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As technological advances progress, we find ourselves in situations where we need

to collaborate with artificial agents (e.g., robots, autonomous machines and virtual

agents). For example, autonomous machines will be part of search and rescue missions,

space exploration and decision aids during monitoring tasks (e.g., baggage-screening

at the airport). Efficient communication in these scenarios would be crucial to interact

fluently. While studies examined the positive and engaging effect of social signals (i.e.,

gaze communication) on human-robot interaction, little is known about the effects of

conflicting robot signals on the human actor’s cognitive load. Moreover, it is unclear

from a social neuroergonomics perspective how different brain regions synchronize or

communicate with one another to deal with the cognitive load induced by conflicting

signals in social situations with robots. The present study asked if neural oscillations that

correlate with conflict processing are observed between brain regions when participants

view conflicting robot signals. Participants classified different objects based on their color

after a robot (i.e., iCub), presented on a screen, simulated handing over the object

to them. The robot proceeded to cue participants (with a head shift) to the correct

or incorrect target location. Since prior work has shown that unexpected cues can

interfere with oculomotor planning and induces conflict, we expected that conflicting

robot social signals which would interfere with the execution of actions. Indeed, we found

that conflicting social signals elicited neural correlates of cognitive conflict as measured

by mid-brain theta oscillations. More importantly, we found higher coherence values

between mid-frontal electrode locations and posterior occipital electrode locations in the

theta-frequency band for incongruent vs. congruent cues, which suggests that theta-

band synchronization between these two regions allows for communication between

cognitive control systems and gaze-related attentional mechanisms. We also find

correlations between coherence values and behavioral performance (Reaction Times),

which are moderated by the congruency of the robot signal. In sum, the influence of

irrelevant social signals during goal-oriented tasks can be indexed by behavioral, neural
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oscillation and brain connectivity patterns. These data provide insights about a new

measure for cognitive load, which can also be used in predicting human interaction with

autonomous machines.

Keywords: cognitive control, human-robot interaction, Social Neuroergonomics, EEG, ICOH, coherence, theta,

attentional orienting

INTRODUCTION

Human operators continuously interact with machines,
algorithms, avatars and robots to achieve certain goals. For
example, operators rely on autonomous machines during
search-and-rescue missions, space exploration and monitoring
tasks (e.g., baggage screening at the airport). Since research
suggests that the presence of other humans can improve
operators’ performance (i.e., social facilitation, reduction of
errors; Krueger and Wiese, 2021), it is important to understand
whether interactions with artificial agents has a similar positive
effect. On face value, understanding whether interactions with
artificial agents can be beneficial seems like a straightforward
problem. However, due to their static nature, artificial agents
may not be the best interaction partners. In this context, adaptive
automated machines might be particularly helpful due to their
ability to adapt their behavior to the human interaction partner
(Inagaki et al., 2003; de Visser and Parasuraman, 2011; Sheridan,
2011). With adaptability of automation being a major challenge
for Social Neuroergonomics (i.e., research in adaptive machines
is still in ongoing; Kaber, 2018; Kohn et al., 2021; Krueger and
Wiese, 2021; Calhoun, 2022), it is imperative for researchers
to find implicit measures that can inform about adaptive
human-robot interaction.

Studies that investigated human-robot interaction in team
settings have shown positive effects of including robots in teams.
For example, when people interact with robot team members,
they are more empathetic toward them (de Jong et al., 2021),
they perceive them as more humanlike (Fraune, 2020), as more
capable of having internal states (i.e., adopting the intentional
stance; Abubshait et al., 2021) and show better performance
(Shah et al., 2011). More importantly, involving robots in teams
can help reduce tensions that arise from failure to reach an
objective (Strohkorb Sebo et al., 2018), and improve team
performance overall (for a review, see: Chen and Barnes, 2014;
Walliser et al., 2019). Still, human-robot teaming faces many
challenges. For instance, people are reluctant to use robots,
even if they were more effective in completing a task and
can improve team performance (Gombolay et al., 2015). This
reluctance could be due to overestimating their capabilities when
working with robots, which is not evident when interacting with
human partners (Gombolay et al., 2015). Even when people are
willing to accept robots as teammates, issues including trust
calibration, overreliance and complacency can arise (Bainbridge,
1983; Parasuraman et al., 1992; Parasuraman and Riley, 1997;
Lee and See, 2004; Parasuraman and Manzey, 2010). When
these issues arise, the operator is considered out-of-the-loop
(i.e., OOTL; Berberian et al., 2017), which leads to detrimental
problems in human-machine interaction. These detrimental

issues can range in severity from simply missing an exit when
driving, to the tragic loss of human lives.

To overcome these challenges of human-robot
teaming/human-robot interaction, we must first identify
neural indices of human-machine trust and performance
(Goodyear et al., 2016, 2017; Kohn et al., 2021). Next, we are
able to embed these indices in adaptive automation systems
(Scerbo et al., 2003; Scerbo, 2007; Krueger and Wiese, 2021; or
adaptable automation systems: Calhoun, 2022), which in turn
would permit us to regulate the level of automation based on
the operator’s performance (Parasuraman et al., 1992; Byrne
and Parasuraman, 1996; Scerbo et al., 2003; Scerbo, 2007; Feigh
et al., 2012). Thus, the field of Neuroergonomics is able to
overcome challenges related to trust calibration, complacency
and overreliance as adaptive automation improves human
performance and trust with automation (Freeman et al., 2000).
More related to human-robot interaction (HRI), adaptive
automation could assist researchers in understanding why
robots fail to evoke brain responses in the way that robot
designers intended the robots to do. For example, robots that
are designed to be perceived as intentional need to engage
the social brain network (Wiese et al., 2017; Perez-Osorio and
Wykowska, 2020). If a robot did not engage these brain regions,
it might need to adapt its behavior. To achieve adaptability, it
is crucial to identify and understand neurophysiological indices
of human-robot/human-automation interaction (Wang et al.,
2018; Kohn et al., 2021; Choo and Nam, 2022). With this in
mind, our study aimed to investigate connectivity measures
in the EEG signal (i.e., synchronization measures) related
to cognitive control mechanisms and attentional orienting
mechanisms. This was to examine whether the interaction
between these two systems can affect performance in a task
that includes a virtual robot. Specifically, we employ the use of
the imaginary part of Coherence (iCOH) index (Nolte et al.,
2004), which measures how neural oscillations from different
brain regions are related. It is imperative to capture these
neurophysiological indices of cognitive control in human-robot
interaction since cognitive control is a key mechanism of the
brain involved in optimization of task performance. Indeed,
cognitive control has been linked with reward learning and
has shown the potential to influence how we interact with/on
behalf of non-human interaction partners (e.g., robots, avatars,
machines, and algorithms; Fedota and Parasuraman, 2010;
de Visser et al., 2018; Somon et al., 2019; Abubshait et al.,
2021). For example, de Visser et al. (2018) suggested that EEG
components related to cognitive conflict/cognitive control
are suitable neural markers to index human-machine trust
and as such, they are suitable implicit indices for adaptive
automated systems.

Frontiers in Neuroergonomics | www.frontiersin.org 2 July 2022 | Volume 3 | Article 838136

https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroergonomics#articles


Abubshait et al. Connectivity Between Cognitive-Control and Attention in HRI

Cognitive Control Mechanisms and
Attentional Processes
Cognitive control is a mechanism that allows us to maintain
and achieve goals. To do so, the brain monitors, evaluates
and suppresses distracting information (Botvinick et al., 2001;
Yeung et al., 2004). Experimentally, cognitive conflict/conflict
monitoring has been studied using paradigms that induce
conflict in the observer via showing task-irrelevant stimuli
features (e.g., the flanker task; Eriksen and Eriksen, 1974) or
by showing incongruent stimulus-response associations (e.g.,
Simon task; Simon and Wolf, 1963). Generally, incongruent
trials are associated with longer response times and higher error
rates compared to congruent trials. This difference reflects the
use of more cognitive resources to resolve cognitive conflict
(Botvinick et al., 2001; Yeung et al., 2004). Neurophysiological
studies observed a negative oscillation 200–400ms (i.e., N2)
after the onset of conflicting information (Folstein and Petten,
2008; for a review on conflict related N2 components) with the
anterior cingulate cortex (ACC) implicated as the source of this
component (Botvinick et al., 2004; Yeung et al., 2004; Bocquillon
et al., 2014). Conflict-related components are also present in
oscillatory measurements of EEG. Studies have identified slow
frequency theta oscillations (4–8Hz) over the midfrontal cortex
as an index for cognitive conflict (Sauseng et al., 2005; Moore
et al., 2006; Tzur and Berger, 2007; Mitchell et al., 2008;
Cavanagh et al., 2009; Yamanaka and Yamamoto, 2009; Cohen
and Cavanagh, 2011; Cohen and Donner, 2013; Cavanagh and
Frank, 2014; Voytek et al., 2015).

Recently, studies have shown that robot signals can also
induce cognitive conflict (Perez-Osorio et al., 2021). To measure
cognitive conflict, participants completed a categorization task
with a virtual robot, in which they had to categorize objects
based on their color, while a robot looked correctly (i.e.,
no conflict) or incorrectly (i.e., conflict) at one of the two
target positions. Indeed, incorrect robot signals (i.e., head
movements) induced cognitive conflict, which was indexed
by behavioral, ocular and electrophysiological markers. This
paradigm resembles the instructed saccade task (Ricciardelli
et al., 2002), where participants make a choice (left or right) and
wait for the go signal (gaze shift) to respond. Similarly, to the
instructed saccade task studies, we found longer reaction times
for incongruent gaze stimuli. Authors agree that longer reaction
times reflect the interference with (oculomotor) planning and
execution mainly because response selection and execution
occur at different steps in the trial sequence (Dalmaso et al.,
2015, 2020a,b; Porciello et al., 2016; Hietanen, 2018). Thus,
the RTs reveal the cognitive conflict elicited by the social
spatial cueing and the demand for cognitive control to perform
the task accurately. However, the mechanisms underlying this
conflict remain unknown. Specifically, whether cognitive control
processes bias attentional mechanisms.

Although cognitive control mechanisms have been widely
investigated, only recent studies have examined the link between
cognitive control and attentional mechanisms. For instance,
evidence from functional imaging (fMRI) studies revealed that
when a task requires volitional attentional orienting, the brain

networks involved in cognitive control communicate with
attentional networks (Liu et al., 2017). The attentional networks
include parietal brain regions associated in selective (Yantis et al.,
2002) and sustained spatial attention (Thakral and Slotnick,
2009), and the temporal parietal junction (TPJ) linked with
attention shifting (Yantis et al., 2002; Tyler et al., 2015). The
link between cognitive control and attention networks has also
been corroborated in studies using EEG, which postulate that
theta oscillations index the communication between these two
systems (Rajan et al., 2019), and that conflict-related theta can
modulate attention in a spatial go/no-go task (Hong et al., 2020).
Altogether, these findings suggest that decisions about where to
attend are affected by the communication between cognitive-
control and attention orienting systems.

Aim of the Study
While this body of work suggests that theta power can index
the communication between cognitive control and attentional
systems, these studies have not directly investigated whether
human performance is influenced by the modulation of
connectivity between cognitive control and attentional systems.
In this exploratory study, we re-examined data from Perez-
Osorio et al. (2021),1 which evaluated cognitive conflict elicited
by irrelevant robot social signals during a categorization task.
In the categorization task, participants had to categorize objects
based on their color. Objects were either easy or difficult
to categorize. Before responding, participants viewed either
congruent/correct robot head signals, in which it looked at the
correct categorization location, or it incongruent/incorrect head
signals where the robot looked at the incorrect categorization
location. The aim was to evaluate (A) whether cognitive
conflict modulates attentional systems in such collaborative
scenarios and (B) how communication between cognitive
control and attentional systems, as measured by functional
connectivity in EEG, could predict human performance. The
present work addresses these questions by first testing whether
synchronization, measured by iCOH (Nolte et al., 2004), between
midfrontal regions of the brain (i.e., implicated in cognitive
control) and parietal regions (i.e., implicated in attention) are
different when observing conflicting vs. non-conflicting robot
signals. If cognitive conflict mechanisms do indeed modulate
attentional system, we expected that conflicting signals of the
robot recruit attentional systems more strongly and as such, we
would observe a difference in coherence between congruence and
incongruent conditions. To address the question of whether the
effects of connectivity affect performance, we examined whether
the synchronization of these two systems cognitive is correlated
with reaction times of completing the task. If synchronization
values and behavioral performance were indeed correlated, it
would suggest that, indeed, synchronization values could assist
in designing adaptive robots and machines. More formally, we

1Although this data was previously published in Perez-Osorio et al. (2021),

the research questions and measurements that we investigate here are entirely

different and novel. Specifically, the research question was conceived and the data

was obtained (i.e., EEG coherence measures) only after the previous paper was

published.
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hypothesized higher synchronization between cognitive-control
and attentional systems for conflicting (i.e., incongruent) vs.
non-conflicting (i.e., incongruent trials). Moreover, we predicted
that behavioral performance could be correlated with coherence
values. We did not have specific hypotheses for whether the
strength of the relationship between behavioral performance and
coherence values would differ based on the congruency of the
head cue.

MATERIALS AND METHODS

As this paper reports results from a re-analysis of data collected
for an already published paper (Perez-Osorio et al., 2021), the
details of the procedures of recruiting the sample, data collection
and task can be found there. Here, we report only the aspects of
the study that are most relevant for the present aims. The data for
this study can be found on the OSF pages of Perez-Osorio et al.
(2021): https://osf.io/rpb95/ and the current study: https://osf.io/
n2sw9/.

Participants
Data used in the analyses reported in this paper are from a
sample of participants recruited for the study published in Perez-
Osorio et al. (2021), Experiment 3. Specifically, the sample of
participants consisted of 32 participants (Median age = 23, 27
females, all right handed), which were based on an a priori
analysis that was conducted with a large effect size (Cohen’s dz
= 0.92), a high α-error equal to 0.001 to prevent the low power
typically found on EEG/ERPs studies (Clayson et al., 2019), and a
power level of 0.95. The analysis yielded that a sample size of 32
participants would be sufficient to detect significant differences.
Data of 2 participants were excluded due to low performance.
All participants were compensated 35 euros and debriefed upon
completion. The experiment was conducted in accordance with
the 2013 declaration of Helsinki and was approved by a local
ethical committee (Comitato Etico Rigione Liguria).

Task and Procedure
As reported in Perez-Osorio et al. (2021), participants completed
an object categorization task where they categorized 5 different
objects, by responding as fast and as accurately as possible. The
objects included a 100% blue object, a 75% blue and 25% yellow
object, a 50% blue and 50% yellow object, a 100% yellow object,
and a 75% yellow and 25% blue object. On each trial, participants
saw an object then decided if it belonged to one of two colored
categories (i.e., blue or yellow). On each trial, a fixation cross
appeared on the screen for 1,000ms. Then, two bins appeared
on the top two corners of the screen and remained on the screen
until the end of the trial. One bin was blue while the other was
yellow. After 1,000ms of the onset of the bins, iCub2 appeared
in the middle of the screen. iCub looked straight ahead with one
of the 5 objects in front of it. Four hundred milliseconds later,
iCub looked down at the object. Thousand milliseconds later,
an image of iCub reaching for the object was shown for 500ms.

2iCub is an open-source humanoid robot platform (Metta et al., 2010) designed to

investigate the development of artificial intelligence.

This was followed by an image of iCub grasping the object for
500ms. Next, participants saw an image of iCub extending its
arm to simulate handing over the object to the participant. Five
hundred milliseconds after handing over the object, iCub looked
either at the correct bin (i.e., congruent trial) or at the incorrect
bin (i.e., incongruent trial). We instructed the participants to
wait until iCub completed the head movement to categorize the
object by pressing one of two key presses. Participants pressed
“K” to choose the right bin and “D” to choose the left bin.
If no response was made within 3,000ms, the trial timed out.
After categorizing the object based on color, participants saw
“Correct” or “Incorrect” feedback based on their performance.
The inter-trial interval (ITI) was set to 1,000 ms, see Figure 1.
The position of the bins were counterbalanced across the entire
experiment where the yellow bin was on the top-right and the
blue bin was on the top-left 50% of the time and vice versa.
The experiment also included catch trials where the robot looked
down, and the participants responded by pressing the spacebar.
These trials ensured that participants were paying attention to the
head movements throughout the study.

Participants completed 96 trials of 100% objects, half of which
were for the blue object and half for the yellow object. Participants
also saw 96 trials of the 75% blue object and 96 trials for the
75% yellow object, and 96 trials for the 50% object.3 The robot’s
head movements were not predictive where it looked at the
correct bin 50% of the time and at the incorrect bin 50% of the
time in the correct. The experiment had 420 trials overall and
took about 35min to complete. The sequence of the trials were
pseudorandomized and divided into 5 blocks with equal number
of trials.

EEG Acquisition and Preprocessing
EEG data were recorded using 64 Ag-Ag-Electrodes arranged
with the 10–20 system (ActiCap, Brain Products GmbH,
Munich, Germany). The data were referenced online to the
Cz electrode location. Ocular movements were recorded using
active electrodes located on the F9 and F10 positions for lateral
movements and Fp1 and Fp2 for vertical movements. The data
were recorded and amplified using a BrainAmp amplifier at a
sampling rate of 500Hz with impedances below 10 kΩ . No filters
were applied online during the recording. EEG preprocessing
was conducted using BrainVision Analyzer. As a first step, the
EEG signal was down-sampled to 250Hz, re-referenced to the
average of the two mastoids, and then a band filter of 0.1Hz to
30Hz was applied. Next, we created epochs that were locked to
the onset of the robot’s head shift. The epochs started 1,000ms
prior to the head shift and ended 7,500ms after the shift
(i.e., epochs were 8,500ms long). An Independent Components
Analysis (ICA) was conducted on the epochs of interest to
isolate and reject components related to blinks and saccades (1–2
components were rejected for each participant at most). Finally,
we rejected artifacts with a maximal voltage of 20 µV/ms, a 200

3For the 50% object, left and right bin responses were correct. The main purpose

of this condition was to evaluate whether participants would spontaneously follow

the robot’s gaze. They followed the gaze of the robot 75.64% of the trials in this

condition (Perez-Osorio et al., 2021). Fifty percentage trials are not relevant for

the current study and were not included in the data analysis.
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µV difference in value, or a low activity of 0.5 µV for 100ms. We
rejected 6% of the trials for the Congruent/100% object, 5.6% for
Congruent/75% object, 7% for the Incongruent/100% object, and
7.3% for the Incongruent/75% object. Finally, we shortened the
epochs to start 1,000ms prior to the robot’s head shift to 2,000ms
after (i.e., epoch length was 3,000 ms).

To quantify how electrodes are synchronizing with one
another, we used the Imaginary part of coherence (iCOH) index
(Nolte et al., 2004) to determine synchronization. Coherence
is a technique that quantifies the frequency and amplitude
of the synchronicity of neuronal patterns of oscillating brain
activity (Bowyer, 2016). This technique can be used to measure
both brain synchronization between individuals (inter brain
synchronization) and synchronization between brain regions
of one subject (intra brain synchronization) (Sänger et al.,
2012). Here, we used coherence as a measure of intra brain
synchronization and we refer to intra brain synchronization
as the coherence between the selected pairs of electrodes
(e.g., coherence value between FCz and P1). iCOH determines
the relationship between sets of electrodes. Generally, iCOH
values that are closer to 0 indicate lower coherence (i.e.,
synchronization) and values closer to +1 or −1 indicate higher
coherence. Measures of synchronization are calculated from
the frequency domain representation of a pair of signals that
represents an estimate of the amplitude and the phase of the
oscillations across a time window (see Bastos and Schoffelen,
2016 for a comprehensive perspective). Coherence is a widely
used measure to infer synchronization between different sources
of signal (García Domínguez et al., 2013; Almabruk et al., 2015;
Sakellariou et al., 2016). Previous studies employed iCOH on
EEG data to identify differences in biomarkers of functional
connectivity between children with Autism and neurotypicals
(García Domínguez et al., 2013). Furthermore, intra brain
differences in coherence values were also found to be predictive
of performance in motor tasks (Nolte et al., 2004; Babiloni et al.,
2011) and brain activity in resting-state (Kopal et al., 2014).
The main issue with coherence is that it is affected by volume
conduction. ICOH, proposed by Nolte et al. (2004), is developed
to eliminate all sources of extraneous coherence potentially due
to field spread, and captures true source interactions at a given
time lag (Nolte et al., 2004, 2008).

Our motivation for using iCOH values was based on Sanchez
Bornot et al.’s (2018) work that found that the original iCOH
technique (Nolte et al., 2004) was one of the best methods of our
functional coherence (FC) analysis. While other measurements
for functional connectivity exist (e.g., PLI, wPLI), they often
include additional information that empirically should improve
their estimators, seem to cause loss of valuable information
(Sanchez Bornot et al., 2018). According to Sanchez Bornot et
al. (2018), if we have a priori information of active brain regions,
and if there is a clear and non-overlapped localization for these
region of interest, then FC analysis based on imaginary coherence
methods, particularly iCOH, can provide useful information
about the interacting neural population.

To calculate iCOH values, we first applied current source
density (CSD) (orders of spline: 4, Maximal Degree of legendre
polynomials: 10), CSD was obtained by applying spherical

Laplace operator to the voltage distribution on the surface of the
head. The procedure of spherical spline interpolation was used to
calculate the total voltage distribution. The procedure followed
BrainVision Analyzer recommendation for CSD procedure. The
mathematical presentation of this procedure can be found in
the work of Perrin et al. (1989). Next, we created pairs of
electrodes between FCz (an electrode generally associated with
conflict monitoring) and parietal electrodes (associated with
attentional mechanisms); P1, P2, P3, P4, and Pz electrodes,
specifically. We then decomposed the data by applying the
Morlet complex wavelets function between 1 and 30Hz, with
15 logarithmic frequency steps and a Morlet parameter of
5. Wavelets were normalized through Gabor normalization.
To identify when theta synchronization was occurring we
grand averaged coherence values of each participant selecting
the frequency of interest (i.e., theta band). We performed a
semiautomatic peak detection on the power spectrum relative to
each of the five pairs of electrodes that we previously selected.
Peak detection was set to be performed on the 600ms after the
robot cue. Finally, we selected a 100ms time window around
the peak of the theta band (i.e., 3–7Hz) for iCOH values for all
the conditions combined (time window between 252 and 352ms,
Peak at 302ms). Data analysis was conducted on the averaged
iCOH values within the 100 ms window.

RESULTS

Prior to running the main analyses of interest, we calculated
mean and standard deviation for RTs and Coherence values.
Here we report descriptive statistics for each of the two variables
grouped by the type of trial: RTs: 100 congruent M = 375.74 ±

70.44; 100 incongruent M = 432.67 ± 89.28; 75 congruent M =

368.95 ± 79.29; 75 incongruent M = 431.42 ± 93.3. Coherence
values: 100 congruent M = 0.036 ± 0.093; 100 incongruent M =

0.096 ± 0.12; 75 congruent M = 0.025 ± 0.091; 75 incongruent
M= 0.089± 0.11. Next, we wanted to ensure that the coherence
values that we were recording were not due to random noise
therefore we performed a one-sample t-test to assess whether
iCOH values extracted were different from zero. Results showed
that Coherence values (which were averaged for each single
participant) are significantly different form zero [t(31) = 5.72, p
< 0.001, Cohen’s D= 1.01].

To test if coherence values were significantly different between
congruent and incongruent conditions for each of the objects,
we ran a within-factor 2 × 2 repeated measures ANOVA with
congruency (congruent vs. incongruent) and object type (100
vs. 75%)4 as within independent variables and iCOH values
as a dependent variable. To examine whether the coherence,
as measured by iCOH values, between frontal electrodes and
parietal electrodes can predict participant’s performance (RTs),
we used a linear mixed model that contained iCOH values

4We did not examine coherence measures for the 50% object trials since

participants categorized the object as they saw fit (i.e., there was no correct answer).

As such, there was not a true “congruent” or “incongruent” head cue with respect to

categorizing the object. Since the feedback and head cues were pseudorandomized,

this could lead to spurious effects and therefore was excluded from analyses.
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as a continuous variable, robot head cue (Congruent = 0
vs. Incongruent = 1), as a dummy coded variable and their
interaction. The mixed model also varied the intercept for each
individual participant. Since the ANOVA outlined above and
prior work by Perez-Osorio et al. (2021) showed that time-
frequency values were not sensitive to Object-type (75% object
vs. 100% object), we focused the RT analysis only on the factor
congruency of the head cue.

Results of the 2 × 2 ANOVA showed a significant effect of
congruency [F(1,31) = 7.81, η2G = 0.2, p = 0.01]. The difference
was such that incongruent trials had higher coherence values
(M = 0.095, SD = 0.113) compared to the congruent trials
(M = 0.035, SD = 0.092). The ANOVA, however, showed no
effect of object-type [F(1,31) = 1.76, η2G = 0.05, p = 0.19] or
a Congruency X Object type interaction [F(1,31) = 0.42, η2G =

0.01, p= 0.52], see Figure 2. After processing the data, we noticed
alpha-band synchrony and as such, we ran a post-hoc analysis to
test whether there were any differences in alpha synchronization.
This seemed reasonable as prior work has shown that alpha
synchrony is related to attentional resource allocation (Sauseng
et al., 2005). The results showed no significant effects, however.
Please see Supplementary Material for the analyses. Results of
the linear-mixed model showed a significant intercept [b = 371,
SE = 14.52, t(31.25) = 25.54, p < 0.001]. The linear mixed-
model showed a significant effect of the Congruency dummy
variable [b = 60.46, SE = 2.02, t(605.91) = 29.91, p < 0.001],
with faster RTs for congruent trials (M = 372,3ms, SD = 75ms)
vs. incongruent trials (M = 432ms SD = 91.2ms). This finding
mirrors previous results reported in Perez-Osorio et al. (2021).
More importantly, the analysis also showed that iCOH values
significantly predicted RTs [b = 41.66, SE = 13.97, t(605.91) =
2.98, p < 0.01] where we observed longer RTs as iCOH values
increased (i.e., a positive relationship). With similar importance,
we found a significant iCOHxCongruency interaction predicting
participants’ RTs [b = −36.13, SE = 17.89, t(605.91) = −2.02,
p = 0.04]. The interaction was such that congruent head cues
were associated with a stronger relationship (i.e., more positive)
between iCOH values and RTs compared to incongruent head
cues, see Figure 3. This illustrates that in the congruent trials,
when participants were slower to response, cognitive control
systems and attentional systems were more synchronized. On the
other hand, at faster RTs, these areas were more desynchronized.
This effect was not evident for the incongruent trials.

One possible explanation to the unexpected finding that
longer reaction times correlated with iCOH values in for the
congruent trials only could be that participants experienced
more load during congruent trials, which induced longer RTs
and more coherence between cognitive control and attentional
mechanisms. For example, participants could have experienced
more load during the first half of the experiment, compared to
the second half after they became more comfortable with the
experiment. To verify this, we ran a post-hoc paired t-test that
evaluated whether the first half of the experiment vs. the second
half of the experiment in only the congruent condition were
different from one another. Indeed, the t-test showed significant
differences between the first and second half of the experiment
[t(33) = 6.75, p< 0.001, CI [42.11, 78.42]] with slower RTs for the

FIGURE 1 | (A–G) Task sequence. Each trial started with two blocks

appearing on the two upper corner of the screen. A picture of iCub, the

humanoid robot appeared and was followed of a sequence of still images that

mimicked the movement of handing over the object. After the robot completed

handing over the object, it looked congruently or incongruently at one of the

two bins. Participants then responded appropriately to where they thought the

objects should go. The trial sequence followed the alphabetical order of the

panels.

FIGURE 2 | iCOH values as a function of congruency and object type.

Analysis of the iCOH values shows significantly more theta synchronization

between areas associated with cognitive control and those with attentional

orienting for incongruent trials compared to congruent trials. This suggests

that more communication is occurring in the theta range between those

regions during incongruent trials. Error bars illustrate the 95% CI.

first half of the experiment (M = 412ms, SD = 73.4) compared
to the second half of the experiment (M = 352, SD = 84.3).
This suggest that participants experienced higher cognitive load
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FIGURE 3 | Correlation between coherence and RTs. The graph illustrates the differences in slopes between congruent (red slope) and incongruent (blue slope), with

a more positive relationship between coherence and RT for congruent vs. incongruent trials. The black slope illustrates the coherence-RT relationship regardless of

gaze condition. The shaded regions illustrate the 95% CI.

during the first half of the experiment (longer RTs and higher
coherence values) relative to the second half of the experiment.

We additionally ran a trial-by-trial analysis on behavioral
performance to test if participants’ behavior changed throughout
the experiment. We found that, indeed, participants were
becoming faster as the experiment progressed. The details of this
analysis can be found in the Supplementary Material. We also
ran an analysis examining differences in iCOH values over the
course of the 5 blocks of the experiment. The analysis suggested
that there could be an interaction such that the iCOH values differ
between objects, congruency, and over the course of the 5 blocks.
However, this interaction did not show a clear pattern and could
be the result of having low/different trial numbers between the
conditions. See the Supplementary Material formore details and
Figure 4 for the graphical illustration of the coherence analysis.

DISCUSSION

The aim of the current study was to investigate whether the
behavioral effects of cognitive conflict that is observed in a
categorization task is due to communication between cognitive
control mechanisms and attentional mechanisms in the brain,
as evaluated by inter-brain synchronization (iCOH). To do
so, we first tested whether iCOH values were significantly
different when participants observed signals that elicit cognitive
conflict, compared to signals that did not elicit cognitive conflict.
Specifically, we were interested in examining whether completing
a categorization task with a robot that looks congruently
(no/low cognitive conflict) or incongruently (cognitive-conflict)
at the correct location of a target position influences the

synchronization between brain areas that are related to cognitive
control and attentional orienting mechanisms. We also aimed to
examine whether this inter-brain synchronization is correlated
with behavioral performance during a collaborative task with an
autonomous agent. We tested to see if interbrain synchronization
(i.e., coherence values) correlate with participants’ responses
(mean reaction times). Since prior work suggests that modulation
of attentional orienting is due to communication between
cognitive control systems and attentional systems (Liu et al.,
2017), we hypothesized that completing this categorization task
with the robot would influence synchronization between these
two brain mechanisms. Moreover, we hypothesized that this
synchronization would correlate with behavioral performance,
which would lend its importance to finding a new index of
successful human-robot interaction (HRI) and assist in designing
adaptive autonomous systems, which is a major challenge in
Social Neuroergonomics (Krueger and Wiese, 2021).

To do so, we reanalyzed an EEG dataset from an experiment
in which participants completed a categorization task (see
Perez-Osorio et al., 2021), where they sorted objects based on
their color by selecting one of two laterally positioned bins.
Before responding, participants observed iCub completing a
congruent (with the target position) or incongruent (with the
target position) head cue, with incongruent head cues inducing
cognitive conflict (Perez-Osorio et al., 2021). We hypothesized
that since incongruent trials would induce cognitive conflict, it
might evoke higher degree of communication between cognitive
control and attentional orienting mechanisms, as this is a
postulated mechanisms allowing conflict resolution. We also
hypothesized that, if iCOH is indeed a marker of cognitive
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FIGURE 4 | Time-frequency analysis of EEG data comparing Incongruent (A) vs. Congruent (B) trials. The epochs were all timelocked to the onset of the robot head

cue. Warmer colors represent higher coherence values among the selected electrodes (see EEG acquisition and preprocessing section). The Y axis represents the

frequency (measured in Hz). The X axis represents time measured in milliseconds. All results were time locked to the onset of robot’s head signal. Results of the

analysis showed a difference in amplitudes in the theta frequency band (3–7Hz) at around 350–400ms.

control (and conflict resolution), it should relate to behavioral
Results showed that coherence as measured by the iCOH index
can significantly predict participants’ responses. In other words,
EEG indices that measure communication between mid-frontal
electrodes, which are implicated in cognitive-control (Cavanagh
and Frank, 2014), and parietal electrodes, which are implicated
in attentional orienting (Praamstra et al., 2005; Capotosto et al.,
2012), can predict how fast participants correctly classify an
object. More specifically, we found that lower synchronization
values (i.e., more desynchronization) correlated with slower
responses, while higher synchronization correlated with longer
response times. Interestingly, this effect was more evident for the

congruent head cue condition than the incongruent head cue
condition. This was an unexpected result but it might indicate
that on slower congruent trials participants experienced more
cognitive load, which could have induced variation in coherence
between cognitive conflict and attentional mechanisms. This
interpretation, however, should be taken with caution as it was
an unexpected finding and based on a post-hoc analysis.

The result that incongruent trials were related with higher
interbrain connectivity confirm that irrelevant social signals
exhibited by an artificial agent elicit cognitive conflict. This
effect is also compatible with outcome-monitoring accounts
that suggest that observers had to engage cognitive control
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mechanisms to inhibit the interfering spatial cueing to complete
the categorization task (Botvinick et al., 2004; Yeung et al., 2004).
In this particular case, the cognitive conflict arises from observing
an incongruent social signal that collides with the previously
selected location based on the physical features of the object (i.e.,
the color of the object).While the response selection in congruent
trials was relatively effortless, incongruent trials represented a
higher cognitive demand. Concomitant information presented
in incongruent trials activates two different responses when
only one should be chosen, similar to classic cognitive conflict
paradigms (e.g., the Stroop task; Leuthold, 2011; the Go/NoGo
tasks; Nigbur et al., 2011; the Flanker task, Eriksen and Eriksen,
1974). Similar to those studies, the conflict was reflected in
behavioral and neurophysiological markers (Nigbur et al., 2011;
Cohen and Donner, 2013; Cavanagh and Frank, 2014). Some
studies also evaluated cognitive conflict with social and non-
social spatial cues (i.e., eyes vs. arrows; Marotta et al., 2018, 2019).
Interestingly, incongruent eyes and arrows induce cognitive
conflict (observed by behavioral markers). However, arrows
elicited the opposed effect to eyes with slower responses for
congruent compared to incongruent cues. Further analyses
revealed that processing social stimuli requires more cognitive
resources related to cognitive control and response selection
(Marotta et al., 2019). In line with those findings, the current
study not only shows that incongruent spatial cues induce
cognitive conflict, but also provides strong evidence that the
cognitive-control mechanisms are communicating with spatial
attention mechanisms. This is an important new piece of
information, relative to the earlier results from Perez-Osorio et al.
(2021) where the authors showed how social signals from a robot
can elicit cognitive conflict, but did not specify the relationship of
the cognitive control mechanisms with attentional mechanisms.

Our connectivity analysis revealed how theta-band synchrony
occurs between midfrontal and distal areas in a task where
cognitive control is needed (Cavanagh et al., 2009; Nigbur
et al., 2011). Theta-band synchrony between midfrontal and
cortical areas increases after observing incongruent cues that are
unexpected, which are associated to the need of control (e.g.,
onset of errors or conflict). This result was replicated in various
studies, which highlight connectivity pattern between frontal
midline electrodes and motor, sensory and prefrontal cortex (see
Cavanagh and Frank, 2014 for a Review). Previous study already
reported theta-band synchronization between midfrontal and
parietal regions (Cohen and Van Gaal, 2013; Nurislamova et al.,
2019). These results highlighted an interplay between midfrontal
performance monitoring system and parietal associative areas
involved in decision–making, reflecting participants behavioral
adjustments and increased cognitive control in response to
uncertainty (Varela et al., 2001; Nurislamova et al., 2019). Our
results support the functional network proposed by Cavanagh
and Frank (2014) and add to the literature about frontal
mid theta as the signature of the need of control in the
specific case of conflict related to social cues exhibited by an
artificial agent.

The present results could also be interpreted with relation to
a violation of the sense of agency. This type of violation occurs
when our actions are unexpectedly overridden by an external

agent or system (Padrao et al., 2016). Prior work suggests that this
violation of expectation can be indexed by the N400.With respect
to our results, it is possible that participants were experiencing
a similar violation of sense of agency when they saw the robot
looking at a bin that they did not choose, however, it is difficult to
confirm whether this was the case due to the fact that it is difficult
to compare data between the time domain (i.e., ERPs) and the
frequency domain (i.e., ERSPs and coherence).

It is also important to note that in the current experiment,
the theta-band connectivity that we observed was during viewing
the robot’s congruent vs. incongruent head cues as opposed to
the participants committing an error. This important distinction
comes from the fact that prior work has shown distinct
processing of errors for when people commit errors vs. when
they view others make errors (Padrao et al., 2016; Goodyear et al.,
2017; de Visser et al., 2018;Weller et al., 2018; Somon et al., 2019).
For instance, Weller et al. (2018) examined electrophysiological
indices of error monitoring when humans commanded an agent
to make an action vs. when they passively saw that agent make
an action. Although they did not find differences in performance
monitoring between the two conditions, they found higher Pe
amplitudes for when they commanded the agent vs. when they
passively saw the agent. This difference suggests that there was
more attentional processing when they commanded the agent,
even if it did not actually influence performance monitoring.
With regards to our data, it is possible that attentional processing
was hindered due to the fact that participants passively viewed
the robot’s head cues, but that would not necessarily affect
performance monitoring. This suggests attentional processes
may bias cognitive control mechanisms, but not to an extent
where it would drastically affect it. This, of course, needs to be
explored by future research that examines coherence between
attentional and cognitive-control processing when people are
monitoring performance for themselves vs. when they passively
view other agents.

While we do implicate behavioral performance with
communication between cognitive conflict and attentional
processing mechanisms, it is not surprising that theta synchrony
index this coherence. This is in light of prior work that implicates
theta-band synchrony in the brain with joint/social attention,
social cooperation, and interaction (Kawasaki and Yamaguchi,
2013; Dai et al., 2017; Akash et al., 2018; Wass et al., 2018; see
Liu et al., 2017 for a review). While some of these studies utilized
hyperscanning techniques, they still implicate inter-brain theta
synchronization to these effects (Wass et al., 2018), which
can shed light to the nature of the theta synchrony that we
observe here.

More generally, our findings follow prior work that support
the idea that implicit measures like coherence between brain
regions can be used to design, implement and control agents
using adaptive automation (Akash et al., 2018; Kohn et al.,
2021; Krueger and Wiese, 2021; Eloy et al., 2022). For
example, Akash and colleagues have shown that data from the
electroencephalogram (EEG) can assist in developing human
trust sensors that can implicitly predict an operator’s trust
levels. Similarly, Wang et al. (2018) showed that EEG data
from frontal and occipital areas of the brain have the potential
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to predict trust. More related to our subject matter, de Visser
et al. (2018) postulated that EEG activity related to cognitive
conflict/cognitive control are able to serve as neural markers of
human-machine interaction. In our case, the iCOH index that
measures synchronization of oscillations from different brain
regions (Nolte et al., 2004) has proven to be a reliable neural index
of cognitive conflict. As such, this index could be used to monitor
cognitive conflict from brain oscillatory behaviors. Therefore,
we are able to use an iCOH index to assess whether actions or
behavior from an autonomous agent exert high cognitive load
on the user during collaborative tasks. For instance, depending
on this index, it would be possible to select how and when to
present social signals in a collaborative environment to generate
fluent and efficient interaction that improves the acceptance of
autonomous agents. Furthermore, such implicit indices would
also help to detect when those signals produce conflict and
lead to a decrease in cognitive load modifying their frequency
and/or saliency.

The present work also provides additional evidence to
recent work in the field of Social Neuroergonomics that
illustrates the importance of understanding how the brain is
responsive to social information from the external world (Jung,
2017; Dukes et al., 2021). Specifically, we show how non-
informative social signals (i.e., robot head signals) can interfere
with information processing. This builds on prior work that
examined the directionality of information processing in the
brain while completing a task with a reliable vs. unreliable
automation (Goodyear et al., 2016, 2017). Both studies found
that activation in the posterior insula and the left anterior
precuneus was influencing subsequent activation in areas that
were related to processing decision information. While our
functional connectivity measure (i.e., iCOH), does not inform
us about the directionality of information processing, we are
able to determine if areas associated with attentional processing
and cognitive conflict processing are connected based on similar
signal content.

One issue to keep in mind that many of cognitive-conflict
studies examined accuracy rates as behavioral data, while we
used mean reaction times, as in the study of Perez-Osorio
et al. (2021), participants’ accuracy was very high, not allowing
sufficient amount of data points for analysis. Future studies
would need to design studies that focuses on error rates and
not reaction times. Moreover, it would be of value to. Future
work needs to also examine how connectivity between cognitive-
control and attentional systems differ during tasks in which
the responses of an interacting human matter (i.e., time-locking
connectivity measures to responses as opposed to the onset
of congruent or incongruent cues), as it could provide insight
about how these two systems communicate during tasks that
involve learning. Moreover, it would be of great value to
the literature to understand the directionality of this flow of
information. In other words, future work should use neural
time series methods to understand whether oscillations from
cognitive-control electrodes can causally predict oscillations in
attentional orienting electrodes (e.g., granger causality analyses).
Future studies should also examine the possibility of combining

connectivity measures (i.e., such as iCOH) with other methods
that have already been shown to improve human-machine
interaction such as fNIRS (Eloy et al., 2022). For example, since
work has implicated mid-frontal theta oscillations to cognitive
monitoring and brain activity in the ACC (Botvinick et al.,
2001; Yeung et al., 2004), this can provide us more useful
information if a given task shows us differences in hemodynamic
responses using fNIRS. Coherence techniques have been applied
to fNIRS, MEG and EEG data successfully. Of note, the use of
coherence in hyperscanning setups are more and more used in
experimental psychology (for a review, see Ayrolles et al., 2021).
Regardless, investigating neural indices of cognitive mechanisms
involved in human-machine interaction tasks is vital for Social
Neuroergonomics, as the field faces a grand-challenge of moving
beyond static autonomous machines. This means that robots,
machines, algorithms and avatars are currently unable (for the
most part) to adapt to the human interactor’s actions. As such,
it is difficult to ensure successful human-machine interaction.
Therefore, we suggest a neural index that could assist in designing
dynamic systems that have the potential to adapt to the human
user, perhaps even online.
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