum duration that was achieved during the game + pain
condition, both for each level of demand and for each individual
participant. This procedure ensured that data for the pain vs.
no-pain comparison accurately represented a contrast between
playing the game with and without painful stimulation and that
the resulting datasets were balanced.

However, by adopting this technique, we generated
imbalanced labelled datasets for Heart Rate data, i.e., the no-pain
condition was the majority class. Classification of unbalanced
data can lead to bias and incorrect accuracy, as classifiers are
more likely to detect the majority class. A common approach to
address imbalance is to re-sample the dataset by either randomly
under-sampling the majority class, which reduces the dataset
and runs the risk of losing important data, or oversampling
the minority class, which can lead to overfitting (Maimon and
Rokach, 2010). As the dataset was already restricted in size, the
Heart Rate data was oversampled to ensure there were an even
number of datapoints for each of the binary categories. The
data were randomly oversampled using the common Synthetic
Minority Over-sampling Technique (SMOTE) (Chawla et al.,
2002; Fernández et al., 2018).

Feature Selection
To reduce the feature space prior to classification, feature
selection was undertaken using the RELIEFF algorithm
(Kononenko et al., 1997). This algorithm was chosen for its
efficiency and computation simplicity (Urbanowicz et al., 2018),
as well as its usage in fNIRS based BCI research (Aydin, 2020).
The RELIEFF algorithm uses a k nearest neighbour approach to
calculate a weight for each feature, which represents its ability
to distinguish samples between classes and evaluate the quality
of each feature (e.g., Chen et al., 2019). The k value determines
the number of nearest neighbours in relation to the number of
nearest hits (i.e., nearest values in the same class) and misses
(i.e., nearest values in a different class) per class. The resulting
feature weights are sorted in descending order where the feature
with the largest weight is ranked first. The weighted features are
then plotted on a graph, and a cut-off point to select the most
relevant features for classification is determined by the “elbow”
of this graph, i.e., the point at which the feature weights markedly
declines), see Wosiak and Zakrzewska (2018) for example, and
Urbanowicz et al. (2018) for further discussion.

Classification models were constructed using the fNIRS and
HR features to determine, (1) the demand of the game that
the participant was playing (i.e., Easy vs. Hard), (2) if the
participant was experiencing pain whilst playing the game during
the Easy (Pain/No Pain) and (3) Hard (Pain/No Pain) levels of
game demand.

The process of feature selection was undertaken using
MATLAB version R2021a and undertaken independently for
each of these classification conditions. Each dataset was firstly
split into training and testing sets. Using a random selection of
participants, 60% of the participants were used for training and
the remaining 40% for testing. The RELIEFF algorithm was then
applied to the training sets. The value of k to use within RELIEFF
was determined by calculating the square root of the total number
of features. If this calculation resulted in an even number, k was
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increased by one to ensure it was odd, which is common practise
when dealing with a nearest neighbour approach (Islam et al.,
2007). The k-value varied depending on which dataset was used:
all fNIRS datasets used a k-value of 15. The process of randomly
splitting the dataset and applying RELIEFF was repeated ten
times, for each dataset, to ensure the generalisability of the results.

For ease of visualisation, an example of one loop of the
first 100 ranked features for each classification problem [Game
Demand (Easy vs. Hard), Easy game demand and Hard game
demand (Pain vs. No Pain)] have been plotted in Figure 4.
Features were selected with reference to the “elbow” in the
data where the weights trail off (i.e., the marked red circles in
the graph).

For reasons of parity, the RELIEFF algorithm was also applied
to the six features of the HR data using the same process
described above for each classification model (Figure 5). All HR
datasets used a k value of 3.

Classification
The process of classification consisted of comparing parametric
and non-parametric classification algorithms to determine
which produced the highest accuracy for classification of
Easy/Hard game demand and pain/no-pain. Four algorithms
were selected, which were: Support Vector Machine (SVM),
k-Nearest Neighbour (kNN), Naive Bayes (NB), and Random
Forest (RF). These methods were selected on the basis of their
previous applications for fNIRS-based BCI and classification of
experimental pain (Naseer and Hong, 2015; Hong et al., 2018;
Fernandez Rojas et al., 2019; Kwon et al., 2020).

Classification was undertaken using R version 3.6.3 and
the mlr3 package (Lang et al., 2019). In order to obtain an
unbiased estimate of performance, the classification models
were constructed using a nested cross-validation approach that
contains an inner and outer resampling loop (Becker, 2021) (see
Figure 6).

Following the approach set out in Becker (2021) and using
the selected RELIEFF features, the outer resampling loop utilises
a holdout validation approach using the same training/testing
sets that were defined during the feature selection stage. Using
the training set of the outer loop, hyperparameter tuning was
performed by triggering the inner resampling loop, which
used k-fold cross-validation (k = 10) and the grid search
tuning method. In this way, each outer training set generates
one group of designated hyperparameters. Each classification
algorithm is then fitted on each outer training set using the
selected hyperparameters (Becker, 2021). The performance of
each algorithm is then evaluated using the outer test sets. In
order to provide generalisability, this process was repeated ten
times for each classification algorithm (note: the tuning inner
loop was not performed on NB due to the simplicity of the
algorithm). Information regarding the tuned hyperparameters
for each classification can be found within the Appendices

section of this paper.
Each classification method (SVM, kNN, NB, and RF) was

utilised to classify Easy from Hard level of game difficulty using
the selected features from the fNIRS data (see Figure 4). This
analysis was subsequently repeated using selected features from

heart rate (see Figure 5). The classification of pain vs. no-pain
was conducted using all four methods in two separate analyses,
one for Easy game demand and a second using data from Hard
demand game. The fNIRS features selected for both analyses are
listed in Figure 4, and once again, both analyses were repeated
using selected heart rate features (see Figure 5).

The level of game demand was classified using two sets
of features, one derived from fNIRS (Figure 4) and a second
analysis using heart rate features (Figure 5). Four indices of
performance are reported for each classification, each one is
represented by the mean and standard deviation across all
ten loops:

• Accuracy—proportion of true positives and true negatives
from all classifications, calculated as an average

• F1—the harmonic mean of precision and recall, which
represents a robust measure of correctly classified cases

• True Positive Rate (sensitivity)—the proportion of true
positives from all classifications

• True Negative Rate (specificity)—the proportion of true
negatives from all classifications

• Area Under Curve (AUC)—the area under the ROC (Receiver
Operating Characteristic) curve, which is a plot of FPR vs. TPR
at different classification thresholds.

RESULTS

Behavioural and Subjective Data
The CPT time is the total duration (secs) that participants kept
their limb immersed in the cold water and this variable was
used as a behavioural measure of pain tolerance. These data were
subjected to a univariate ANOVA (baseline/no game vs. Easy
demand vs. Hard demand). The baseline data was obtained by
averaging across all four baselines that participants performed
during the experimental protocol. Two participants who kept
their foot in the water for the maximum duration of 180 s in
all three conditions were omitted from this analysis. This model
revealed a significant main effect [F(2, 16) = 9.91, p = 0.05, eta2

= 0.55], Bonferroni tests revealed that baseline CPT times (M =

22.5 s, sd = 9.75) were significantly lower than either of the two
game demand conditions (p < 0.01), but there was no significant
difference between Easy (M= 48.5 s, sd= 35.73) and Hard (M=

74.07 s, sd= 64.11) levels of game demand (p= 0.08).
As a manipulation cheque, we collected subjective measures

of mental workload (TLX), immersion (IEQ), and motivation
(DSSQ). Descriptive statistics are provided in Table 2. All
three scales were subjected to the same 2 (pain/no pain) ×

2 (Easy/Hard demand) ANOVA. The analyses of subjective
workload revealed a significant main effect for demand [F(1, 18)
= 23.51, p < 0.01, eta2 = 0.56] but there was no significant effect
of pain [F(1, 18) = 0.17, p= 0.68]. There was a significant effect of
game demand on subjective immersion [F(1, 18) = 12.42, p< 0.01,
eta2 = 0.40] with participants reporting increased immersion at
high game demand (see Table 2), but no equivalent main effect
of pain [F(1, 18) = 1.71, p = 0.21]. The analyses of subjective
motivation revealed a significant interaction between pain and
game demand [F(1, 18) = 4.12, p = 0.05, eta2 = 0.18]; post-hoc
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FIGURE 4 | Example of one loop of ranked feature weights from RELIEFF algorithm for feature selection for the classification of fNIRS features of (i) game demand

(easy vs. hard), (ii) easy game demand, and (iii) hard game demand (pain vs. no pain) using the fNIRS features. Red circle = feature cut-off points for each classification

problem.

FIGURE 5 | Example of one loop of ranked feature weights from RELIEFF algorithm for feature selection for the classification of HR features of (i) game demand (easy

vs. hard), (ii) easy game demand and (iii) hard game demand (pain vs. no pain). Red circle = feature cut-off points for each classification problem.
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FIGURE 6 | Cross-Validation approach.

TABLE 2 | Descriptive statistics (mean with standard deviations in parentheses)

for subjective measures of mental workload, immersion, and motivation across all

conditions (N = 20).

No pain Pain

Easy Hard Easy Hard

Workload (TLX) 3.15 [1.25] 4.60 [1.52] 3.31 [1.24] 4.58 [1.22]

Immersion (IEQ) 126.35 [31.34] 152.10 [19.96] 133.10 [32.96] 152.45 [19.33]

Motivation 38.20 [6.09] 40.85 [7.02] 39.60 [5.76] 40.10 [5.45]

t-tests indicated that subjective motivation was significantly
higher during the game + pain compared to the game only
condition, but this effect was only observed when game demand
was Easy [t(19) = 2.01, p= 0.01].

Classification of Game Demand
The level of game demand was classified using two sets of
features, one derived from fNIRS (Figure 4) and a second

analysis using heart rate features (Figure 5). Four indices of
performance are reported for each classification, each one
is represented by the mean and standard deviation across
all ten folds of the cross-validation. The mean classification
performance across all ten folds for Easy vs. Hard levels of Game
Demand using the fNIRS features are illustrated inTable 3, whilst
Table 4 depicts the corresponding Heart Rate feature results. The
tuned hyperparameters for the results depicted in Table 3 can be
found within Appendix 1, whilst the corresponding parameters
associated with Table 4 can be found in Appendix 2.

An analysis of classification was performed using ANOVA
models. The level of chance performance for binary classification
is 0.5 from a theoretical perspective, however, this level should
be corrected for sample size (Combrisson and Jerbi, 2015). If
we adjust chance level for a sample size of 400 used for both
classification analyses reported in Tables 3, 4, the corrected level
of chance at p < 0.05 is 0.54. Therefore, we constructed a 3-way
ANOVA model to compare levels of accuracy when classifying
easy and hard game demand across all ten folds for features
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TABLE 3 | Mean classification performance for easy vs. hard levels of game

demand using fNIRS features across all ten folds, standard deviations in

parentheses.

NB kNN RF SVM

Accuracy 0.429 [0.07] 0.576 [0.07] 0.544 [0.09] 0.664 [0.07]

F1 0.422 [0.08] 0.563 [0.08] 0.526 [0.09] 0.683 [0.08]

True positive rate 0.426 [0.12] 0.554 [0.12] 0.513 [0.13] 0.731 [0.12]

True negative rate 0.431 [0.16] 0.599 [0.16] 0.576 [0.21] 0.598 [0.11]

AUC 0.383 [0.10] 0.614 [0.07] 0.580 [0.07] 0.704 [0.07]

NB, Naïve bayes; kNN, k-nearest neighbour; RF, Random forest; SVM, Support

vector machine.

TABLE 4 | Mean classification performance for easy vs. hard levels of game

demand using heart rate features across all ten folds, standard deviations in

parentheses.

NB kNN RF SVM

Accuracy 0.539 [0.03] 0.504 [0.03] 0.502 [0.04] 0.533 [0.03]

F1 0.476 [0.10] 0.429 [0.05] 0.412 [0.05] 0.356 [0.11]

True positive rate 0.467 [0.06] 0.404 [0.07] 0.375 [0.04] 0.118 [0.17]

True negative rate 0.598 [0.09] 0.594 [0.09] 0.614 [0.06] 0.895 [0.15]

AUC 0.548 [0.04] 0.497 [0.06] 0.509 [0.04] 0.501 [0.05]

NB, Naïve bayes; kNN, k-nearest neighbour; RF, Random forest; SVM, Support

vector machine.

derived from fNIRS and HR, compared to adjusted level of
chance (Combrisson and Jerbi, 2015); this model was applied to
each classifier.

The analysis of accuracy using Naïve Bayes revealed a
significant main effect [F(2, 8) = 18.48, p < 0.01, eta2 = 0.82],
Bonferroni contrasts indicated that accuracy was significantly
lower for the NB classifier derived from fNIRS features compared
to adjusted level of chance; there was no significant difference
between accuracy using HR features compared to chance. The
same analysis was applied to the k-Nearest Neighbour classifier.
This analysis revealed a significant main effect [F(2, 8) = 6.31,
p = 0.023, eta2 = 0.61] wherein accuracy derived from HR
features (0.504) was significantly lower than accuracy from fNIRS
(0.576) or the adjusted chance level of 0.54. This pattern was
repeated for the analyses of classification using the Random
Forest classifier, but did not reach statistical significance [F(2, 8)
= 3.68, p = 0.07]. The analysis of classification performance
using a Support Vector Machine revealed a significant effect
[F(2, 8) = 23.19, p < 0.01, eta2 = 0.85]. Bonferroni contrasts
indicated that accuracy levels using fNIRS features (0.664) were
significantly higher than either accuracy using HR features
(0.533) or chance.

Classification of Pain
The classification of participants playing the game with and
without experimental pain was carried out via four analyses: (1)
using selected features from fNIRS (Figure 4) when participants
played a game at Easy demand, (2) using heart rate features
when participants played the Easy game (Figure 5), (3) using

TABLE 5 | Mean classification performance for pain vs. no-pain using selected

fNIRS features during easy and hard levels of game demand across all ten folds,

standard deviations in parentheses.

NB kNN RF SVM

Easy

demand

Accuracy 0.543 [0.09] 0.560 [0.12] 0.544 [0.12] 0.536 [0.08]

F1 0.466 [0.15] 0.572 [0.12] 0.542 [0.18] 0.534 [0.15]

TPR 0.377 [0.22] 0.600 [0.17] 0.577 [0.23] 0.506 [0.26]

TNR 0.709 [0.21] 0.520 [0.18] 0.511 [0.14] 0.566 [0.18]

AUC 0.616 [0.11] 0.560 [0.12] 0.565 [0.13] 0.507 [0.11]

Hard

demand

Accuracy 0.429 [0.16] 0.561 [0.09] 0.583 [0.11] 0.546 [0.11]

F1 0.411 [0.15] 0.558 [0.14] 0.575 [0.16] 0.549 [0.12]

TPR 0.397 [0.21] 0.580 [0.19] 0.603 [0.23] 0.546 [0.13]

TNR 0.460 [0.15] 0.543 [0.07] 0.563 [0.10] 0.546 [0.14]

AUC 0.478 [0.16] 0.570 [0.12] 0.592 [0.15] 0.569 [0.11]

NB, Naïve bayes; kNN, k-nearest neighbour; RF, Random forest; SVM, Support

vector machine; TPR = True Positive Rate, TNR = True Negative Rate.

selected fNIRS features (Figure 4) when participants played a
game at Hard demand, and (4) using heart rate features when
participants played the game at Hard demand (Figure 5). The
results of the pain vs. no-pain classification using fNIRS features
are presented in Table 5, the results of the same classification
using heart rate features are provided in Table 6. The tuned
hyperparameters for the Easy Demand results depicted inTable 5
can be found withinAppendix 3, whilst HardDemand results are
in Appendix 4.

The classification results for pain classification using heart
rate features are reported in Table 6. The tuned hyperparameters
for the Easy Demand results depicted in Table 6 can be
found within Appendix 5, whilst Hard Demand results are
in Appendix 6.

The classification accuracy data was analysed via the
same ANOVA approach described in the previous section.
In the case of all pain/no pain classifications, the sample
size was reduced to 160, which yielded an adjusted rate of
chance of 0.5625. The results of the analyses are described
in Table 7.

The ANOVA analyses revealed that classification of pain
across both levels of game demand did not significantly exceed
chance levels using fNIRS or HR features.

DISCUSSION

The goal of the current study was to assess whether game
difficulty and the presence of experimental pain could be
classified via implicit measures of neurophysiology (fNIRS) and
psychophysiology (heart rate). Our manipulation of Easy/Hard
game difficulty, which was selected via pilot testing (see section
Cold pressor test) and self-report data (Table 2), confirmed
that both mental workload and immersion were perceived as
significantly higher during Hard compared to the Easy demand
game. Pain tolerance was operationalised by calculating the
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total time of the cold pressor test for each participant. As
expected, playing a game increased pain tolerance in comparison
to a no-game control due to the attentional mechanisms
of active distraction described in the introduction (Torta
et al., 2017). However, pain tolerance did not significantly
increase during the Hard game compared to the Easy game
as observed in earlier studies (Fairclough et al., 2020). Closer
inspection of cold pressor test times revealed an increase of
25 s during the Hard game compared to the Easy game, but
with high variability, i.e., standard deviations were 35.73 and
64.11 s for Easy and Hard games, respectively. High-levels
of inter-participant variability is a known problem for the
cold pressor test, even when implemented with specialised
apparatus and a standardised protocol (Von Baeyer et al.,
2005). The presence of high variability in our cold pressor
data meant that our within-participants comparison achieved
a significance level of p = 0.08, which was above our alpha
threshold of 5%.

A range of features were derived from the fNIRS (Figure 4)
and HR (Figure 5) data, which were used to make a binary
classification between Easy and Hard game demand. We utilised
a nested resampling ten fold cross-validation method across
a variety of classifiers (Tables 3, 4). The results illustrated
that: (1) SVM yielded the highest level of accuracy (66.4%)
from fNIRS features, (2) maximum accuracy for HR features
was 53.9% using a NB classifier, and (3) only the SVM
classifier using fNIRS features achieved a level of classification
performance that was significantly above chance levels. This
absolute level of accuracy is somewhat lower than similar
laboratory-based, subject-independent, binary classifications of
mental workload reported in earlier studies, e.g., 0.83 (Lu et al.,
2020), 0.84 (Naseer et al., 2016), and applied tasks, e.g., 0.71
(Benerradi et al., 2019), 0.80 (Gateau et al., 2015); however,
direct comparisons between the current study and related
research are problematic, as earlier experiments manipulated
workload using task simulation (e.g., aviation) or standardised
laboratory tasks, as opposed to a computer game. In general,
the classification of game demand using heart rate features
compared poorly with features derived from fNIRS for all
classifiers except NB, indicating the superiority of fNIRS features
for classification of game demand, with the caveat that the
number of features selected for the fNIRS-based model was
significantly higher.

Our approach also utilised both HR and fNIRS features to
classify the presence of pain within both Easy and Hard levels
of demand (Tables 5, 6)—but none of the resulting models were
able to discriminate game play in the presence of the cold
pressor test from game play without the cold pressor test at an
accuracy level above chance; in fact, classification based on HR
features fell consistently and significantly below chance. Other
researchers have utilised machine learning analyses based on
fNIRS features to classify the presence of pain and reported
high levels of accuracy. For example, Lopez-Martinez et al.
(2019) reported classification accuracy of 0.69 using SVM, which
improved to 0.81 with a non-parametric, hierarchical Bayesian
Multi-Task Learning model, Fernandez Rojas et al. (2019) also
reported high levels of accuracy when applying SVM-based

TABLE 6 | Mean classification performance for pain vs. no-pain using selected

heart rate features during easy and hard levels of game demand across all ten

folds, standard deviations in parentheses.

NB kNN RF SVM

Easy

demand

Accuracy 0.507 [0.06] 0.510 [0.04] 0.507 [0.05] 0.492 [0.05]

F1 0.447 [0.10] 0.491 [0.04] 0.468 [0.06] 0.373 [0.19]

TPR 0.457 [0.16] 0.523 [0.09] 0.475 [0.07] 0.283 [0.04]

TNR 0.557 [0.08] 0.506 [0.12] 0.537 [0.09] 0.685 [0.39]

AUC 0.525 [0.07] 0.515 [0.05] 0.509 [0.06] 0.454 [0.03]

Hard

demand

Accuracy 0.503 [0.02] 0.528 [0.03] 0.514 [0.05] 0.504 [0.04]

F1 0.472 [0.12] 0.496 [0.03] 0.483 [0.05] 0.354 [0.24]

TPR 0.452 [0.24] 0.484 [0.05] 0.475 [0.07] 0.241 [0.35]

TNR 0.562 [0.24] 0.570 [0.06] 0.551 [0.08] 0.769 [0.33]

AUC 0.516 [0.04] 0.550 [0.03] 0.528 [0.06] 0.524 [0.05]

NB, Naïve bayes; kNN, k-nearest neighbour; RF, Random forest; SVM, Support

vector machine; TPR = True Positive Rate, TNR = True Negative Rate.

TABLE 7 | ANOVA results and summary from analyses of pain classifications for

easy and hard levels of game demand.

Classifier F(2,8) p eta2 Significant effects

Easy demand NB 3.88 0.07 0.49 HR < chance

kNN 7.28 0.02 0.65

RF 4.94 0.04 0.55

SVM 8.42 0.01 0.68

Hard demand NB 9.82 <0.01 0.40 HR and fNIRS < chance

kNN 8.67 0.01 0.68 HR < chance

RF 5.61 0.03 0.58 HR < chance & fNIRS

SVM 9.38 <0.01 0.70 HR < chance

classification to their pain data. There are several reasons why
classification of pain did not achieve high accuracy during the
current study in both relative (compared to other studies) and
absolute (greater than chance) terms: (1) unlike Lopez-Martinez
et al. (2019) and Fernandez Rojas et al. (2019), we measured
experimental pain in conjunction with playing a computer
game and it is very likely that variability introduced into the
physiological data by the game play degraded classification
accuracy for pain, (2) unlike earlier work, we utilised the cold
pressor test as our method to induce experimental pain, which
was not personalised to individual pain thresholds, hence there
are enormous individual variability in the duration of pain
induction and the experience of pain by individual participants,
and (3) the cold pressor test delivers a cumulative experience
of pain, i.e., pain increases in intensity over the period of
immersion, hence pain may have varied significantly throughout
the period of data collection labelled as pain. In addition, we
did not distinguish between the sensory experience of placing
one’s foot in water (at room temperature) from the experience
of immersing the foot in very cold water as part of the cold
pressor test; therefore, the resulting fNIRS data is limited by
our inability to distinguish a sensory experience from a painful
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sensory experience. This ambiguity, along with the absence of
calibration, may also be responsible for the high level of inter-
individual variability observed in our pain tolerance data. The
current protocol could be improved by using a more precise and
personalised approach to pain induction, such as the quantitative
sensory testing (QST) method utilised by Fernandez Rojas et al.
(2019).

With respect to limitations and improvements to the
current protocol, the settings of the Easy and Hard levels
of game demand were problematic. We performed a small
pilot study using subjective self-report measures to establish
Easy and Hard demand by manipulating key parameters
of the game, as described in Section Racing game, which
represented a “one-size-fits-all” approach to establishing levels
of game demand. However, it would have been optimal
to calibrate game demand (Xue et al., 2017; Sarkar and
Cooper, 2019) to the skills of the individual participant,
which would have increased the reliability of the Easy/Hard
manipulation by striking the desired balance between player
skill and objective game demand (Keller and Landhäußer,
2012).

The current study utilised fNIRS as a technique to
measure attentional engagement as a response to increased
game demand. It could be argued that our adoption of
game difficulty as a “ground truth” for labelling classification
data was circular, as we could have simply derived our
classification labels directly from gaming parameters, but we
would argue against this interpretation. Previous work (Ewing
et al., 2016; Fairclough et al., 2018) demonstrated how task
demand dissociates from cortical measures of attentional
engagement when success likelihood is low, as predicted by
motivational intensity theory (Richter et al., 2016). When
the player is pushed to the limits of their skill level by
game demand, engagement and objective task demand are
no longer synonymous. Subjective self-report measures are
popular choices for the derivation of classification labels,
but this approach is problematic as self-report data are
retrospective, susceptible to bias and difficult to administer in
situ without interfering with gameplay (Burns and Fairclough,
2015). Others have argued for a multidimensional approach for
the measurement of player engagement (Martey et al., 2014),
which combines contextual data (such as game demand) with
real-time measures from physiology and gameplay (Yannakakis
et al., 2013) in order to model the state of the player. While a
multidimensional approach offers definite advantages as strategy
for accurate operationalisation, it also introduces complications
for the derivation of unambiguous labels for supervised
learning methods.

The analyses conducted in the current paper were
representative of subject-independent classification using
supervised learning in combination with classic machine
learning techniques. This approach was adopted because the
long-term objective of the current research is the development
of a neuroadaptive game to be used in the clinic, hence
we did not explore techniques that required generation of
training dataset for each individual user prior to system
usage, e.g., unsupervised, subject-dependent techniques.

However, other researchers working with fNIRS data
have reported superior classification with artificial neural
networks (Naseer et al., 2016) and deep learning techniques,
such as fully convolutional networks (Lu et al., 2020); the
latter reported an accuracy level above 97% for subject-
independent classification of cognitive demand with deep
learning. A subject-independent, unsupervised approach
could be explored in future work, especially if a large training
dataset could be generated that produced a high level of
subject-independent classification.

As the motivation of the study was to explore the viability
of fNIRS neuroadaptive gaming concept, the current paper
demonstrated that increased game demand can be detected at
a level significantly higher than chance by applying SVM to
features derived from fNIRS. This “live” model of the player
could be used as an input to an adaptive gaming system, where
implicit neurophysiological monitoring is used to index the
response of the player to increased game demand. With respect
to efficiency of set-up, comfort, and intrusiveness, heart rate
measures would be preferable for this type of application in a
clinic, however, our results indicated that classification of game
demand based on heart rate features failed to exceed the level
of chance.
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