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Surgeons operate in mentally and physically demanding workspaces where

the impact of error is highly consequential. Accurately characterizing the

neurophysiology of surgeons during intraoperative error will help guide

more accurate performance assessment and precision training for surgeons

and other teleoperators. To better understand the neurophysiology of

intraoperative error, we build and deploy a system for intraoperative error

detection and electroencephalography (EEG) signal synchronization during

robot-assisted surgery (RAS). We then examine the association between EEG

data and detected errors. Our results suggest that there are significant EEG

changes during intraoperative error that are detectable irrespective of surgical

experience level.

KEYWORDS

robot-assisted surgery, medical robotics, human performance, surgical training,
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1. Introduction

Surgeons operate in mentally and physically demanding workspaces where the

impact of error is highly consequential (Christian et al., 2006; Modi et al., 2018). The

cognitive and affective states of surgeons in the operating room (OR) are primary

determinants of surgical performance (Schuetz et al., 2008; Yurko et al., 2010; Haji

et al., 2015). Measuring changes in these states contributes to insightful performance

analysis, training development and skills improvement (Eversbusch and Grantcharov,

2004; Carswell et al., 2005). However, these cognitive and affective state measurements,

which can be derived from neurophysiological metrics, must be coupled with measures

of surgical task success or failure to enable any conclusions about the correspondences
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between psychological indicators and surgical performance

(Modi et al., 2017). Unfortunately, the majority of existing tools

to measure surgical task performance are retrospective, reliant

on subjective, manual expert annotation and often focused on

entire procedures rather than on intraoperative performance

(Maruthappu et al., 2014).

Examining the associations between neurophysiology and

intraoperative performance requires detecting markers

of intraoperative success or failure at millisecond to

second resolutions and synchronizing those markers with

neurophysiological data. In this study, we build and deploy

an automated, objective error detection system for robotic-

assisted surgery (RAS) simulations that is synchronized with an

electroencephalogram (EEG) headset worn by trainee surgeons

at an RAS operating console. We use this system to detect

intraoperative errors and analyze the accompanying EEG

changes during those errors.

Prior work examining EEG changes during RAS has

primarily focused on correlating EEG measurements with

retrospective, subjective surveys of perceived mental workload

(Guru et al., 2015b; Yu et al., 2017; Zander et al., 2017; Zhou

et al., 2018, 2020). While mental workload is a significant

contributor to surgical performance (Sarker and Vincent, 2005;

Healey et al., 2006; Balch et al., 2009), it is not a proxy for

actual performance. Understanding the relationship between

operator neurophysiology and actual surgical performance

requires objective, high temporal-resolution measurements of

intraoperative performance that can be synchronized with

changes in neurophysiological indicators. Automated skill and

error assessment algorithms for RAS platforms do exist (Chen

et al., 2019) but are rarely used in conjunction with biometric

data capture. Integrating intraoperative performance data with

intraoperative physiological data enables investigation of the

potential cognitive and affective features that influence surgical

success or failure.

For neurophysiological assessment, we choose to focus

on the EEG indicators of psychological features that have

been shown to impact task performance in mentally and

physically demanding workspaces as well as human-machine

teams. “Focused attention” or “vigilance” is the ability of an

individual to maintain sustained attention on a task (Oken

et al., 2006). Decreases in focused attention increase error

rates in human-machine teamwork (Gill, 2012). Fluctuations

in levels of attention can be measured through changes in

EEG spectral power analyses (Borghini et al., 2014). For this

study, we examine global β : (α + θ) power ratio (Pope et al.,

1995), occipital β power (Gola et al., 2013), occipital δ power

(Harmony, 2013), occipital θ power (Putman et al., 2014),

frontal θ power (Strijkstra et al., 2003), and global γ power

(Kaiser and Lutzenberger, 2005) as quantitative indicators of

attention.

Cognitive load and fatigue are similarly relevant to human-

robot teaming. High levels of cognitive load lead to task errors

(Sweller, 2011). Cognitive fatigue, a decrease in cognitive

performance after sustained cognitive load (Ackerman,

2011), is of particular importance in safety-critical aviation,

transportation, aerospace, military, medicine, and industrial

settings where fatigued individuals routinely operate complex,

automated systems (Zhang et al., 2009). EEG spectral power

ratios (Ryu and Myung, 2005) can also be used as measures of

cognitive load or fatigue. We focus on frontal θ power (Shou

and Ding, 2013; So et al., 2017; Raufi and Longo, 2022), frontal

α power (Palva and Palva, 2007) and parietal α power (Frey

et al., 2015) as indicators of cognitive load. For cognitive fatigue,

we examine global α power (Santamaria and Chiappa, 1987),

occipital α power (Thut et al., 2006; Zumer et al., 2014), frontal

θ power (Strijkstra et al., 2003), and θ :α power ratio at Fz (Berka

et al., 2007).

Affective characteristics such as valence, arousal, and

dominance (VAD) may also influence human-robot system

performance. Valence, the positivity or negativity of emotion,

modulates attention and has shown an inverted u-shaped

relationship with human performance in various tasks (Cai and

Lin, 2011). Arousal, often referred to as “stress,” has a similar

inverted u-shaped relationship with cognitive load (Teigen,

1994; Staal, 2004). Dominance, feelings of being “in control”

of a situation, has a positive relationship with performance

during sustained tasks (Cohen et al., 2016). EEG correlates of

valence include α power asymmetry (Ohme et al., 2010; Gordon

et al., 2018), global β power (Liu and Sourina, 2013), global

γ power (Oathes et al., 2008) and global α power (Ahern and

Schwartz, 1985). Indicators of arousal include global θ power,

global β power and global γ power (Liu and Sourina, 2013).

EEG correlates of dominance include global α:β power ratio and

parietal β power (Verma and Tiwary, 2017).

Finally, we examine the association of proposed error

recognition-related EEG metrics with intraoperative error. We

include global θ power (Cavanagh and Frank, 2014), and global

β power (Ray and Cole, 1985) as quantitative EEG indicators of

error recognition.

To correlate these EEG metrics with markers of

intraoperative error, we require high temporal-resolution

analysis of surgical performance data. Prior work in automated

surgical performance analysis has primarily focused on

kinematic, system event, and haptic data obtained from

RAS platforms. This data is then used to find associations

between features such as instrument traveling distance

(kinematics), camera clutch engagement (system event),

and grip force (haptics) and self-reported level of surgical

experience (Chen et al., 2019). Other research has used surgical

video analysis for competency assessment (Reiley and Hager,

2009; Tao et al., 2012; Wang and Majewicz Fey, 2018). While

kinematic, system, haptic, and image data can be correlated

with surgical experience and used for skills assessments, in

order to examine the EEG correlates of actual task errors,

automated surgical error detection is required. Prior work in
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intraoperative error detection largely relies on retrospective,

manual annotations by expert surgeons (Chen et al., 2019).

These manual annotations provide sub-task level resolution for

error detection but sub-tasks within surgical procedures can

take seconds to minutes. A sub-task that is labeled with an error

then implies an error marker of seconds to minutes in length.

The EEG signal associated with a long-duration error marker

would include more than the neurophysiological response

to error.

To more precisely examine the neurophysiology of

intraoperative error, we use a video analysis pipeline to

automatically label each video frame from all surgical

simulation videos for the presence or absence of an error.

Because RAS operating console video is captured at a frame rate

of 30 frames-per-second (fps) and each frame has an error label,

we achieve error detection resolution of 30 Hertz (Hz). Each

of these error labels is associated with a timestamp that is then

synchronized with raw EEG data. By creating non-overlapping

EEG data windows that align with each video frame, we

create a more accurate measure of the neurophysiology of

intraoperative error.

Parameterizing the EEG-based neurophysiology of

intraoperative error creates the possibility of designing training

interventions to reduce or prevent these errors. Surgeons who

exhibit high correlations between EEG indices that may be

related to attention and error, cognitive load and error, or

emotional valence and error, for example, may benefit from

EEG neurofeedback training to improve attention (Egner and

Gruzelier, 2001, 2004), cognitive load management (Gruzelier

et al., 2006), memory (Vernon et al., 2003), or emotional

regulation (Raymond et al., 2005). Other surgeons who have

high correlations between EEG indicators of arousal or stress

and error, or sensorimotor desynchronization and error, for

example, may benefit from focused neurostimulation for stress

reduction (Modi et al., 2019) and fine motor skill augmentation

(Cox et al., 2020).

In this paper, we aim to characterize the neurophysiological

response to intraoperative error during RAS. To achieve this, we

build and deploy a system for intraoperative error detection and

EEG signal synchronization. We then use this system in a series

of experiments with trainee surgeons and analyze the results.

Ourmotivation is a better understanding of the neurophysiology

of intraoperative error to help guide more accurate human

performance assessments and training for surgeons and other

teleoperators.

2. Materials and methods

2.1. Materials

We use a daVinci Xi operating console (Intuitive Surgical,

Inc.) for image-based surgical data. The Xi operating console

provides video of the surgeon’s field-of-view (FOV) at 30 fps.

Video analysis of the operating console video (surgeon’s FOV) is

used for intraoperative error detection. For neurophysiological

data capture, we use a Cognionics Quick-20 EEG headset

(Cognionics, Inc.) with a sampling rate of 500 Hz.

2.2. Methods

2.2.1. Experimental protocol

Twenty participants were recruited for this study under

institutional IRB approval. Of these participants, 5 were non-

medical graduate students and the remainder were general

surgery residents at various levels of training. All participants

were naïve to the hypotheses of the study prior to participation.

Each participant completed three simulation tasks during a

single sitting without breaks. These tasks are standard exercises

used in robotic surgical training to teach surgeons operational

procedures for robot-assisted surgery. They are part of a larger

standard learning curriculum that is widely used in surgical

education curricula that are designed, tested, and deployed

to improve robot assisted surgery skills. These tasks were

completed in the same order for all participants. The tasks

utilized were “Ring Rollercoaster 1,” “Ring Rollercoaster 3,”

and “Wrist Articulation 1” in this order for all participants

(Figure 1).

An EEG headset was fitted on each participant prior to

beginning the first task and checked for appropriate positioning

and data transfer. We use the international 10–20 EEG system

to ensure proper electrode placement. An example of a

deployed headset is shown in Figure 2. Following appropriate

electrode placement, we confirm adequate signal through the

Cognionics Data Aquisition software (Cognionics, Inc.) which

provides visual cues to monitor signal quality at individual EEG

electrodes. Electrodes with low signal quality are re-adjusted

until signal quality meets the data acquisition software criteria.

This signal quality is monitored throughout the experiment,

and the EEG headset is re-adjusted between simulation tasks if

necessary.

Four minutes of baseline EEG readings were then recorded

as each participant sat still at the operating console. Following

baseline recording, each participant was directed to start the first

surgical simulation task and given no other instruction. After

completion of the first task, each participant was directed to

start the second simulation, also without additional instruction

or feedback. After completion of the second simulation,

each participant was directed to start the third and final

simulation, also without additional instruction or feedback.

Following completion of the final simulation, each participant

was instructed to complete a demographics survey after which

the EEG headset was removed and the system was reset for

future participants.
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FIGURE 1

Surgical simulation tasks.

FIGURE 2

EEG headset deployed in RAS-equipped OR.

2.2.2. Video analysis

To generate error markers from operating console (i.e.,

surgeon FOV) video, we use each video frame as input for

a classical computer vision feature extraction algorithm. Our

algorithm uses pixel-based frequency filters, intensity filters

and Hough transforms to generate a feature representation for

each video frame. This feature representation is used to label

each video frame for the presence or absence of intraoperative

error. The types of error we consider are: contact between

the manipulated object and an obstacle, excessive grip force,

dropping the manipulated object, contact between end effectors,

end effectors going out of view during camera clutch movement,

contact between end effectors and obstacles.

To validate this video analysis pipeline, a single expert

human adjudicator manually annotated a validation set of

18,887 randomly chosen operating console video frames for the

presence of intraoperative error. We compared these manual

annotations to the annotations generated by our computer

vision algorithm on the same validation set of operating console

video frames. Our algorithm’s overall error detection accuracy

on the validation set of 18,887 operating console video frames

is 98.0%, precision is 90.4%, and recall is 93.7%. We then use

this pipeline for frame-by-frame inference on the video data.

Given the operating console video frame rate of 30 fps, frame-

by-frame error detection provides intraoperative error markers

at 30 Hz.

2.3. EEG analysis

To pre-process the raw EEG data, we remove the DC offset

and bandpass filter the resulting signal with a passband of

0.01–50 Hz. We eliminate EEG noise using artifact subspace

reconstruction (Chang et al., 2018). This pre-processed data is

then filtered in parallel into five spectral power bands: delta

(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),

and gamma (30–50 Hz). This filtering is done on the entire

EEG data stream i.e., from the start of the baseline or start of

the simulation period to the end of the baseline or end of the

simulation period. After this filtering is complete, the EEG data

for each of the spectral power bands is then windowed.

To accurately associate each operating console video frame

with a non-overlapping window of EEG data, we align each

video frame timestamp with the closest EEG signal timestamp.

This timestamp is the “start window” timestamp. Each EEG

window includes all samples received between a “start window”

timestamp and the “start window” timestamp corresponding to

the next video frame. The operating console video has a frame

rate of 30 fps which implies that each video frame has a duration

of∼33 ms. Each EEG window therefore has a size of∼33 ms.

Using these non-overlapping ∼33 ms EEG windows, we

compute the root-mean-square amplitude of each band for every

EEG channel. Channel-specific spectral band powers for each

window (i.e., video frame) are then aggregated into features
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that correspond to each operating console video frame. These

features are compared to the average feature value for the

baseline period.

2.4. Statistical analysis

For analysis of all EEG channels and all spectral power

bands, we use separate linear mixed effects models for each

channel and each band. Given 19 EEG channels and 5 spectral

power bands, this results in 95 mixed effects models. In each

of these 95 models, the dependent variable (channel-band

power) is standardized, intraoperative error is modeled as a

fixed effect and individual participant variance is modeled as a

random effect.

For EEG feature analysis, we examine a total of 15 distinct

EEG features. We select these 15 features (see Table 1 for

all features) based on previously published work from other

contexts that associates these EEG features with cognitive

and affective attributes that could be important during RAS.

We do not attempt to reproduce earlier work from other

contexts by testing whether these EEG features are appropriate

indicators of cognition or affect in an RAS simulation. Instead,

we test whether these 15 EEG features are associated with

intraoperative error. We use a separate linear mixed effects

model for each EEG feature. The dependent variable (EEG

feature) is standardized, intraoperative error is modeled as a

fixed effect and individual participant variance is modeled as a

random effect.

Given the independent testing of 95 channel-band

combinations as well as 15 EEG features in this experiment, we

correct our baseline significance level of P = 0.01 by a factor of
1
110 . Our multiple comparisons corrected significance level is

P = 0.00009.

TABLE 1 EEG correlates of selected cognitive and a�ective features from previously published research.

Cognitive/a�ective feature EEG correlate Spectral bands: EEG electrodes

Attention Global β : (α + θ) power ratio (Pope et al., 1995) β , α, θ : All

Occipital β power (Gola et al., 2013) β : O1, O2

Occipital δ power (Harmony, 2013) δ: O1, O2

Occipital θ power (Putman et al., 2014) θ : O1, O2

Frontal θ power (Strijkstra et al., 2003) θ : F4, Fz, F3

Global γ power (Kaiser and Lutzenberger, 2005) γ : all

Cognitive load Frontal θ power (Shou and Ding, 2013; So et al., 2017;

Raufi and Longo, 2022)

θ : F4, Fz, F3

Frontal α power (Palva and Palva, 2007) α: F4, Fz, F3

Parietal α power (Frey et al., 2015) α: P3, P4, Pz, P7, P8

Cognitive fatigue Global α power (Santamaria and Chiappa, 1987) α: All

Occipital α power (Thut et al., 2006; Zumer et al., 2014) α: O1, O2

Frontal θ power (Strijkstra et al., 2003) θ : F4, Fz, F3

θ :α power ratio (Berka et al., 2007) θ ,α: Fz

Valence α power asymmetry (Ohme et al., 2010; Gordon et al.,

2018)

α: (F7, Fp1, F3, C3, P7, T3, P3, O1) / (Fp2, F8, F4, P8, P4, O2,

C4, T4)

Global β power (Liu and Sourina, 2013) β : all

Global γ power (Oathes et al., 2008) γ : all

Global α power (Ahern and Schwartz, 1985) α: all

Arousal Global θ power θ : all

Global β power β : all

Global γ power (Liu and Sourina, 2013) γ : all

Dominance Global α:β power ratio α, β : all

Parietal β power (Verma and Tiwary, 2017) β : P3, P4, Pz, P7, P8

Error recognition Global θ power (Cavanagh and Frank, 2014) θ : all

Global β power (Ray and Cole, 1985) β : all

All electrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, P7, P3, Pz, P4, P8, O1, and O2.
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We conducted a simulation-based power analysis (Green

and MacLeod, 2016) of the EEG feature correlates using

simulated effect sizes approximately equal to those reported in

our results (Brysbaert and Stevens, 2018) and significance levels

of P= 0.00009.With a simulated effect size of 0.05, our statistical

power to detect error-related changes in occipital delta band

power has a 95% confidence interval (C.I.) of 99.6–100.0%.With

a simulated effect size of –0.03, the 95% statistical power C.I. for

parietal alpha band power is 99.6 to 100.0%. With a simulated

effect size of 0.03, the 95% statistical power C.I. for frontal theta

band power is 99.6–100.0%.With a simulated effect size of –0.05,

the 95% statistical power C.I. for left-to-right alpha band power

asymmetry is 99.6–100.0%. With a simulated effect size of –0.02,

the 95% statistical power C.I. for global beta band power is 99.3–

99.9%. With a simulated effect size of –0.04, the 95% statistical

power C.I. for parietal beta band power is 99.6–100.0%.

3. Results

3.1. Video analysis

The sample size of detected errors using was smaller than

that of the non-errors. There were a total of 62,809 detected

error frames (17.1%) as compared to 305,234 non-error frames

(82.9%). See Figure 3 for example error detection frames from

each simulation task.

3.2. All channels all bands analysis

Seventy-nine of 95 channel-band power combinations differ

significantly between error and non-error. The five largest

magnitude standardized effect sizes correspond to δ band power

relative to baseline at channels Fp2 (estimate: 0.106, standard

error: 0.003, P <2E-16), F4 (estimate: 0.143, standard error:

0.003, P <2E-16), Pz (estimate: 0.175, standard error: 0.004,

P <2E-16), and P4 (estimate: 0.149, standard error: 0.004, P

<2E-16), and β band power relative to baseline at channel P4

(estimate: –0.119, standard error: 0.003, P <2E-16). Channel-

band combinations that show no significant difference between

error and non-error are: δ at Fp1, F8, P3, P7; θ at Cz, O1,

C4; α at F4, Cz, P8, P4, O1; β at P7, T4; and γ at P7, T3

(Figure 4).

3.3. All features analysis

Twelve of 15 EEG features differ significantly between error

and non-error. For attention, δ power at the occipital electrodes

shows the largest magnitude difference between error and non-

error (estimate: 0.05, standard error: 0.004, P <2E-16). For

cognitive load, α power at the parietal electrodes has the largest

magnitude difference (estimate: –0.037, standard error: 0.003, P

<2E-16). The most informative feature for cognitive fatigue is θ

power at the frontal electrodes (estimate: 0.034, standard error:

0.003, P <2E-16). For valence, the most informative feature

is α power asymmetry between the left and right electrodes

(estimate: –0.059, standard error: 0.004, P <2E-16). For arousal,

β power globally has the largest magnitude difference (estimate:

–0.027, standard error: 0.003, P <2E-16). For dominance, global

α:β power ratio (estimate: –0.040, standard error: 0.004, P <2E-

16) and β power at the parietal electrodes (estimate: –0.040,

standard error: 0.003, P <2E-16) have similar effect sizes. The

most informative feature for error recognition is global β power

(estimate: –0.027, standard error: 0.003, P <2E-16) (Figure 5).

To validate our EEG feature results against potential signals

due primarily to EEG pre-processing methods, we compare

our full model (a fixed effect of intraoperative error and a

random effect of individual variance) with a model that only

incorporates the random effect of individual variance in post-

processed EEG data. Using a simulation based approach, the

likelihood ratio lower bounds for the 95% statistical power C.I.s

to detect intraoperative error effects in the full EEG feature

models as compared to the simple random effect models ranged

from 98.84 to 99.63%. To validate our EEG feature results against

potential signals in EEG noise, we compare our full model using

post-processed EEG data with our full model using raw EEG

data. The likelihood ratio lower bounds for the 95% statistical

power C.I.s to detect intraoperative error effects using post-

processed EEG data as compared to raw EEG data ranged from

99.3 to 99.6%.

4. Discussion

Potential cognitive and affective determinants of surgical

performance, and their EEG correlates, have been explored

in prior research (Gruzelier, 2014; Guru et al., 2015a; Ndaro

and Wang, 2018). This work, however, does not couple EEG

analysis with automated surgical error detection to capture

high temporal-resolution indicators of intraoperative error. By

integrating intraoperative error detection with synchronized

EEG analysis, we aimed to characterize the neurophysiology

of surgeons during robot-assisted surgery (RAS), particularly

during intraoperative error.

To achieve this, we built and deployed a novel RAS data

capture and analysis platform to examine the relationships

among EEG spectral band powers at various channels,

previously proposed EEG correlates of various cognitive and

affective features in other contexts, and intraoperative error. Our

primary statistical tools, linear mixed effects models (LMMs),

are widely used in psychophysiological research particularly

because of the non-independence of the data in hierarchical

structures (Bagiella et al., 2000; Koerner and Zhang, 2017;

Frömer et al., 2018). While sequential 30ms EEG samples may

be correlated, we are not examining a temporal effect in our

model, so the impact of potential residual error autocorrelation
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FIGURE 3

Error detection example for simulation tasks.

FIGURE 4

Heat map of estimated fixed e�ects for 95 linear mixed e�ects models representing all channel-band combinations of 19 EEG channels and 5

spectral power bands. Fixed e�ect estimate labeled numerically and by color intensity in each cell. Only significant channel-band combinations

are included in heat map. Blank cells did not meet corrected significance threshold of P = 0.00009.

on the error effect is not meaningful for our hypotheses. For

this reason, and to our knowledge, the standard LMMs in

neurophysiological research do not use autoregressive residual

covariance matrices (West et al., 2006). Additionally, when we

randomly shuffle our datasets to remove any potential residual

autocorrelation that may impact our results, our effect sizes and

significance tests remain unchanged.

Our results suggest that relative band powers at most

channels demonstrate significant changes during errors as

compared to when errors are not being committed. We observe

that EEG features which are proposed correlates of attention,

cognitive load, cognitive fatigue, valence, arousal, dominance,

and error recognition in other contexts (Klimesch, 1999;

Strijkstra et al., 2003; Harmony, 2013; Liu and Sourina, 2013;

Verma and Tiwary, 2017; Tempel et al., 2020) demonstrate

significant changes during intraoperative error andmay underlie

the error-related signals detected in this study.

The direction of change in EEG features largely aligns with

proposed associations between EEG statistics and cognitive

or affective features in other contexts. Increases in occipital

δ power have been associated with increases in attention

(Harmony, 2013), and in our study, these increases are also

observed during intraoperative error. Decreases in parietal α

power have been associated with decreases in cognitive load

(Klimesch, 1999). In our study, decreases in parietal α power

were also observed during intraoperative error. Increases in

frontal θ power have been associated with increases in cognitive

fatigue (Strijkstra et al., 2003), and we observed an increase
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FIGURE 5

Standardized fixed e�ect estimates of intraoperative error on previously studied EEG correlates of cognitive and a�ective features including

Attention, Cognitive Load, Cognitive Fatigue, Valence, Arousal, Dominance, and Error Recognition. Electrode regions include O, occipital; F,

frontal; G, global; P, parietal; L, left hemisphere; R, right hemisphere. *: Fixed e�ect estimate meets significance threshold of P = 0.00009. All

fixed e�ect estimates are standardized.

in frontal θ power during error. Left and right hemisphere

α power asymmetry has been proposed as an indicator of

emotional valence (Strijkstra et al., 2003) with higher asymmetry

corresponding to more positive valence. We observed a decrease

in α power asymmetry during error. Decreases in global β power

have been associated with increased arousal (Liu and Sourina,

2013), and we observed a decrease in global β power during

error. Increases in parietal β power have been associated with

increases in dominance (Verma and Tiwary, 2017), and we

observed decreases in parietal β power during error. For error

recognition, increases in global β power have been associated

with increased response inhibition during voluntary motor tasks

(Tempel et al., 2020). In our study, global β power decreased

during intraoperative error.

While this study attempts to characterize the physiological

correlates of intraoperative error, this study is not designed

to test the hypothesis that the cognitive and affective states

correlate with physiological metrics that are causative of error.

The EEG activations described in these results are exploratory

and intended to generate hypotheses for future studies that can

formally test hypotheses generated from the current findings.

Moreover, correlations between physiological signals are not

indicative of causation and therefore future studies may attempt

to implement causal interventions to test the directional

relationship between errors and physiological states.

There are several limitations of this study. First, the number

of participants was neither large nor evenly distributed across

skill level, potentially skewing cohort analysis. Second, using

bandpass filters and RMS power calculations for frame-by-frame

channel-band and EEG feature power measurements are

accompanied by a tradeoff in the settling time of the filter.

Third, the error detection video pipeline we use is based on

color and text-based error indicators that appear in the operating

console during surgical simulations. These error indicators

are part of the built-in simulation software and cannot be

turned off or altered during simulation tasks. This presents the

possibility that the neurophysiological changes that accompany

error may be confounded by a response to the specific error

indicator in the stimulator. That said, we observed significant

changes in parietal channels that would seem to be less likely

if the neurophysiological changes were due to vision-based

stimuli alone. Finally, these results may be affected by other

variables such as movement at the console and time at the

console. Based on our observations, low performers tended

to move and shift body positions more frequently than high

performers, potentially indicative of discomfort at the console.

Low performers also required more time to complete the

simulation tasks.

Despite these limitations, this study shows that a novel

RAS data capture and analysis platform can enable the

detection of distinct neurophysiological changes associated with

intraoperative error. These changes are largely consistent with

known relationships between EEG metrics and cognitive or

affective factors that impact performance. This data highlights
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the possibility of using objective biometric data capture and

error detection to better understand the neurophysiology of

intraoperative error and help guide more accurate human

performance assessments and precision training for surgeons

and other teleoperators.
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