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Performance in complex tasks is essential for many high risk operators. The achievement

of such tasks is supported by high-level cognitive functions arguably involving functional

activity and connectivity in a large ensemble of brain areas that form the fronto-parietal

network. Here we aimed at determining whether the functional connectivity at rest

within this network could predict performance in a complex task: the Space Fortress

video game. Functional Near Infrared Spectroscopy (fNIRS) data from 32 participants

were recorded during a Resting-State period, the completion of a simple version of

Space Fortress (monotask) and the original version (multitask). The intrinsic functional

connectivity within the fronto-parietal network (i.e., during the Resting-State) was a

significant predictor of performance at Space Fortress multitask but not at its monotask

version. The same pattern was observed for the functional connectivity during the

task. Our overall results suggest that Resting-State functional connectivity within the

fronto-parietal network could be used as an intrinsic brain marker for performance

prediction of a complex task achievement, but not for simple task performance.

Keywords: functional connectivity, fronto-parietal network, resting-state, video game, Space Fortress, complex

task, performance, functional near infrared spectroscopy

1. INTRODUCTION

The ability to predict performance based on psychophysiological markers is one of the major
interests of neuroergonomics (Ayaz et al., 2019). It would be profitable formany fields such as sports
performance (Kipp et al., 2019), driving security (Asimakopulos et al., 2012), military selection
(Barron and Rose, 2017), successful surgery (Carthey et al., 2003), or piloting a plane (Scannella
et al., 2018). High-risk operators, in particular, are faced with multiple, complex tasks, and their
ability to perform them successfully is important as it can have a major economic or human
impact. The prediction of this capacity could also be used as part of a selection process and/or
as an indicator to target individualized trainings. The main purpose of this study is to explore the
brain markers of complex task performance. We focused specifically on the relationship between
functional connectivity within the fronto-parietal network (FPN) at rest, and performance in Space
Fortress (Mané and Donchin, 1989), a complex and semi-ecological task.

Complex task performance is likely to rely on the functional activity of brain areas and networks
involved in high-level cognitive functions. Amongst all brain networks, the FPN has a central role
in a variety of cognitive functions such as working memory, attention, shifting, and reasoning
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(Niendam et al., 2012; Martínez et al., 2013). The global
functional connectivity in this network is high (Cole et al., 2012)
and increases when dealing with novel complex tasks and high
cognitive control (Cole and Schneider, 2007; Duncan, 2010; Cole
et al., 2012). The FPN connectivity might therefore represent
a good indicator of complex task performance. However, while
measuring the FC during tasks provides crucial information
about the biological role of this functional network, Resting-
State FC (rsFC) would be an additional candidate to predict
performance. Indeed, it would be interesting not to have to
perform a task in order to obtain a neural marker for the very
same task and easier to proceed to a 5-min recording at rest to
obtain such information. The intrinsic functional connectivity of
the FPN has already been correlated with high-level cognitive
function capacities such as fluid intelligence (Cole et al., 2012;
Hearne et al., 2016), executive functions in general (Xu et al.,
2015), attention (Markett et al., 2014; Fellrath et al., 2016), and
working memory in particular (van Dam et al., 2015; Liu et al.,
2017). These skills have been measured with specific laboratory
cognitive tasks such as the N-back task for working memory (Liu
et al., 2017) or the Raven’s matrices regarding fluid intelligence
(Hearne et al., 2016). Here, in the context of neuroergonomics
research, we aim at determining whether the rsFCwithin the FPN
also predicts performance in amore complex and semi-ecological
task than conventional executive tasks.

Among complex tasks that are plausible as real life situations
and can still be easily studied in the laboratory, video games
appear to be of particular interest (Boot et al., 2017). Video game
practicing effects on cognitive processes, brain functions, and
structural changes, have been extensively investigated during the
last two decades (Boot et al., 2008; Bavelier et al., 2011; Kühn
et al., 2019). In the present study we focused on one of them: the
Space Fortress (SF) video game (Boot, 2015).

We selected this game because it has been specifically designed
by psychologists to study complex skills acquisition (Mané and
Donchin, 1989). According to the authors, the goal behind this
task was to create a complex task with multiple demanding
and overlapping component tasks that simulate the complexity
of real-world tasks such as piloting, air traffic control or radar
monitoring (Maclin et al., 2011). The rationale behind the
choice of this task was—besides the fact that it was created to
engage cognitive functions similar to real-life tasks—first the
important history of scientific publication both in psychology
and neuroscience fields (Boot et al., 2008, 2011; Maclin et al.,
2011; Lee et al., 2012a,b; Mathewson et al., 2012) which facilitates
the comparison; second its parameters (e.g., number of events,
time duration, and so on) that can be easily controlled unlike a
mainstream video game (Boot et al., 2008; Palaus et al., 2017; Dale
et al., 2020).

Specifically, the SF video game can be decomposed into
four sub-tasks: controlling a ship in the space, destroying a
fortress, destroying moving mines, and capturing bonuses. Each
of these sub-tasks involves different cognitive functions. The
mine-task necessitates to memorize and pay attention to letters
in order to correctly identify and destroy them; the bonus
task necessitates to maintain and update symbols in short-term
memory (much like a n-back task, Jaeggi et al., 2010) in order

to get bonuses; the fortress task necessitates to inhibit rapid fire
(as it would not destroy the fortress) and to maintain attention
to check the vulnerability of the fortress; controlling the ship
necessitates visuo-spatial and motor skill abilities. Finally, when
performed together, all of these sub-tasks necessarily involve
several cognitive abilities such as selective and divided attention,
planning, executive functions (updating, inhibition, switching,
Miyake et al., 2000; Friedman and Miyake, 2017), episodic
memory, cognitive control, distributing and allocating cognitive
resources, decision-making and motor skill (Mané and Donchin,
1989; Donchin, 1995; Boot et al., 2010). While there is a need
for more fundamental research to better understand the exact
cognitive correlates of SF performance (Boot et al., 2017), it has
been positively correlated with intelligence (Rabbitt et al., 1989).
Moreover, SF training has been shown to improve performance
on the N-back task (working memory) and the Raven’s matrices
task (fluid intelligence, Lee et al., 2012a). Therefore, the literature
shows that this video game may be sufficiently complex in
terms of cognitive functions recruitment to meet our needs of a
complex and engaging task (Boot et al., 2011) in the context of
neuroergonomcis research.

As expected by the multitasking nature of SF, increased
functional connectivity of the FPN was observed in participants
who have been trained with SF (Voss et al., 2012). RsFC however,
has not been studied with SF specifically so far, but using a
puzzle video game (Professor Layton and the Pandora’s Box),
rsFC of the FPN has been shown to increase with training and
was positively correlated with improvements on video game
performance (Martínez et al., 2013).

The rsFC of the FPN can be assessed with different brain
imaging technics such as fMRI. We aimed, however, to record
it with a light, portable and relatively easy to use one: the
functional near-infrared spectroscopy (fNIRS) that is more suited
for the brain at work assessment. The question was then to
examine if the rsFC of the FPN assessed with fNIRS could
be a good indicator of later performance in SF. Due to its
high portability and reasonable cost, fNIRS has proven to be a
valuable tool to study neurophysiological correlates of complex
virtual and ecological tasks (Ayaz et al., 2012; Gateau et al.,
2015; Foy et al., 2016; Verdière et al., 2018; Deligianni et al.,
2020; Fan et al., 2021). As an example, a widely reported fNIRS
result is the increased level of oxygenated hemoglobin (HbO)
in frontal and parietal areas during higher-level cognitive tasks
(Causse et al., 2017; Fairclough et al., 2018). However, only few
studies about FC with fNIRS have been run, partly because only
cortical activity under the optodes can be measured, contrary
to fMRI where the whole brain activity is measured. Recent
advances in the neuroergonomics field showed, however, that
the measure of functional connectivity in cortical networks with
fNIRS can be of particular interest. For example, Verdière et al.
(2018) performed correlations analyses and other connectivity
metrics on fronto-occipital fNIRS signal. Their results show
that functional connectivity analyses can better classify two
flight simulator scenarios (automated vs. manual landing) than
activation data. Similarly, Deligianni et al. (2020) were able to
identify functional connectivity differences within frontal areas
during a surgical task between junior and senior surgeons.
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TABLE 1 | Sample demographics.

n 32

Gender 24 men / 8 women

Handedness 30 right-handed / 2 left-handed

Age 23.93 (sd* = 4.05)

Education 16.47 (sd = 2.01)

VGexp 4.01 (sd = 2.86)

*sd, standard deviation; VG, video game expertise questionnaire.

Taken together, these results highlight the fact that the fNIRS
has been successfully used to measure functional connectivity in
cortical networks, and that it can predict behavioral performance.
However, to our knowledge, no fNIRS study has attempted to
investigate the functional connectivity of the FPN during both
Resting-State and task, and its relationship with performance in
a complex task. Our main hypothesis postulates that functional
connectivity within this network, both at rest and during the task,
is positively associated with complex task performance but not
with simple task performance.

To test this hypothesis, we developed a fNIRS protocol with
optodes positioned in frontal and parietal areas over the FPN.
During the acquisition, participants performed first a Resting-
State and then played two versions of SF. A monotask version
where the participant’s goal was only to destroy the fortress,
which has been developed to less rely on higher-level cognitive
functions; and a multitask version where the participant’s aim
was to capture bonuses and destroy mines in addition to the
fortress, which should rely on higher-level functions (Boot,
2015) such as executive functions (i.e., shifting, updating, and
inhibition; Miyake et al., 2000; Friedman and Miyake, 2017).
A global value of the functional connectivity within the FPN
has been calculated by averaging the correlation coefficients
between all fNIRS channels. We expected significant positive
relationship between rsFC of the FPN and multitask SF score
only. We also expected the same results with on-task functional
connectivity. To achieve a high-standard, this article followed
recommendations and best practices recently proposed (Yücel
et al., 2021) for fNIRS publications.

2. MATERIALS AND METHODS

2.1. Participants
Forty one healthy adults were recruited in the ISAE-SUPAERO
(Toulouse, France) campus through flyers and mailing lists.
Participants were welcomed at the laboratory and first filled
questionnaires collecting basic demographics data, eligibility to
the research and video-game expertise. Recruited participants
had to meet eligibility criteria and to be free of a history of
neurological or psychiatric disorders, cardiac or cardiovascular
pathology, and no recent use of medications or substances that
might interfere with brain activity. Participants also read a text
explaining the experimental protocol and the goal and rules of
the SF video game. All participants gave informed consent prior
to the experiment and the local ethic committee of Toulouse

University approved the study (Ref 2019-151). The final sample
that included fNIRS analyses was composed of 32 participants
and their demographics data are described in the Table 1.

2.2. The Video Game Expertise
Questionnaire
Participants were asked to answer three questions based on a
previous questionnaire1. The first one was “In the last 12 months,
how many times have you launched a video game (PC, home,
or portable consoles, smartphone)” (five points Likert-scale), the
second “Currently, on average, how much time per day do you
spend playing video games?” (four points Likert-scale) and the
third “Have you had a period or periods in your life when you
played video games intensively (more than 2 h per day on average
for at least 3 months)?” (dichotomic). The total score of this
questionnaire was computed as the sum of all responses and
ranged from 0 to 10.

2.3. The Space Fortress Game
2.3.1. General Principle
For the purpose of this study, a Python-based (ver. 2.7) version
of SF was chosen2 (see Figure 1). A clear overview of the game
is described by Boot et al. (2010). The authors’ description
point out the complexity of the intricate tasks and the variety
of resources needed to play the game. In brief, the main goal
of the game is to control a spaceship in the space with no
gravity (first task). The second goal is to destroy the fortress
(second task). In addition, the player has to memorize specific
letters that will help him to identify and destroy two types of
mines (type-1 or type-2) that regularly appear in the game (third
task). Simultaneously, she/he must keep focusing on sequences of
symbols that appear continuously throughout the game in order
to capture bonuses (fourth task). More specifically, to obtain the
higher possible score, the participant has to perform the four sub-
tasks in parallel. A more precise description of rules and points
distribution of this task are available in the Table 2.

2.3.2. Monotask and Multitask Versions
The game parameters were modified to create two versions. A
monotask version was created as a “control” task that limited
the involved cognitive functions. This SF monotask version
consisted of only the two first sub-tasks, controlling the ship and
destroying the fortresses. These sub-tasks mostly involved visuo-
motor abilities. Regarding the monotask version specifically,
participants were given the following instruction: “to maximize
their score by destroying the fortress as many times as possible.”

The SF Multitask version consisted of the complete video
game, with all four sub-tasks: controlling the ship, destroying the
fortresses, destroying mines, and capturing bonuses. These four
tasks performed concomitantly involved higher-level cognitive
functions as the participant has to perform multitasking in order
to obtain a higher score. Most of the high cognitive abilities
may therefore be involved in this version, with (non-exhaustive)
selective and divided attention, planning, updating, inhibition,

1https://spacefortress.blogspot.com/
2https://github.com/CogWorks/SpaceFortress
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FIGURE 1 | In-game screenshot of both Space Fortress versions: (A) the monotask Space Fortress version with only the ship to control and the fortress to destroy.

(B) A multitask Space Fortress version with the mines and bonus in addition.

TABLE 2 | Score distribution of Space Fortress sub-tasks.

Sub-task Keyboard* Rules Points

1. Controlling the ship z, q, d - Avoid being hit −50

- Avoir being destroyed (after 3 hits) −100

- Avoid crossing game borders −35

- Avoid colliding with the Space Fortress −35

- Manage the missile stock None

2. Destroy the fortress Spacebar - Hit the fortress 10 times with at least 250 ms between each shot None

- Destroy the fortress with a double shot (after 10 hits) 250

3. Destroy the mines j - Memorize three letters at the beginning None

- Identify Type-1 or Type-2 mines according to the memorized letters None

- Destroy a mine 50 or 60

- Fail to destroy a mine before it disapears -50

4. Capture bonuses k, l - Random pairs of symbols will appear, one symbol at a time (# $ & or @) None

- If the pair is # then $, capture the bonus 50 or 100

- Fail to capture a bonus −50

*Note that the experiment was conducted on an AZERTY computer keyboard.

switching, workingmemory, episodic memory, cognitive control,
distributing and allocating cognitive resources, decision making,
and visuo-motor abilities (Mané and Donchin, 1989; Donchin,
1995; Boot et al., 2010). Regarding the multitask version
specifically, participants were given the following instruction: “to
maximize your score by performing all sub-tasks to the best of
your ability.”

2.3.3. Training
Training included reading a document that described the task
(environment and rules) and practicing the SF task for 12 min
in four 3 min steps following variable-training methods used
in previous studies (Boot et al., 2010). Step 1: participants were

asked to control the ship and only focus on destroying the
fortress. Step 2: to capture bonuses only. Step 3: to destroy mines
only. Step 4: all tasks performed together. The experimenter
made sure that participants understood and had experimented
all the rules of the SF game before starting.

2.3.4. Scores Computation
One SF total score was calculated for each version (monotask
and multitask) and corresponded to the sum of the points
that included all sub-tasks. Note that the scores for the two
versions are computed differently (the monotask doesn’t have the
mine and bonuses sub-tasks), so any direct comparison between
the two scores cannot be interpreted as they do not reflect
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the difficulty of the task. The difficulty is inherent to the on-
going cognitive processes involved in the two versions, with a
very strong demand in multi-tasking in the multitask version
compared to the monotask version. For the multitask version, we
also extracted four sub-scores, which were calculated as the sum
of the points per sub-task (flight, fortress, bonus, mine). Details
of the points distribution is described in the Table 2. Note that
the participants were informed about the point distribution prior
to play, and saw their score displayed at the end of each run.

As the score for the two tasks are computed differently (see
Table 2), the scores cannot be compared directly and they do
not reflect the difficulty of the task. The difficulty is inherent to
the on-going cognitive processes involved in the two versions,
with a very strong demand in multi-tasking in the multitask
version compared to the monotask version The number of
pressed keyboard per minute (Action Per Minute, APM) was also
calculated for the multitask version.

2.4. Experimental Procedure
The experiment took place in an experimental room with
no window and with a stable temperature. The participants
performed the demographic and video game expertise
questionnaires, followed by the SF video game on a 17”
laptop with the laptop keyboard.

The experiment consisted of three conditions, each lasting 10
min: Resting-State (RS), SF Monotask, and SF Multitask. During
the RS period, participants were asked to let their mind wander
for 10 min with eyes closed and without falling asleep. The
SF monotask version consisted of a simplified version of the
game with all sub-tasks removed except the flying one. The SF
multitask version consisted of the full version of the game with all
four sub-tasks. During all conditions, the participants were asked
to “refrain from moving as best as they could to reduce potential
neuroimaging artifacts.”

The experiment started with the RS period and was followed
by a training to the SF game. After training, participants played 10
min of the SF monotask and 10 min of SF multitask. The order
of both mono- and multi-task conditions was counterbalanced
across participants.

2.5. fNIRS Acquisition and Analyses
2.5.1. fNIRS Acquisition and Montage
Brain activity was measured in all three experimental conditions
(Resting-State, SF monotask, SF multitask) with a functional
near-infrared spectroscopy (fNIRS) device allowing the
measurement of the hemodynamic response at the level of
brain cortical areas. The system used was a continuous-wave
NIRS instrument (NIRScout system, NIRx medical technologies,
LLC) with 28 optodes (14 sources, 14 detectors, 32 channels,
see Figure 2). The sample rate was 12.5 Hz and the measured
wavelengths were 760 and 850 nm. A calibration was performed
before and after the experiment in order to check each optode’s
signal quality.

A NIRScap (NIRx medical technologies, LLC) was used to
hold the optodes on the participant’s head. The custom montage
consisted of 32 channel measurements with a 30 mm source-
detector separation that was assured by plastic spacers. Optodes

were positioned on the scalp to cover the brain areas from the
fronto-parietal network based on previous literature (Niendam
et al., 2012). These areas mainly included the middle and
superior frontal gyri in the frontal lobe, and the inferior and
superior parietal lobules in the parietal lobe (for more details,
see Table 3). The montage sensitivity through the targeted brain
areas was estimated with a Monte-Carlo simulation in the fNIRS
Homer 2 AtlasViewer3 toolbox (v2.8, p2.1; see Figure 2 and
Supplementary Table 1).

The MNI coordinates of the centroid for each channel
measurement were obtained with AtlasViewer.We then localized
the regions targeted by our montage with Talairach software
(Lancaster et al., 1997, 2000). We first converted MNI
coordinates into Talairach coordinates with the icbm2tal Matlab
program (Lancaster transform). In the Talairach Client, we used
the±4mm option to get a description of the brain regions within
a 9 mm3 volume around each channel coordinate. The sub-
regions have been concatenated across the channels (Table 3).

2.5.2. Data Quality Check
To assess the quality of the fNIRS signal, data were visually
inspected for each participant (n = 41) and each channel (n =

32). To complete visual inspection, the Scalp Coupling Index
(SCI) was computed (Pollonini et al., 2016). This index is based
on the presence of the cardiac signal, which should be observed
in raw data for each channel. Values that approach 1 indicate that
the data are clean. We rejected all channels with a value < 0.6.
Because the fNIRS montage has been designed to specifically
assess the average functional connectivity within the FPN, we
set the acceptable number of rejected channels to 6 (∼20% of
the channels). Participants with more than six rejected channels
would have potentially presented missing data in a whole brain
area that would not have been acceptable for connectivity analysis
purposes. Using this criterion, we found that nine participants
had data that were not sufficient in quality and were therefore
excluded for further analyses. Of the remaining 32 participants,
20 had 0 rejected channels, 5 had one rejected channel, and the
last 7 participants had between 2 and 5 rejected channels.

2.5.3. Preprocessing
The preprocessing was done with MATLAB (2020B) using a
pipeline based on the scripts from the NIRS brain AnalyzIR
toolbox (Santosa et al., 2018). The preprocessing was performed
on the whole signal for each participant (see Figure 3). First,
fNIRS raw data were transformed in optical density. Second, a
motion correction algorithm (Temporal Derivative Distribution
Repair, TDDR; Fishburn et al., 2019) was applied. This motion
correction procedure uses an iterative-reweighting approach
based on the temporal derivative of the signal, and removes
effectively baseline shifts and motion spikes. Third, data were
converted in concentrations (HbO and HbR) using the beer-
Lambert Law (Jacques, 2013) with a partial pathlength factor of
5/50 (Scholkmann and Wolf, 2013). Data were then resampled
at 10 Hz and a fourth-order bandpass Butterworth filter with
a high-pass frequency of 0.01 Hz and a low-pass frequency

3https://www.nitrc.org/frs/shownotes.php?release_id=3956
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FIGURE 2 | Results of the Monte-Carlo simulation (Homer 2 AtlasViewer; v2.8, p2.1) over the frontal cortex (A), the parietal cortex (B), and both cortices from a lateral

view (C). Red dots represent the LED emitters, blue dots the photoreceptors and yellow lines the channels. The color bar represents the spatial sensitivity of the fNIRS

measurements. Its unit is expressed in mm−1 and values range from 0.01 to 1 in log10 units: −2 to 0. The 2D fNIRS montage using the 10-20 system (EEG) as a

reference is presented in (D), bold numbers stand for the measurement channel index.

TABLE 3 | Brain regions targeted by the fNIRS montage and corresponding channels.

Left hemisphere Right hemisphere

Lobe Brain region Channels Voxels BA Channels Voxels BA

Frontal

Inferior frontal gyrus 24 48 46 8 196 46

Medial frontal gyrus 21,22 113 6,9 5 42 9

Middle frontal gyrus 18,19,22:24,26 927 8,10,46 2,3,6:9,10 971 8,9,10,46

Precentral gyrus – – – 10 74 9

Sub-gyral 22 50 8 – – –

Superior frontal gyrus 18:23 744 8,9,10 1:7 949 8,9,10

Parietal

Inferior parietal lobule 28,30,31 517 40 12:15 784 40

Postcentral gyrus 28 99 2,40 12 185 2,40

Precuneus 32 68 19 14 45 7

Superior parietal lobule 32 246 7 14,15 80 7

Supramarginal gyrus 29 105 40 13 45 40

BA, broadman areas.

of 0.09 Hz was applied in order to remove artifacts (cardiac
oscillations, respiration, Pinti et al., 2019). Finally, a PCA analysis
was carried out in order to reject the potential remaining systemic

component, specifically the vasomotion (Mayer’s waves) around
0.1 Hz. Doing so, no component in this frequency range has been
identified, probably due to the narrowness of our band-pass filter.
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FIGURE 3 | Pipeline of fNIRS data analysis. The final results are the average of

the matrix containing all correlation coefficients between channels per

condition and per participant. The 32 × 32 matrices presented at the end are

an example of result for one participant. Avg, average.

2.5.4. Functional Connectivity Analyses
The functional connectivity analyses were also performed with
MATLAB. An illustration of the analyses can be found in the
Figure 3. First, the preprocessed signal was segmented for each
condition (Resting-State, SF monotask, and SFmultitask) and for
each participant, using the entire 600 s of duration. Therefore,
a total of 6,000 samples (10 Hz × 600 s) was obtained for each
participant and each condition. Functional connectivity (FC) was
calculated on HbO only, which has been shown to have better
signal-to-noise ratio (Pinti et al., 2019). By computing Pearson’s
correlations between all channels, we obtained a coefficient for

each pair in a C × C matrices (32 × 32 channels) for each
condition and each participant. We then computed the average
r coefficient of each resulting global matrix. This latest measure
corresponds to the average functional connectivity within the
FPN and is obtained for each participant and each condition
(Resting-State, SF monotask, SF multitask). This dependent
variable has been used for hypothesis testing.

2.6. Statistical Analyses
Statistical analyses were performed using the R studio software
(R v. 4.0.5; Allaire, 2012; R Core Team, 2017). Two types
of statistical analysis were used to determine the relationship
between variables: Pearson’s correlations and robust regressions.
Significant level has been set to p < 0.05 and post-hoc p-values
were corrected for multiple comparisons when necessary using a
Holm-Bonferroni procedure (Abdi, 2010).

3. RESULTS

3.1. Functional Connectivity
The average functional connectivity within the FPN was
computed for each condition at the group level (Figure 4).
During the RS, the average r of the FPN within our sample was
0.553 (sd = 0.105, min = 0.378, max = 0.769). During the
SF multitask version, the average r was .496 (sd = 0.140, min
= 0.220, max = 0.751). During the SF multitask version, the
average r was .506 (sd = 0.114, min = 0.240, max = 0.694).
The distribution of the average functional connectivity within the
FPN were not different from a normal distribution according to
Shapiro-Wilk’s tests for all conditions (all p > 0.05).

3.2. Space Fortress Performance and
Video Game Expertise
3.2.1. Space Fortress Performance

3.2.1.1. Space Fortress Total Scores
The distribution of SF scores were not different from a
normal distribution according to Shapiro-Wilk’s tests, both in SF
monotask (p = 0.50) and SF multitask (p = 0.91) versions.
In the monotask version, the mean score was 3, 697 (sd =

2, 649); and 3, 373 (sd = 2, 961) in the multitask version. A
Pearson’s correlation between both version revealed a significant
and positive relationship (r = 66, p < 0.001). However,
this significant correlation between both versions should be
interpreted with caution. Indeed, one should note that the way
to obtain points is very different in the two versions. In the
monotask version, the most efficient way to obtain points is to
destroy the fortress (mean destroyed fortress inmonotask= 16.6,
sd = 9.7). In the multitask version, the participants need to
perform additional sub-tasks (mines and bonuses), and therefore
get less points from the fortress task (mean destroyed fortress
in multitask = 7.3, sd = 5.3), but get more points from the
additional sub-tasks.

3.2.1.2. Space Fortress Multitask Sub-scores
The four sub-scores in the multitask version were calculated
according to the Table 2, and for only 29 participants (three
participants were discarded from these analyses due to missing
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FIGURE 4 | Mean functional connectivity matrices (32 × 32) during the three experimental conditions. (A) Resting-state, (B) Space Fortress monotask, (C) Space

Fortress multitask. Avg, average; RH, right hemisphere; LH, left hemisphere; Fr, frontal; Par, parietal.

files). The mean sub-score 1 (Flight score) was −1, 570 (sd =

1, 431). The mean sub-score 2 (Fortress score) was 1, 827 (sd =

1, 382). The mean sub-score 3 (Mine score) was 1, 709 (sd =

1003). The mean sub-score 4 (Bonus score) was 840 (sd = 573).

3.2.1.3. Space Fortress Multitask Action Per Minute
The mean action per minute (APM) was computed as the
average number of keystrokes pressed per minute during the
10 min of SF multitask. The mean APM was 114.4 (sd =

27.3). A Pearson’s correlation between APM and SF multitask
score revealed a strong and significant positive relationship
(r = 0.864, p < 0.001).

3.2.2. Video Game Expertise
To test a possible relationship between video game expertise and
SF performance, a Pearson’s correlation was computed between
the score in the Video Game Questionnaire and SF multitask
score. It revealed a significant and positive relationship (r =

43, p = 0.013). Because this correlation showed significance, this
variable has been added as a co-variable in further analyses.

3.3. Relationship Between Functional
Connectivity and Complex Task
Performance
3.3.1. Hypothesis 1. Resting-State Functional

Connectivity Predicts Space Fortress Performance

3.3.1.1. Hypothesis 1.a
A multiple robust linear regression was computed to predict SF
multitask performance based on average Resting-State functional
connectivity (rsFC) and video game expertise questionnaire score
(VGexp). A significant regression equation was found [F(2, 29) =
10.65, p = 0.005] with r2 = 0.26. Participant’s predicted SF
multitask score is equal to −2855.6 + 8330.5 (rsFC) + 393.3
(VGexp), where rsFC is the mean r of the connectivity matrix
during Resting-State (from −1 to 1) and video game expertise is
the score at the video game expertise questionnaire (from 0 to

10). Therefore, participant’s score increased of 833.05 for every
additional 0.1 of mean r of the connectivity matrix during RS and
393.3 for each point in the video game expertise questionnaire.
Both rsFC (p = 0.047) and VGexp (p = 0.007) were significant
predictors of SF multitask score (Figure 5A and Table 4).

3.3.1.2. Hypothesis 1.b
A multiple robust linear regression was computed to predict SF
monotask performance based on average rsFC and VGexp. The
regression equation was not significant [F(2, 29) = 3.35, p =

0.187, Table 4].

3.3.2. Hypothesis 2. On-Task Functional Connectivity

Explains Space Fortress Performance

3.3.2.1. Hypothesis 2.a
A multiple robust linear regression was computed to predict
SF multitask performance based on average on-task functional
connectivity (otFC) during SF multitask and video game
expertise (VGExp). A significant regression equation was found
[F(2, 29) = 14.07, p < 0.001] with an R2 of .32. Participant’s
predicted SF multitask score is equal to −3374.4 + 10050.2
(otFC) + 397.1 (VGexp). Therefore, participant’s score increased
of 1005.02 for every additional 0.1 of mean r of the connectivity
matrix during the task and 397.1 for each point in the video game
expertise questionnaire. Both otFC (p = 0.005) and VGexp on
the questionnaire (p = 0.009) were significant predictors of SF
multitask score (Figure 5B and Table 4).

3.3.2.2. Hypothesis 2.b
A multiple robust linear regression was computed to predict
SF monotask performance based on average otFC during
SF monotask and VGexp. The regression equation was not
significant [F(2, 29) = 2.37, p = 0.305, Table 4].
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FIGURE 5 | Hypothesis 1.a and 2.a results. Linear regressions between the fronto-parietal network (FPN) functional connectivity during Resting-State (A) and during

Space Fortress multitask (B) as a function of multitask SF score. Note that while the r and R2 are reported for these regressions only, the p-value is based on the

robust multiple linear regression that took into account the video-game expertise co-variate. SF, space fortress; RS, resting-state.

TABLE 4 | Hypotheses and regression results.

Hypothesis Regression model F R2 p p (FC) p (VGexp)

H1.a SF multitask score ∼ rsFC + VGexp 10.65 0.26 0.005** 0.047* 0.007**

H1.b SF monotask score ∼ rsFC + VGexp 3.35 0.09 0.187 0.265 0.125

H2.a SF multitask score ∼ otFC + VGexp 14.07 0.32 <0.001*** 0.005** 0.009**

H2.b SF monotask score ∼ otFC + VGexp 2.37 0.08 0.305 0.565 0.179

SF, Space Fortress; rsFC, resting-state functional connectivity; otFC, on-task functional connectivity; VGexp, video game expertise. Bold values represent significant results. *p < 0.05;

**p < 0.01; ***p < 0.001.

3.3.3. Space Fortress Sub-scores Contribution to

Resting-State Functional Connectivity Prediction
Because a positive relationship was found between the FPN
functional connectivity during RS and SFmultitask performance,
we investigated from post-hoc correlations4 to what extent the
sub-scores contributed to this relationship. Note that these
analyses were done on only 29 participants. The results (see
Figure 6) gave a significant and positive correlation between the
FPN mean functional connectivity and the Flight sub-score (r =
0.43, p = 0.036); a positive but non-significant correlation with
the Fortress sub-score (r = 0.23, p = 0.210); and no significance
with the mine and bonus sub-scores (r = −0.08, p = 1, r =

0.06, p = 1, respectively, Figure 6).

4. DISCUSSION

The main aim of this study was to investigate the neural
markers of performance in a complex and semi-ecological
task (the SF video game) with fNIRS functional connectivity

4Note that the p-values reported in this section are corrected with the Holm-
method for multiple comparisons.

analyses performed during both Resting-State and on-task. We
hypothesized that intrinsic functional connectivity within the
FPN can predict the performance on the complex version of
SF, but not on the simple one. Our results are in favor of this
hypothesis as we observed a significant relationship between the
intrinsic functional connectivity of the FPN and SF multitask
performance. These associations were positive and significant
for the complex SF version, but not significant for the simple
SF version. In addition, we observed the same pattern for on-
task functional connectivity and on-task performance, and this
relationship was stronger using on-task functional connectivity
compared to intrinsic functional connectivity.

For the purpose of this article, we developed a functional
connectivity methods adapted to fNIRS data. Indeed, unlike
fMRI, fNIRS does not measure whole brain activity due to the
limited number of sensors and its depth resolution (i.e., 1 or 2
cm). Instead, fNIRS users need to select relevant cortical areas
to be measured. According to our hypotheses, we wanted to
focus on the executive functions network. We therefore targeted
functional connected brain regions defined in the literature
(Niendam et al., 2012): the middle and superior frontal gyri in
the frontal lobe; and the inferior and superior parietal lobules in
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FIGURE 6 | Correlations between Space Fortress sub-scores and average functional connectivity of the FPN during the RS (A) mine score, (B) bonus score; (C) flight

Score, (D) fortress score. SF, space fortress; RS, resting-state.

the parietal lobe. Despite a superficial cortical regions coverage,
we were able to perform a relevant measure of average functional
connectivity within these fronto-parietal brain areas which could
be easily transferred to future studies using similar material.

The analyses revealed a highly positively correlated network
in our sample, with an average correlation (at rest or during
task) of 0.5 in the whole network, ranging between 0.3 and 0.8
for all participants (no participants had a negative value). This
high degree of functional connectivity within the FPN highlights
that the choice of optodes positioning was coherent. It also
provides additional evidence that functional activity in areas that
constitute this network are correlated. This result seems robust
as it has been shown with various metrics (Cole et al., 2010).
Additionally, a recent fNIRS study (Baker et al., 2018) showed
a high degree of coherence within this network, which have been
observed during both RS and during a working-memory task.

These results underscore the fact that whole-brain
measurements (i.e., measured by fMRI) are not mandatory
to perform relevant functional connectivity for neuroergonomics
purpose. Moreover, the methods developed here (average
functional connectivity) is interesting because it uses basic

pre-processing and simple functional connectivity analyses,
and can therefore be easily reproduced and adapted to other
networks. Coupled with the numerous advantages of fNIRS
(high portability, low cost, less susceptible to artifacts, Nam,
2020), this methodology may have widespread applicability in
the fNIRS and neuroergonomics field (Gramann et al., 2017).

The main finding of this study is the significant relationship
observed between intrinsic average functional connectivity of the
FPN and SFmultitask performance. Indeed, this neural marker at
rest explained a significant part of the performance variance. This
result is in accordance with previous work that highlighted the
role of the FPN in high-level cognitive functions implementation.
Meta-analytic evidence is in favor of a distributed large network
constituted of frontal and parietal areas where functional activity
supports a broad range of executive functions (Niendam et al.,
2012), which are typically recruited when dealing with complex
and novel tasks (Miyake et al., 2000; Friedman et al., 2008;
Friedman and Miyake, 2017). Moreover, intrinsic functional
connectivity of this network has already been shown to predict
performance in cognitive tasks involving working memory and
intelligence in an fMRI study (Cole et al., 2012).
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This result is also coherent with a study that showed functional
modifications of the FPN while participants were trained with
SF (Lee et al., 2012a). As this network arguably plays a key role
in complex task performance, tasks or training methods that
modify this network may be able to also modify the efficiency
of high-level cognitive functions underpinned by this network.
To support this direction, some studies showed that SF training
benefits may be transferred to specific tasks such as the N-back
task or the Raven’s matrices (Boot et al., 2010).

From the conclusions drawn by previous studies, we argue
now that the intrinsic average functional connectivity of the FPN
may reflect its efficiency in the implementation of high-level
executive functions, with better connection efficiency between
nodes (Cole and Schneider, 2007; Duncan, 2010; Cole et al., 2012;
Gong et al., 2016). This intrinsic characteristic within the network
would allow individuals to more efficiently recruit higher-level
cognitive functions while performing complex tasks such as the
SF multitask version.

Yet, our regression post-hoc results between the intrinsic
average functional connectivity of the FPN and SF sub-tasks
performance showed significant results solely for the flight score.
A plausible explanation could be that the FC of the FPN is
not directly related to the involvement of different executive
functions but rather to the management of them when there is a
need to dynamically adapt in order to achieve amultidimensional
task (i.e., doing the four subtasks at the same time). The
handling of the ship corresponding to the flight sub-task, should,
therefore, induce some level of multitasking itself as the player
has to control it, avoid being hit and collisions and manage
missile stock.

Another finding of this study is the positive relationship
observed between on-task average functional connectivity of
the FPN and SF multitask performance. This result was
expected and is similar to the one obtained with the intrinsic
functional connectivity. It can be explained by taking the same
rationale as above. However, it should be highlighted that
this relationship is slightly increased compared to the rest (an
explained variance of 0.19 vs. 0.14), suggesting that the FPN
functional connectivity is dynamic and may be different during
rest and during a task. Considering that the fronto-parietal
brain areas are more activated and may be more functionally
connected in participants that perform better during a cognitive
task (Niendam et al., 2012), this result is not surprising. Such
result may also be in line with advances in dynamic network
neuroscience that highlighted the complex relationship between
cognitive functions and brain networks dynamics (Preti et al.,
2017; Hartwigsen, 2018; Michel and Koenig, 2018). Recent
studies showed that the variability of functional connectivity
in frontal and parietal brain areas were related to working
memory and executive function tasks (Douw et al., 2016; Nomi
et al., 2017). Another study found that the FPN was able to
reconfigure itself (i.e., the interactions between the modules
forming this network were flexible) while performing a working-
memory task compared to rest (Braun et al., 2015). Further
studies may be able to explore and investigate this question
using both fNIRS and dynamic functional connectivity methods
(Preti et al., 2017).

Contrary to multitask, monotask performance were not
predicted by either intrinsic or on-task average functional
connectivity of the FPN. Our interpretation is that this easier
version of the game—that was created as a control task—does
not require the involvement of high-level cognitive functions
like in the more difficult multitask version. Performance at the
monostask would be therefore independent of the strength of the
connectivity within the FPN.

Our study also reveals the importance of considering more
ecological tasks as a useful bridge between fundamental and
applied research. Indeed, tasks such as SF are more complex
and engaging than conventional laboratory tasks such as the n-
back (Jaeggi et al., 2010), the Stroop (Vendrell et al., 1995), or
the Wisconsin Card Sorting Test (Anderson et al., 1991), with
the additional benefit of being more convenient to study than
ecological or real life tasks such as flying a plane or performing a
surgery. Furthermore, the precise cognitivemechanisms involved
in SF have not been precisely evidenced and need to be assessed
in future studies, although part of them are inherent to the nature
of the task (such as working memory or divided attention).

On the practical level, the assessment of a neural marker of
complex task performance is of particular interest in the context
of neuroergonomics. Even when considering the shortcomings
of the fNIRS measures and our methodology (a lower and less
precise spatial resolution than fMRI and a single averaged value
of the functional connectivity of the FPN), we were still able
to extract a relevant predictor of SF multitask performance.
Moreover, after several hours of training, SF performance is
known to reach a plateau phase (Mathewson et al., 2012). Future
longitudinal studies might consider investigating if there are
neural markers of the rapidity to attain this plateau phase, or
if there are neural markers of long-term performance in this
task, after several months without practice. This kind of research
is invaluable for the neuroergonomics field as it opens up the
possibility to extract similar markers for more complex tasks
such as piloting a plane or performing a surgery. Along with
other physiological, behavioral, and socio-cultural markers (such
as expertise and knowledge), such marker could also potentially
be used either as a predictive tool for selection purposes or as an
opportunity to elaborate individualized cognitive training.

Besides the already discussed limits, another possible
improvement would be in the sample size. The number of
remaining participants was smaller than expected (n = 32 instead
of the 41 first included). Although larger than most fNIRS
studies (Herold et al., 2018), this resulted in a moderate-powered
study, which should be a concern, especially considering the
recent reproducibility crisis in neurosciences and psychology
(Collaboration et al., 2015). Indeed, small samples tend to
produce false positives (Button et al., 2013). Having greater
statistical power in studies is a challenge that all science fields,
including neuroergonomics, need to better tackle in the future.

As a conclusion, we provided evidence that fNRIS—a portable
and accessible brain imaging tool—can be used to assess large
scale cortical networks. Intrinsic average functional connectivity
within the fronto-parietal network was found to predict complex
task performance. Moreover, both on-task and Resting-State
functional connectivity metrics seem to be sensitive enough to
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predict a part of behavioral performance. This result is worth
considering for the neuroergonomics field as future studies
should try to use a similar method to extract the neural markers
of more complex and ecological tasks.
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