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Transfer from experiments in the laboratory to real-life tasks is challenging due notably to

the inability to reproduce the complexity of multitasking dynamic everyday life situations

in a standardized lab condition and to the bulkiness and invasiveness of recording

systems preventing participants from moving freely and disturbing the environment.

In this study, we used a motion flight simulator to induce inattentional deafness to

auditory alarms, a cognitive difficulty arising in complex environments. In addition, we

assessed the possibility of two low-density EEG systems a solid gel-based electrode

Enobio (Neuroelectrics, Barcelona, Spain) and a gel-based cEEGrid (TMSi, Oldenzaal,

Netherlands) to record and classify brain activity associated with inattentional deafness

(misses vs. hits to odd sounds) with a small pool of expert participants. In addition to

inducing inattentional deafness (missing auditory alarms) at much higher rates than with

usual lab tasks (34.7% compared to the usual 5%), we observed typical inattentional

deafness-related activity in the time domain but also in the frequency and time-frequency

domains with both systems. Finally, a classifier based on Riemannian Geometry principles

allowed us to obtain more than 70% of single-trial classification accuracy for both mobile

EEG, and up to 71.5% for the cEEGrid (TMSi, Oldenzaal, Netherlands). These results

open promising avenues toward detecting cognitive failures in real-life situations, such

as real flight.

Keywords: electroencephalography, machine learning, Riemannian Geometry, flight simulator, inattentional

deafness, Event-Related Spectral Perturbation (ERSP), mobile EEG, neuroergonomics

1. INTRODUCTION

Neuroergonomics is a recent field of research that promotes the use of portable brain imaging to
investigate complex cognitive processes that are difficult to observe and measure under laboratory
settings (Parasuraman, 2003; Dehais et al., 2020a; Gramann et al., 2021). In this regard, recording
systems have to fulfill certain requirements in terms of bulkiness, portability, sensitivity, and
specificity (Hettinger et al., 2003; Somon et al., 2021). For instance, functional MRI (fMRI) or
Magneto-Encephalography (MEG) strongly constrain volunteers freedom of movement to prevent
signal contamination. They also often require long acquisition processes and the presentation of
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basic stimuli in a repetitive fashion due to the low signal-to-
noise ratio (SNR). These settings negatively affect participants’
motivation and render difficult the reproduction of critical
real-life phenomena. One such phenomenon is inattentional
deafness: the propensity to remain unaware of unexpected but
perfectly audible sounds (Macdonald and Lavie, 2011; Dalton
and Fraenkel, 2012). The occurrence of these failures of auditory
attention has been shown to have devastating consequences in
real life scenarios such as in the aviation or medical domains
(refer to Dehais et al., 2019c for a review). In experimental
contexts, inattentional deafness has been assessed through several
experimental paradigms including auditory oddball paradigms,
during which the participant is required to detect infrequent
target sounds and ignore frequent distracting ones. At the
behavioral level, inattentional deafness is characterized by an
increased miss rate (undetected target sounds) compared to
hits (detected targets). At the neurophysiological level, using
this kind of paradigm, Molloy et al. (2015) used MEG
to investigate the underlying neural mechanisms supporting
inattentional deafness. Despite interesting findings, they failed
to induce auditory misses in a lab context, preventing them
from performing the expected contrast (i.e., hit vs. miss). To the
authors’ knowledge, only one lab study managed to identify the
neural correlates of inattentional deafness with fMRI (Durantin
et al., 2017). To this aim, the authors placed their participants in a
challenging aerobatic flight scenario using goggles and a joystick
placed outside of the fMRI. They obtained a 35% auditory miss
rate yielding them to discriminate evidences of the activation of
an attentional bottleneck mechanism that, in return, inhibits the
auditory cortex when sounds failed to reach an awareness.

In the frame of neuroergonomics, electroencephalography
(EEG) represents an alternative approach to observing this
phenomenon under more ecological settings. Following this
approach, Dehais et al. (2019c) equipped their participants with a
research grade EEG system in a realistic motion flight simulator
and obtained a 58% miss rate using a modified auditory oddball
paradigm. At the event-related potentials (ERP) level, their
results disclosed usual oddball-related activities: i) a negative N1
component, peaking frontocentrally 100 ms after both frequent
and target sounds display, which is associated with the physical
and temporal characteristics of the stimuli (Näätänen and Picton,
1987), and ii) a positive P3 ERP, emerging at parietal sites
roughly 350 ms after target sound display, which is associated
to the cognitive and higher order processing of the stimulus
(Segalowitz and Barnes, 1993; Luck andKappenman, 2011; Justen
and Herbert, 2018). Interestingly, they also observed a lower N1
and P3 amplitude for auditory misses compared to hits. The
high miss rate allowed them to implement machine learning
techniques to classify hits vs. misses with 70% of accuracy, paving
the way for the implementation of neuroadaptive technology
in the cockpit (Fairclough and Lotte, 2020). However, Dehais
et al. (2019c) used a cumbersome EEG system that might not be
suitable for everyday life operations since it requires i) very long
and sometimes painful set-up time, and ii) the use of a conductive
gel which can be inconvenient and may dry over time, thus,
lowering the SNR (Di Flumeri et al., 2019). Recent technological
advances have allowed the development of gel-free pre-amplified

dry-electrode systems providing freedom of movement for the
users and even enabling the on-line streaming and processing of
electrophysiological data (Di Flumeri et al., 2019). Such systems
were used in real-flight conditions to investigate inattentional
deafness to auditory alarms and provided both consistent and
complementary findings to better understand the onset of this
phenomenon (Callan et al., 2018; Dehais et al., 2019b). Despite
their success to measure the brain in the wild, dry electrodes
remain uncomfortable and even painful when worn over long
periods of time (usually more than 40 min) as suggested by
the participants of these studies, and observed on a comfort
evaluation in Di Flumeri et al. (2019).

Fortunately, other solutions have arisen to monitor brain
activity in the most transparent way for the user. For instance,
the cEEGrid (TMSi, Oldenzaal, Netherlands) system is a ten-
printed-electrode flexible fixed around the ear EEG. Similar
to usual cap-EEG, they have been used to investigate EEG
activity in lab conditions (Bleichner et al., 2016), during sleep
(Sterr et al., 2018), walking (Hölle et al., 2021) but also driving
(Wascher et al., 2019). Yet, their portability and quick set-
up time make them more suitable for mobile EEG measures
(Di Flumeri et al., 2019; Somon et al., 2021). In addition to
long-term frequency measures (Sterr et al., 2018; Wascher et al.,
2019), the cEEGrid has also proven efficient to record usual
ERPs (Debener et al., 2015) showing similar components to
usual cap EEG associated with oddball paradigms and visual
Simon task (Pacharra et al., 2017). Even though the cEEGrid
only bears 16–20 electrodes in the processing stage [depending
on the amplifier used; Debener et al. (2015), Sterr et al. (2018),
Somon et al. (2019)], several usual data-processing algorithms
(i.e., ASR or ICA) can still be used for artifact removal (Bleichner
andDebener, 2019; Blum et al., 2019). This gel-based unobtrusive
system seems very fit for neuroergonomics studies over many
hours with steady impedances (Debener et al., 2015). Yet it has
to be mentioned that, unlike usual cap-EEG, the cEEGrid has
very specific electrode locations, rendering the use of certain
signal processing tools difficult, or the study of certain activities
(i.e., from the prefrontal cortex) impossible. Finally, the data
course recorded at these electrode sites can be different from
those recorded at standard 10–20 electrode sites, even though
they have been correlated with cap-EEG recorded ERP (Bleichner
et al., 2016; Pacharra et al., 2017). Indeed, the cEEGrid (TMSi,
Oldenzaal, Netherlands) also showed ERP patterns different from
usual ones when considering the various electrode locations (e.g.,
bottom electrodes in Debener et al., 2015).

Alternatively, solid gel electrodes may provide a good
compromise in terms of SNR, user comfort, and ease of use
(von Lühmann et al., 2017; Di Flumeri et al., 2019). They have
been used in few studies and show, similarly to the cEEGrid,
a high degree of usability, comfort (Di Flumeri et al., 2019),
and resistance measures over several hours [lowest impedance
4 h post-setup compared to dry and pasted electrodes; Toyama
et al. (2012)]. Unlike the cEEGrid, dry electrodes are usually
located on cap-EEG, thus, removing the difficulty of electrodes
locations, thereby ERP time-course, differences. In addition,
Di Flumeri et al. (2019) observed consistent impedance, but
also power spectral density measures across time. Solid-gel
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based electrodes, thus, seem very fit for real-life scenarios
recording. Two difficulties concerning the use of solid-gel,
compared to cEEGrid EEG, still remain: i) data presented in
these studies only portray spectral activity, not revealing the
efficiency of solid-gel to measure and analyze temporal (ERP)
and time-frequency (ERSP) data (Di Flumeri et al., 2019); and
ii) unlike the cEEGrid, their obtrusiveness leads to decreased
transparency still disrupting the engagement of participants in
more ecological tasks.

In the present study, we test the feasibility to measure the
electrophysiological correlates of inattentional deafness in a
flight simulator using two different comfortable unobtrusive
EEG systems. We performed concurrent EEG recording with a
cEEGrid system placed around each ear and solid gel electrodes
spread over the scalp. The experimental scenario consists in
performing two critical approaches and landings similarly to
Dehais et al. (2019c). Along with the flying task, pilots are
presented with an auditory oddball and have to click on the
side-stick trigger when they hear odd/deviant sounds. Our first
objective is to determine whether we can extract time, frequency
and time-frequency domain features over the EEG signals from
the cEEGrid and the solid gel electrodes to discriminate auditory
misses and hits at the statistical level. More precisely, according
to the literature, we expect to detect both the oddball-related
N1 and P3 ERP components with the solid-gel-based electrodes
and the cEEGrid system (Hölle et al., 2021). We also expect
variations at the frequency and time-frequency levels taking the
form of increases in the alpha (α)—repeatedly associated with
hypovigilance and fatigue (Campagne et al., 2004; Borghini et al.,
2014)—and theta (θ) activity with increasing fatigue and time
on task (Craig et al., 2012). These patterns, already observed in
real flight and flight simulation studies (Poussot-Vassal et al.,
2017; Dehais et al., 2019a) with usual cap EEG, associated
with the consistency of spectral variations observations across
time for both the cEEGrid (Sterr et al., 2018) and solid-
gels (Hölle et al., 2021) seem relevant candidates for oddball
responses discrimination.

Going further in the frame of neuroergonomics, a second
objective is to test the feasibility of an off-line passive Brain-
Computer Interface (pBCI) to infer inattentional deafness and to
compare the accuracy of the two EEG systems. The experimental
conditions, involving a motion flight simulator, represent a
relevant test-bed to assess the signal quality of the two EEG
systems given that the flying task and the flight simulator
environment are respectively prone to muscular artifacts (eyes,
head, and armsmovements) and electromagnetic contamination.

2. MATERIALS AND METHODS

2.1. Participants
Eleven participants took part in this experiment (2 women, 10
right-handers, age 23 ± 2.05 y.o.). They were healthy, had no
visual or hearing impairment as attested by their flying certificate,
and were not under any medication. All the participants were
familiar with piloting: they were either undergoing or had passed
the French piloting license (PPL). The study was approved by the
Institutional Review Board of the local French ethics committee

TABLE 1 | The average number of sounds (± SEM) presented to the participants

during flight simulation for each run.

Odd Standard Total

Flight simulator 141.3± 5.13 423.4± 14.48 564.7± 18.9

Normal visibility 68.4± 3.74 210.1± 9.51 278.5± 12.72

Low visibility 72.9± 1.96 213.3± 5.88 286.2± 7.53

(Comit d’Evaluation Ethique de l’Inserm, IRB00003888-18-460)
and conducted according to the principles expressed in the
Declaration of Helsinki. Participants provided a written informed
consent prior to the experiment.

One participant was removed from further analyses due
to difficulties using the flight simulator and performing the
required tasks.

2.2. Experimental Tasks and Procedure
During this experiment, participants had to perform a flight
simulation composed of two runs with varying visibility levels.
During both runs, they were asked to perform a usual auditory
oddball task, concurrent to the piloting task.

2.2.1. Oddball Task
During the experimental session, participants were presented
with an auditory oddball task. They had to ignore the frequent
non-target sounds and use the trigger of the side-stick to respond
to the auditory targets. The frequent and odd sounds were two
different auditory stimuli (chirp sounds - FS = 44, 100 Hz,
0.1 s duration) presented to the participants: an increasing-
frequency sound (up-chirp) and a decreasing one (down-chirp)
(Artieda et al., 2004). Sounds were generated withMATLAB (The
MathWorks, Natik, USA) and displayed using the Psychophysics
Toolbox extensions (Brainard, 1997; Kleiner et al., 2007). The
inter-stimulus interval was set at 1.5 s to which a random jitter
drawn from the standard uniform distribution between 0 and
2 s was added. Standard sounds were presented with a 75%
rate and odd sounds with a 25% rate. The type of sound (i.e.,
up-chirp and down-chirp) associated with standard and odd
sounds was counterbalanced across participants (5 participants
had the up-chirp as the target, and 5 had the down-chirp), but
stayed the same across the two runs (with the two visibility) for
each participant. The total number of sounds presented varied
across participants according to the time it took them to perform
the simulation. The average ± SEM number of sounds across
participants is presented in Table 1.

2.2.2. Flying Simulator and Scenarios

2.2.2.1. Flying Simulator
The flying task was performed using the ISAE-SUPAERO three-
axis (roll, pitch, and height) motion flight simulator designed
by the French Flight Test Center which simulates a twin-engine
aircraft flight model. It is composed of the classical actuators
(side-stick, rudder, throttle, flaps lever, and autopilot), and
displays the simulated environment on eight screens disposed
of in a semi-circle outside the cockpit (refer to Figure 1A).
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FIGURE 1 | (A) Three-axis motion flight simulator at ISAE-SUPAERO. (B) Localization of the cEEGrid electrodes for both ears with recording reference (blue) and DRL

(green) electrodes indicated. Electrodes R4a and R4b on the right grid were not recorded on our set-up. Layout adapted from the cEEGrid plugin (Martin G. Bleichner,

2019) in EEGLAB (v.2019.1) (Delorme and Makeig, 2004). (C) Localization of the left ear grid when fitted around the ear of a participant after cleaning and preparing

the skin of the participant. (D) Illustration of a dry electrode with pins from the Enobio device (left) and the same electrode encapsulated with solid gel that has the

consistency of silicone (right) to avoid discomfort or even pain.

Inside the cockpit, the user interface is composed of a Primary
Flight Display, a Navigation Display, and an Electronic Central
Aircraft Monitoring Display page. Two stereophonic speakers
located under the displays on each side of the cabin are used to
broadcast continuous engine sounds and to trigger the oddball
sounds. Finally, the flight simulator environment enables the
configuration of the visual environment (e.g., the moment of the
day, visibility, wind and weather conditions).

2.2.2.2. Flying Scenario
Participants had to perform two flight scenarios (i.e., runs)
which consisted in performing an approach under two different
visibility conditions (i.e., low vs. normal visibility). Both scenarios
were composed of an approach and landing on the right runway
of Toulouse-Blagnac airport (LFBO-14R). This scenario is an
adaptation of the VOR-DME arc approach and landing, and
has already been tested in a previous experiment successfully
inducing inattentional deafness (Dehais et al., 2019c). The aircraft
position was initialized at 20 nautical miles (NM) from the
airport, at an altitude of 4, 000 feet (ft), a heading of 345◦, and a
speed of 170 knots (kts). First, participants had to make a U-turn
on the left to come back to a 200◦ heading while descending to an
altitude of 3, 000 ft. When reaching a 12 NM distance from the
airport, participants had to turn to the west (heading 270◦) until
they intercepted the runway axis using the instrument landing
system (ILS–a system that sends radio waves to guide the pilot to
the runway). Once intercepted, the pilots had to take a heading of
144◦ in order to line up with the center line of the runway. At a
5 NMdistance from the landing ground, they had to reduce speed
to 130 kts to initiate the final descent until they landed on the
runway. To increase the workload in both scenarios, we added a
crosswind component throughout the flight, whichmade the task
of heading tracking more demanding.

Finally, we manipulated the visibility in order to introduce
variations in the runs and to avoid training effects. The repetition
of these approaches and landings also allowed us to maximize the
number of episodes of inattentional deafness (these final flight
phases being particularly demanding and engaging Dehais et al.,

2019c), which is of great importance to improve the SNR for the
electrophysiological analyses (i.e., ERPs). The two visibility levels
were introduced as separate runs one after the other in random
order. In the normal visibility (NV) run, there was a clear sky
with no clouds. In the low visibility (LV) run, a very thick layer of
clouds was implemented to decrease the visibility on the landing
ground. This manipulation is not expected to induce an increased
cognitive load, as participants were performing instruments-
based landings which require focusing on flight parameters until
the runway appears at the very last moment of the scenario in the
two cases. Each run took roughly 15 min (14.57 ± 0.34 min on
average) to perform.

2.2.3. Procedure
Upon their arrival, participants were asked to read and sign the
informed consent form stating that they were willing to take part
in the experiment. After a quick overview of the imminent tasks,
the two cEEGrid (TMSi, Oldenzaal, Netherlands) for the right
and left ear (refer to Figures 1B,C) were positioned according
to the manufacturer and literature recommendations (Mirkovic
et al., 2016; cEEGrid - Stefan Debener, 2019). After verifying the
impedance of the electrodes and data quality on the BrainVision
Recorder software (Brain Products GmbH, Gilching, Germany),
the 8-dry-electrode Enobio cap was positioned and electrode
locations (Fpz, Fp1, Fp2, Fz, Cz, Pz, C3, and C4) were verified to
fit the International 10–20 layout (Jasper, 1958). Next, impedance
and data quality were checked on the NIC2.0 (Neuroelectrics,
Barcelona, Spain–v2.0.11.1) software. Participants were finally
installed in the flight simulator where they were provided the
exact flying and approach procedure (i.e., the VOR-DME arc
approach described in paragraph 2.2.2.2).

Participants were not familiar with the VOR-DME arc
approach, and had never performed it before. Consequently,
they were asked to perform a first familiarization phase—without
motion—during which they got used to the instruments (i.e., the
PFD and ND, the ILS and VOR systems) and dynamics of the
flight simulator. This phase was shorter than the experimental
flying scenarios, as the aircraft’s starting position was at the 200◦
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heading, 15 NM from the airport. No wind was added during
the familiarization phase, and the visibility was clear. During this
phase, participants were also trained with the oddball sounds and
the side-stick trigger they had to press every time they heard a
target/odd sound.

When participants felt comfortable with the flight simulator,
the experimental phase was launched. The order of the two
runs was counterbalanced across participants: 5 started with the
low visibility scenario and 5 with the normal visibility one. An
emphasis was made for all participants on the fact that no task
(flight simulation or oddball) should be prioritized over the other.

3. MEASURES AND ANALYSES

All the behavioral and physiological data were streamed,
recorded, and synchronized through the LabStreaming Layer and
associated apps (Kothe et al., 2019).

3.1. Behavioral Data
Participants’ behavioral responses were continuously streamed
from the flight simulator via LSL at a 100 Hz frequency rate.
Response type and reaction times (RT) were extracted and
analyzed a posteriori with MATLAB (The MathWorks, Natik,
USA). There were on average (mean ± SEM) 75.5 ± 0.65%
standard and 24.5 ± 0.65% odd sounds for the normal visibility
task, and 74.5±0.32% standard and 25.5±0.32% odd sounds for
the low visibility scenario. On average, less than 3 false positives
(i.e., responding to a standard sound) and late responses (i.e.,
responding to an odd sound more than 2 s after sound display)
were observed per participant. Based on these, hit and miss rates
were computed for each participant, in every condition (i.e., low
and normal visibility), respectively, as the number of correctly
detected targets and the number of targets not responded to over
the total number of odd sounds. In addition, based on the Signal
Detection Theory, the d’ coefficient was computed as ameasure of
sensitivity to the sounds for each experimental condition (Swets
et al., 1961; Anderson, 2015). Finally, RT were computed as
the time delay between the sound display and the participant’s
response. Late responses (RT > 2 s) were not considered in
the analysis.

Miss rate, d’ and RT were analyzed with MATLAB (The
MathWorks, Natik, USA) with a pairwise t-test with visibility
(low visibility vs. normal visibility) as a within-subject factor.
In addition, for each condition, the difference of the d’ from 0
was tested with a t-test, showing whether odd sound detection
was higher than chance or not. All results are reported
as mean± SEM.

3.2. Electroencephalography
In order to assess the usability and comfort of several mobile
EEG recording systems, two different systems were tested: a
cEEGrid (TMSi, Oldenzaal, Netherlands) system and a dry-
electrode Enobio (Neuroelectrics, Barcelona, Spain) system.
The electroencephalography (EEG) was continuously recorded
and synchronized with the LabStreaming Layer from these
two systems.

3.2.1. cEEGrid EEG Recording System
cEEGrids are C-shaped around the ear adhesive 10 Ag/AgCl
arrays which allow recording electrical brain activity non-
invasively, unobtrusively, and are very portable (Bleichner et al.,
2016). On each grid (left and right ear), one electrode can be
used as reference (L4a/R4a respectively on the left and right
ear) and one other as driven right leg, or DRL (L4b/R4b–
refer to Figure 1B). The other 8 electrodes on each grid (L1-
L8 and R1-R8) are recording channels. On our set-up (refer to
Figures 1B,C), the L4a and L4b electrodes were the references
and DRL electrodes for both grids.

After cleaning and preparing the skin around each ear with
an abrasive paste and alcohol, a small amount of electrolyte
gel was applied on each of the 10 electrodes of each grid (as
recommended on the cEEGrid website cEEGrid - StefanDebener,
2019). The two grids were then positioned around each ear
with a double-sided adhesive and hard-wire-connected together
and onto an adaptor (ActiCap) specifically designed to connect
the cEEGrids to a LiveAmp Bluetooth 24-bit DC-amplifier
(Brain Products GmbH, Gilching, Germany). As mentioned in
Mirkovic et al. (2016), electrode locations can vary slightly from
one participant to another. Data were collected wirelessly via
Bluetooth at 500 Hz through the LSL LiveAmp Recorder app.

3.2.1.1. Pre-processing
cEEGrid data were analyzed using EEGLAB software (v.2019.1)
(Delorme and Makeig, 2004) on MATLAB (The MathWorks,
Natik, USA)(v.2019a). Several steps were performed to i) extract
spectral bands of interest, ii) denoise and clean data and, iii)
epoch data.

First, raw EEG data were down-sampled to 250 Hz and
band-pass filtered (FIR using Hamming window with order
414 and 1 Hz transition bandwidth). Cutoff frequencies were
adapted according to the requirements for further analyses: [1 −
20] Hz for ERP analyses and [1 − 40] Hz for frequency and
time-frequency analyses. Due to the ecological context and the
nature of the cEEGrid electrodes, an extensive and carefully
designed denoising procedure has to be performed. Artifact
Subspace Reconstruction (ASR) was used as a primary step as
it has been shown to be very effective in cleaning data from
large amplitude artifacts (Chang et al., 2018, 2019; Miyakoshi
and Kothe, 2019). ASR procedure removes artifacts based on a
Principal Component Analysis (PCA) of the covariance matrices
of the data on sliding windows. Covariance matrices that exceed
the pre-defined threshold are projected (e.g., interpolated) on the
leading components of the PCA. We used ASR implementation
from the clean_rawdata function of the clean_rawdata plugin
(ver.2.3) with the following hyper-parameters: highpass set to
off, flatline to 5 s, channel correlation to 0.85, line noise to 4
SDs, burst to 10 SDs, and maximum repaired time windows to
0.45 (i.e. 45%). Hyper-parameters were set following defaults
recommended in the clean_rawdata function. We only increased
the burst and window criteria due to noisier data in the flight
simulator and increased motion artifacts. Next, missing channels
were interpolated and, following the procedure in Hölle et al.
(2021), data were re-referenced to the 6 and 7th electrode of
each grid (L1 to L4 were re-reference to the average of L6 and
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L7, and R1 to R4 were re-referenced to the average of R6 and
R7). This procedure allows to analyze vertical bipolar derivations,
and is expected to yield the highest amplitude (Debener et al.,
2015; Bleichner et al., 2016). Next, data were corrected for
remaining artifacts through a standard Independent Component
Analysis [ICA; Makeig et al. (2004)]. Components corresponding
to artifacts were automatically detected and removed using
the ICLabel plugin (Pion-Tonachini et al., 2019): components
labeled at more than 70% as eye, muscle, bad electrode, or other
artifact components.

Finally, data were epoched time-locked to the sound stimuli,
between −200 and 1, 000 ms around the standard and odd
sounds for ERP analyses, and between −1 and 1.5 s around the
standard and odd sounds for spectral analyses. Epoched data for
ERPs were baseline-corrected in the −200 to 0 ms time-window
before the stimulus.

Two participants had to be removed from the cEEGrid
analysis due to large noisy portions of the signal, therefore
unusable, after the pre-processing steps described above. For
the remaining 8 participants, epoched data were averaged
for each experimental condition separately according to the
type of stimulus and response of the participant to target
sounds (hits and misses) but also to the visibility level (normal
vs. low visibility). Usual ERPs and power spectral densities
(PSD) were computed. PSD was obtained with a Welch
periodogram using a 250 ms window and no overlap. Finally,
time-frequency measures (Event-Related Spectral Perturbations–
ERSPs) were computed with wavelets implementation from
EEGLAB (v.2019.1) (Delorme and Makeig, 2004) with 40
frequencies in the [3 − 40] Hz window, 3 wavelet cycles at the
lowest frequency, an increasing factor of .8 and 250 time-points
in the −442 to 938 ms time window. At first, we observed the
data according to the stimulus-response pattern to target sounds
(hits vs. misses) and visibility (normal vs. low visibility) to gain
insights into inattentional deafness, related activity. In addition,
to avoid differences related to the number of trials for spectral
activity data, an equal number of trials was randomly selected
in each condition at the participant level for frequency and
time-frequency analyses only. In the end, there were on average
42.63± 5.14 trials per participant. Thus, the final analysis focuses
on statistical comparisons according to the stimulus-response
pattern to odd sounds.

Finally, according to previous cEEGrid studies on oddball
paradigms, data at the L2-L3 and R2-R3 electrodes were averaged
and analyzed separately for left and right grids (Debener et al.,
2015; Hölle et al., 2021). In accordance with the oddball-
related and previous cEEGrid studies (Debener et al., 2015;
Somon et al., 2019), visual inspection of ERP data revealed a
negative component around 150 ms—the N1 ERP, having a
later peak on cEEGrid data compared to usual EEG caps—
and a broader positive one starting around 300 ms after
sound display—the P300 component. The P300 is computed
as the average amplitude in the [300 − 500] ms post-stimulus
time window. ERPs, PSDs, and ERSPs were compared for the
odd sounds (hits vs. misses) at each time and/or frequency
point with EEGLAB (Delorme and Makeig, 2004) through a
permutation test with False Discovery Rate (FDR) correction

for multiple comparisons. The statistical significance was set at
α = 0.05.

3.2.2. Enobio EEG Recording System
An 8-dry-electrode Enobio wireless recording system was used
in this experiment in addition to the cEEGrid (TMSi, Oldenzaal,
Netherlands). This system has already proven useful in assessing
inattentional deafness in ecological contexts (Dehais et al.,
2019a). Pins on dry electrodes being sometimes painful when
worn over long periods of time, solid gels were added to them in
order to increase comfort (refer to Figure 1D), given the use of
such technology has already proven useful for spectral analyses
(Di Flumeri et al., 2019). In this study, the electrodes Fpz, Fz,
Cz, Pz, Fp1, Fp2, C3, and C4 from the 10–20 standard system
were mounted (Oostenveld and Praamstra, 2001) and referenced
to the right and left earlobes as CMS and DRL derivations.

As recommended on the manufacturer’s website, the
participant’s head and geltrodes were cleaned with glycerin
before being positioned onto the cap on the participant’s head.
Once the neoprene cap was positioned on the participant’s head,
data were continuously and wirelessly recorded via Bluetooth
connection at 500 Hz through the NIC2.0 software forwarding
the data to the LSL Recorder.

3.2.2.1. Pre-processing
To ensure a fair comparison, Enobio data were analyzed using
a similar pipeline as cEEGrid data with the EEGLAB software
(v.2019.1) (Delorme and Makeig, 2004) on MATLAB (The
MathWorks, Natik, USA). Three main differences were to
be observed: first, frontopolar electrodes were removed from
the analysis, as they induced very bad results with the ASR
correction; then, data were not re-referenced, as they were
already referenced to the CMS and DRL electrodes; finally, no
participants had to be removed from the analysis because of poor
signal quality.

Similarly, raw EEG data were down-sampled to 250 Hz
and band-pass filtered (Hamming window FIR, order: 414,
1 Hz transition bandwidth) between [1 − 20] Hz for ERPs
and [1 − 40] Hz for frequency and time-frequency analyses.
Data were denoised with ASR, interpolated, and cleaned
with automated ICA (using the same parameters as for the
cEEGrid processing). Finally, data were epoched time-locked
to the sound stimuli (−200 to 1, 000 ms for ERPs, and −1
to 1.5 s for frequency data). Epoched data for ERPs were
baseline corrected in the −200 to 0 ms time window before
the stimulus.

One participant was removed from further processing due
to technical failure from the recorder. The nine remaining
participants were then averaged for each experimental condition
separately according to the type of stimulus and response of the
participant to target sounds (hits vs. misses). Usual ERPs and PSD
were computed, as well as ERSPs, with the same parameters as for
the cEEGrid data. In accordance with the literature on oddball
paradigms (Luck and Kappenman, 2011), the Enobio ERP data
were inspected for the N1 component at Cz around 100 ms post-
stimulus (the most negative peak in the [50 − 150] ms post-
stimulus time-window), and the P300 component at Pz starting

Frontiers in Neuroergonomics | www.frontiersin.org 6 January 2022 | Volume 2 | Article 802486

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Somon et al. Classification of Inattentional Deafness in a Flight Simulator

around 300 ms post-stimulus onset (the average amplitude in the
[300− 500] ms post-stimulus time window). Similar to cEEGrid
analyses, ERPs, PSDs, and ERSPs were compared for the odd
sounds (hits vs. misses) at each time and/or frequency point with
EEGLAB (Delorme and Makeig, 2004) through a permutation
test with FDR correction formultiple comparisons. The statistical
significance was set at α = 0.05.

3.3. Classification
Two different classifiers relying on Riemannian Geometry
principles have been used: Minimum Distance to the Mean
(MDM) classifier (Barachant et al., 2012) and classification in
the Tangent Space using a logistic regression referred to as
Tangent Space Classifier (TSC) (Barachant et al., 2012). These
two classifiers, usually applied for active BCI experiments, use
spatial covariance matrices of EEG signals as descriptors. The
covariance matrices are semi-definite positive and, therefore,
lie on a Riemannian Manifold (a subspace of the space of the
Rn × Rn matrices) that has a specific geometry, a curvature.
Riemmanian geometry principles ensure that the geometry of
the manifold is taken into account, especially for distances
computation. For instance, the Euclidean path between two
points is a straight line that goes outside of the manifold, while
Riemann distance, e.g., geodesic distance, is the shortest path
that stays on the manifold (Appriou et al., 2020). MDM classifier
computes a centroid, using geodesic distance, for each of the
given classes. For a new test point, a class is affected according to
the nearest centroid. On the other hand, TSC projects covariance
matrices onto the tangent space of the manifold to produce
features. These features are then fed to a logistic regression
to perform classification. As demonstrated by a comparison
of many algorithms (Appriou et al., 2020), these Riemannian
Geometry Classifiers provide very competitive performances for
passive BCI classification.

As advocated by Lotte (2015), shrinkage (or regularization)
is used for the estimation of covariance matrices. This simple,
computationally efficient, parameter-free method allows to
reduce calibration time but also improve overall performance.
In this study, we used the Schäfer-Strimmer shrinkage estimator
(Schäfer and Strimmer, 2005) as it provides the best results
with little training data. Additionally, data in the majority class
were down-sampled using the classical Tomek Links procedure
to ensure a balanced training dataset. Tomek Links procedure
removes instances of the majority class that are the closest from
samples of the opposite classes (Tomek, 1976). Finally, we applied
a classical 5-fold cross-validation performance estimation.

To summarize, epochs previously extracted for the ERP
analyses (−200 to 1, 000ms around odd sounds stimulation; refer
to section 3.2.1.1) were selected for the Enobio and cEEGrid
recorded data. Covariance matrices with Schäfer-Strimmer
shrinkage estimator were computed for each participant and data
were down-sampled. Then, a 5-fold cross-validation procedure
was applied on the Enobio (9 participants) and cEEGrid (8
participants) data using the MDM classifier and TSC. The results
for each class accuracy (hits and misses), and the overall balanced
accuracy of the classifier were computed.

Balanced classification accuracies were compared for each
system separately (cEEGrid and Enobio) for the two classifiers
(MDM vs. TSC) with pairwise t-test across participants.

4. RESULTS

4.1. Behavioral Data
All participants managed to land safely on the runway in the
two conditions.

There were on average the same number of oddball trials in the
visibility conditions [279 ± 13 in the normal visibility and 286 ±

8 in the low visibility condition—t(9) = −0.86; p = 0.41], and
the same odd/standard rate [75.5±0.65% standard in the normal
visibility and 74.5 ± 0.32% in the low visibility condition—
t(9) = 1.76; p = 0.11]. No significant difference was found
in the miss rates between the normal visibility [33.1 ± 4.85%]
and the low visibility [35.7 ± 6.48%; t(9) = −0.76; p = 0.47]
conditions. Similarly, the sensitivity to sounds (d′) was equivalent
in both conditions [t(9) = 1.75; p = 0.12], and was significantly
greater than 0 in the normal visibility [3.2 ± 0.24, t(9) = 13.52,
p < 1.10−3] and in the low visibility condition [2.7 ± 0.24,
t(9) = 11.57, p < 1.10−3].

Concerning RT, there was no significant difference between
RT to hits in the normal visibility [780.0 ± 31.58 ms] and
the low visibility [797.5 ± 38.28 ms—t(9) = −0.76; p =

0.47] conditions.
Given the absence of difference in the behavioral data, both

runs were grouped for further analysis. Thus, the overall number
of trials was 565 ± 19 with 25 ± 0.41% target sounds. The
global miss rate was 34.7 ± 5.43%, the false positive rate was
1.0± 0.19%, the d′ was 2.8± 0.19 and significantly different from
0 [t(9) = 15.14; p < 1.10−3], and the mean RT to hits was
789.1 ± 32.77 ms (Refer to Figure 2).

4.2. EEG Measures
4.2.1. ERP Analysis
When comparing the two types of stimuli (hits vs. misses), we
observed an N1 component for both peaking around 200 ms
post-stimulus for the cEEGrid and slightly earlier (∼ 100 ms
for the Enobio data (consistently with the literature—refer to
Figure 3 and Table 2). Similarly, we observed a later and broad
P300 component only for hits, with both the cEEGrid and
Enobio systems. Consistently with the literature, no P300 was
observed for misses. Permutation tests revealed a significant
difference between the two conditions at the Pz electrode in
a [500 − 572] ms time window. A significant difference was
also observed between 712 and 716 ms post-stimulus on the
right-sided cEEGrid electrodes.

Even though these data are consistent with the literature, the
amplitude of the N1 and P300 are lower than with the usual cap
EEG. The peak N1 amplitudes and latencies, as well as average
P300 amplitudes for cEEGrid and Enobio data, are reported in
Table 2.

4.2.2. Spectral Analysis
Spectral activity in the two conditions (hits vs. misses) is
presented in Figure 3. Permutation analysis on cEEGrid data

Frontiers in Neuroergonomics | www.frontiersin.org 7 January 2022 | Volume 2 | Article 802486

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Somon et al. Classification of Inattentional Deafness in a Flight Simulator

FIGURE 2 | Behavioral results of the oddball task during flight simulation. Miss rates (%–left), discriminability d′ (a.u.–middle), and reaction times (RT) ( ms–right) are

presented as boxplots for the Normal visibility condition (NV–left-hand side boxplot), the low visibility condition (LV–middle boxplot), and the two conditions grouped

(Grouped–right-hand side boxplot) for each measure. For each boxplot, the red line shows the median and the bottom and top of each box show the 25 and 75th

percentile, respectively.

revealed a tendency for an effect of the type of stimulus (hit vs.
miss; refer to Figure 3) on high-frequency spectral activity in the
β and γ bands: [20 − 40] Hz frequency windows for both the
right and left grid electrodes (ps = 0.062). In addition, the same
tendency was observed in the α frequency band ([7 − 8] Hz) for
the left-sided electrodes (L2+L3) only.

Concerning the Enobio data, permutation tests revealed a
significant effect of the stimulus-response condition in the
high β/low γ frequency bands (> 25 Hz—refer to Figure 3).
This difference was more consistent at the Pz electrode but
also observed at Cz. The average power in the high β band
([25 − 30] Hz) was significantly lower for hits compared
to misses at Pz (−4.14 ± 0.66 µV2 vs. −3.02 ±

0.62 µV2, respectively—p < 0.015) electrode. Similarly,
the average power in the low γ band ([30 − 40] Hz) was
significantly lower for hits compared to misses at Cz (−3.35 ±

0.60 µV2 vs. −5.04 ± 0.67 µV2, respectively—p < 0.03)
and Pz (−5.20 ± 0.75 µV2 vs. −3.73 ± 0.74 µV2,
respectively—p < 0.015) electrodes.

4.2.3. Time-Frequency Analysis
Event-Related Spectral Perturbations revealed a general increase
in power, relative to baseline, for hits and a general decrease
for misses. In addition, as observed through spectral analyses,
there is a global higher activity in the high β/low γ ([20 −

40] Hz) frequency bands for misses compared to hits, as revealed
by the permutation test between the two conditions (refer to
Figure 4) and their statistics. In addition, we can observe on
left-sided electrodes, a significant difference between the two
conditions in the θ frequency band ([4 − 8] Hz) between 260
and 460 ms post-stimulus.

Concerning the Enobio data, the ERSPs also revealed a general
increase in power relative to baseline for hits, and a general
decrease for misses. In addition, and similarly to cEEGrid data,
there is a global increase in the high β/low γ frequency bands
([20−40] Hz) throughout the whole trial. There is, thus, an effect
of the type of trial (hits vs. misses) on the high frequency bands
(refer to Figure 4). In addition, and once again consistent with
the cEEGrid data, we observed a significant effect of the type of
trial on time-frequency measures in the θ band ([4 − 8] Hz) in
the 297−546 ms time-window. Nevertheless, it has to be pointed
that, in this study, we observed a decrease of activity for misses
compared to hits, and that this decrease appears in the low θ

frequencies (as compared to high θ for cEEGrid data).

4.3. Classification
The distribution of classification accuracy over the five cross-
validation steps is presented for both classifiers and each EEG
system in Figure 5.

The MDM classifier (left-hand side of Figure 5) revealed
an average accuracy of 63.52 ± 0.41% to classify cEEGrids
ERPs and of 62.89 ± 0.53% to classify Enobio ERPs with
5-fold cross-validation.

Tangent space classification (right-hand side of Figure 5)
revealed an average accuracy of 71.45± 0.15% to classify cEEGrid
ERPs and of 72.88 ± 0.26% to classify Enobio ERPs with
5-fold cross-validation.

Pairwise t-tests revealed significantly better classification
accuracies with the TSC compared to MDM for the
cEEGrid [t(7) = −3.31; p < 0.05] and the Enobio
[t(8) = −2.77; p < 0.05] systems.
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FIGURE 3 | EEG results in the time (ERPs–left column) and frequency (Spectra–right column) domains for the oddball task during flight simulation. The two first lines

show cEEGrid data, whereas the two last ones show Enobio data. Data are averaged across difficulty levels (refer to sections 3.2.1.1 and 3.2.2.1) and show grand

averages across participants for hits (blue) and misses (red). ERPs are averaged for each type of trial from −200 ms to 1 s around sound presentation (t = 0). Power

Spectral Densities (PSD) are presented with individual means subtracted from spectra. From first to last, lines show the averages at the left grid L2+L3 electrodes, the

right grid R2+R3 electrodes, Cz electrode, and Pz electrode. Black lines at the top of graphs show windows (in time or frequency) where averages for hits and misses

are significantly different. ERPs (in µV ) and spectra (as 10× log10(PSD) in µV2) are presented as mean±SD across participants.

5. DISCUSSION

Recent technological advances in the field of highly portable

neurophysiological sensors offer interesting perspectives to study

brain functioning in the real world (Fairclough and Lotte, 2020;
Gramann et al., 2021). The main motivation of this study

was to benchmark two non-invasive and comfortable ultra-
mobile EEG systems to study inattentional deafness-related brain
activities in a motion flight simulator. First, an ear-centered

10-flex-printed-electrode device (i.e., the cEEGrid); second an
adapted drytrode Enobio system on which solid gels were
inserted to prevent discomfort on the scalp. Participants had
to perform two approaches and final landings along with an
auditory oddball task. These short but intense flight phases were
chosen since previous studies indicated that they are prone to
promote inattentional deafness (Dehais et al., 2019c). The two
approaches had varying visibility (low and normal) to induce
variation and avoid the habituation effect. Indeed, the repetition
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TABLE 2 | Average ± SEM amplitude of the N1 (top part) and P300 (bottom port) recorded with the cEEGrid (left hand-side) around the left ear (first column–an average

of L2 and L3 electrodes) and the right ear (second column–an average of R2 and R3 electrodes), and with the solid gel-based Enobio at the Cz (third column) and Pz (last

column) electrodes.

cEEGrid Enobio

L2+L3 R2+R3 Cz Pz

N1

Hits
−1.51± 0.38 µV −1.04± 0.54 µV −2.00± 0.95 µV −1.69± 0.85 µV

at 171± 4.55 ms at 174± 5.71 ms at 106.44± 9.71 ms at 104.22± 9.36 ms

Misses
−0.71± 0.79 µV −1.95± 0.93 µV −2.93± 1.14 µV −2.72± 1.04 µV

at 196 ± 6.36 ms at 191.5± 8.00 ms at 108.67 ± 10.44 ms at 113.11± 11.40 ms

P300
Hits 1.14 ± 0.77 µV 1.57 ± 0.59 µV 1.12 ± 0.71 µV 1.47 ± 0.57 µV

Misses −0.26 ± 0.36 µV 0.36± 0.63 µV −1.78 ± 0.71 µV −1.06± 0.28 µV

N1 amplitude is computed at its peak latency for hits (first line) and misses (second line). P300 amplitude is computed as the average amplitude in the [300− 500] ms post odd sound

presentation time-window for hits (third line) and misses (last line).

FIGURE 4 | EEG results in the time-frequency domain for the oddball task during flight simulation. Data for hits (top line) and misses (middle line), as well as the

permutation statistics (FDR correction for multiple comparisons) between the two conditions, are shown for the cEEGrid recording at the left hear (average of L2 and

L3–first column) and the right hear (average of R2 and R3–second column), and the Enobio recording at Cz (third column) and Pz (fourth column) electrodes. All data

(except statistics) are presented as the average power (in dB) increase (red data) or decrease (blue data) relative to baseline with a common baseline across conditions

(hits vs. miss) for each electrode or electrode average. Statistics (third line) show the statistical significance as obtained with the p− value revealing a significant

difference (red) or not (green) between the compared conditions (hits vs. misses). The x-axis shows the time course of data across the 250 time-points selected in a

−442 to 938 ms time-window centered on stimulus display (t = 0). The y-axis shows the frequency range (log-scale between 3 and 40 Hz) across which 40

frequencies were selected for wavelet decomposition.

of these two scenarios allowed us to maximize the number of
episodes of inattentional deafness to improve the SNR of our
electrophysiological analyses (i.e., ERPs). During these two runs,
brain activity was recorded continuously and concurrently with
the two systems and analyzed in the time (ERPs), frequency
(PSDs), and time-frequency (ERSPs) domains. A further single
trial classification was then performed. Thesemeasures were used
as objective measures to benchmark these two EEG systems.

The behavioral results showed the efficiency of the two
scenarios to promote, high rate of auditory misses (i.e., ∼35%

compared to the 2% miss rate across laboratories in an inter-
lab experiment—Alexander et al., 1994). The miss rate, mean
reaction time, and discriminability (d′) were identical across the
two scenarios which both involved final approach and landing
that are known to be particularly demanding and engaging
(i.e., they involve the supervision of flight instruments to
reach a final destination; Dehais et al., 2019c). This similarity
is consistent with our expectation as these instrument-based
landings do not require outside visibility except at the very
last minute for approach and landing on the runway. Also,
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FIGURE 5 | Boxplots of the balanced accuracy distribution over the 5-folds cross-validation for the Minimum Distance to the Mean classifier (MDM–left-hand side)

and the Tangent Space Classifier (TSC–right-hand side) for the cEEGrid (blue) and the Enobio (red) data. For each box, the central red line corresponds to the median,

the top and bottom edges indicate the 25 and 75th percentiles, and the whiskers extend to the most extreme data points not considered outliers. *p < 0.05.

the average discriminability values across the two runs (mean
d′ = 2.8 ± 0.19 > 0) demonstrates that the failure to
detect alarms is not due to more difficulties to identify the
auditory stimuli, but evidently to the challenging flying task.
This finding, together with others (Durantin et al., 2017; Callan
et al., 2018; Dehais et al., 2019b,c), confirms the importance of
conducting neuroergonomics experiments in ecological settings
to investigate such complex phenomenon rather than in
simplified laboratory settings. Basic experiments generally fail to
induce such lapse in auditory attention thus solely reporting the
effects of load on auditory processing (Molloy et al., 2015).

Time-domain analyses with the cEEGrid did not allow us to
identify differences in amplitude of the N100 and P300 between
hits and misses as indicated by Callan et al. (2018) with a
64 dry EEG system, Dehais et al. (2019b) with a 32 dry EEG
system and by Dehais et al. (2019c) with a 32 wet research
grad EEG system. Though one could observe the N1-like ERP
peaking around 200 ms on the right-ear electrodes, as well as
a P300-like ERP on the left ear ones, these results did not
pass the significance threshold. Previous cEEGrid studies (Hölle
et al., 2021) successfully reported differences in P300 amplitude
during an oddball task out of the lab. However, in our case,
we used a motion flight simulator that is known to induce

several motion artifacts or electromagnetic perturbations: eye
movements to scan the environment, muscular activity to handle
the stick and rudder, electrical/electromagnetic interference due
to several computers and screens. This noise may have strongly
affected this system that is not pre-amplified and in return
prevented us from identifying classical electrophysiological
correlates of inattentional deafness. Possibly, a larger number
of subjects may counterbalance artifacts and perturbations to
allow the results to pass the significance threshold. Nevertheless,
the time domain analyses computed over the data collected
with the Enobio system disclosed that the P300 amplitude
was significantly reduced for misses compared to hits on Pz
electrode similarly to Giraudet et al. (2015), Callan et al.
(2018), and Dehais et al. (2019b,c). Interestingly, the latency
of measure of the P300 as determined by the permutation test
is slightly increased compared to lab-recorded P300 (roughly
300 − 500 ms). Yet, it is consistent with other studies in
highly demanding flight simulation and in-flight conditions
(Giraudet et al., 2015; Dehais et al., 2019a) revealing later
(400 − 700 or 500 − 750 ms post-stimulus) and broader P300.
This is also consistent with theories on the P300 disclosing
an effect of stimulus evaluation processes and, thus, the
quantity of noise surrounding the stimuli, on the P300 latency
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(Magliero et al., 1984). On the other hand, no differences were
found for the N100 on Cz or Fz electrodes as one could expect.
Again the environment of the flight simulator as well as the
limited number of electrodes, preventing us from performing
advanced processing (e.g., cleaner ICA decomposition with
an increased number of components), may explain this lack
of results.

The frequency domain (PSD) analysis also did not lead to
statistical differences with the cEEGrid when comparing auditory
misses to hits. However, the finding with the Enobio indicated
the usability of the dry-electrodes associated with the solid gel for
PSD decomposition across as revealed by higher spectral β and
γ power for hits compared to misses. Increased β band activity
is generally associated with high arousal states (Okogbaa et al.,
1994) and were found to account for the pilot’s mental overload
(Dehais et al., 2020b). Similarly, higher γ band power is thought
to reflect brain response to higher task demand (Fitzgibbon
et al., 2004). These results, together with our behavioral findings,
confirm that high load can induce inattentional deafness. It
has to be noted though, that we cannot exclude an effect of
muscular activity reflected in the high-frequency (> 20 Hz)
difference between hits and misses. Indeed, it has been shown
that brain activity above 20 Hz recorded during cognitive task
execution could be contaminated by muscular activity (Whitham
et al., 2007). However, in this study, the time-frequency plots
seems to indicate the absence of muscular artifact, as they
demonstrate a higher activity throughout the entire trial, not
only in relation to the moment of the response. To the author’s
knowledge, only one study had previously assessed spectral-
domain activity quantification with solid gel (Di Flumeri et al.,
2019), however, their analysis was centered on the variations of
mean power in specific frequency bands across time, and they
neither displayed the whole PSD across frequencies nor time-
domain characteristics. We ran more advanced analyses such
as the study of time-frequency evoked responses with the two
systems. The Enobio results disclosed a decreased power in the
δ/low θ band for misses compared to auditory hits. The δ brain
waves are thought to play an important role in synchronizing
different brain areas for optimal performance. Nevertheless,
these synchronization/desynchronization (ERS/ERD) patterns
seem to be inverted for low frequency bands (< 8 Hz)
between the Enobio and the cEEGrid system preventing us
from drawing clear outputs on time-frequency measures. Indeed,
the Enobio demonstrated a significant decrease in δ/low θ

frequency bands for misses compared to hits at the Pz electrode.
Ponjavic-Conte et al. (2012) reported lower activity in the
θ band during auditory attention distraction, but they only
inspected the Cz electrode. The activity of the low frequencies
has also been implicated on numerous occasions in auditory
perceptual sampling processes (Kubetschek and Kayser, 2021).
Finally, we observe both at Cz and Pz electrodes, like at the
left grid of the cEEGrid, increased β and θ power spectral
variations for misses compared to hits. These variations being
very consistent throughout the entire trial (in the time domain)
are most likely a representation of the mental overload or at
least very high mental demand, which could be responsible for
auditory misses.

Not only were the results demonstrable with both EEG
recording systems, but also i) with only a small number of
participants, and ii)with very fast and automated pre-processing.
Relevant activity was extracted from only 8 participants for
the cEEGrid and 9 participants for the Enobio system. The
fact that we were able to recognize ERPs and spectral activity
with a complex, skill-requiring task is very promising for
the neuroergonomics field. In this field, and especially in
aviation, it is very common to perform experiments on trained
expert populations possessing specific skills. It can, thus, be
difficult to recruit participants, and more precisely in the same
amount as is usually done in the cognitive neuroscience area.
Nevertheless, an increasing number of studies are demonstrating
the feasibility of small sample analyses (Zander et al., 2017;
Hölle et al., 2021), with classification accuracies and data
equivalent to ours. In this study, we managed to ensure a
reasonable classification accuracy for inattentional deafness brain
correlates. The obtained accuracies with the TSC classifier,
which performed best, are in the same range as the one
observed for auditory attention measures with the cEEGrid
and a cap-EEG (Bleichner et al., 2016) but also classification
studies on research-grade 32-active electrodes cap-EEG data for
inattentional deafness detection during flight simulation (Dehais
et al., 2019c). Interestingly, these considerations go beyond
the scope of Neuroergonomics toward the Brain Computer
Interface (BCI) community where more and more research is
centered on transfer learning (i.e., between participant, task,
session validity of measures, and algorithms) among others
in order to compensate for a small number of patients or
participants in studies (Wan et al., 2021). Finally, the two systems
used in this study were comfortable and required only a small
amount (cEEGrid) to no gel (Enobio) at all. Removing the
barriers of both the gel and the number of electrodes opens the
perspective of helmet-mounted EEG systems for in situmeasures
of operators’ mental state with maximum transparency of the
recording device.

In summary, in this study, we managed to obtain more than
70% of accuracy to classify inattentional deafness on a small pool
of expert participants in a neuroergonomics applied context, with
two unobtrusive, comfortable and mobile EEG systems, paving
the way for more out-of-the-lab, or even operational studies of
cognitive processes and difficulties. Further studies need to be
done though to evaluate the stability of both cEEGrid (TMSi,
Oldenzaal, Netherlands) and Enobio (Neuroelectrics, Barcelona,
Spain) signals over long periods of time as the cEEGrid might
loosen and detach from the skin, as much as the solid gel might
become rigid with time which in return could attenuate the
quality of the signal.
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