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healthy participants
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Introduction: Motor Imagery (MI)-based Brain Computer Interfaces (BCI) have

raised gained attention for their use in rehabilitation therapies since they allow

controlling an external device by using brain activity, in this way promoting

brain plasticity mechanisms that could lead to motor recovery. Specifically,

rehabilitation robotics can provide precision and consistency for movement

exercises, while embodied robotics could provide sensory feedback that can help

patients improve their motor skills and coordination. However, it is still not clear

whether di�erent types of visual feedback may a�ect the elicited brain response

and hence the e�ectiveness of MI-BCI for rehabilitation.

Methods: In this paper, we compare two visual feedback strategies based on

controlling the movement of robotic arms through a MI-BCI system: 1) first-

person perspective, with visual information that the user receives when they

view the robot arms from their own perspective; and 2) third-person perspective,

whereby the subjects observe the robot from an external perspective. We studied

10 healthy subjects over three consecutive sessions. The electroencephalographic

(EEG) signals were recorded and evaluated in terms of the power of the

sensorimotor rhythms, as well as their lateralization, and spatial distribution.

Results: Our results show that both feedback perspectives can elicitmotor-related

brain responses, but without any significant di�erences between them. Moreover,

the evoked responses remained consistent across all sessions, showing no

significant di�erences between the first and the last session.

Discussion: Overall, these results suggest that the type of perspective may not

influence the brain responses during a MI- BCI task based on a robotic feedback,

although, due to the limited sample size, more evidence is required. Finally,

this study resulted into the production of 180 labeled MI EEG datasets, publicly

available for research purposes.

KEYWORDS

Brain-ComputerInterfaces, electroencephalography, motor-imagery, human-robot

interaction, neurorehabilitation
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1. Introduction

Worldwide, there is an increasing need for new rehabilitation

approaches worldwide for people who suffer from neurological

disorders, resulting into chronic motor disability. Every year,

between 250,000 and 500,000 people are affected by spinal cord

injuries (WHO, 2013), while others are affected by diseases

that interrupt the normal communication between the central

and the peripheral nervous system, such as brain injuries and

cardiovascular disorders, like ischemic and hemorrhagic strokes or

transient ischemic attacks (TIA). According to the Global Burden

of Disease collaborators for strokes, there are over 13.7 million

new strokes each year (GBD, 2019). Neurological rehabilitation

is targeting on aims to maximize the restoration of the lost

functions of impaired people by inducing neuroplastic changes to

the brain (Cauraugh and Summers, 2005), through intensive and

repetitive training.

Among the different techniques adopted to improve the

effectiveness of this type of rehabilitation, an important effect is

starting to be seen by the utilization of Brain-Computer Interfaces

(BCI’s) (Bamdad et al., 2015). BCI’s allow severely impaired patients

to interact with the external environment through a computer

system by using their brain activity alone, usually measured

through electroencephalography (EEG) (Wolpaw and Wolpaw,

2012). The main objective is to promote the recruitment of selected

brain areas involved and to facilitate neural plasticity, exploiting the

BCI ability of recording and decoding the signals yielded by patient

cerebral activity. Specifically, these signals can be reinforced by BCI

feedback, so they can be used to strengthen key motor pathways

that are thought to support motor recovery after stroke (Birbaumer,

2009; Cervera et al., 2018). Currently, this interaction loop can be

closed by controlling an end-effector that includes a simple screen-

based feedback (Pfurtscheller et al., 2003), Virtual Reality (VR)

(Vourvopoulos et al., 2019), Robotic devices (Tonin and Millán,

2021), or functional electrical stimulation (FES) (Biasiucci et al.,

2018).

BCI’s can be based on different paradigms depending on the

type of brain response that is expected to be involved (e.g., evoked

potentials or oscillatory processes). For example, motor imagery

BCI (MI-BCI) involves the mental rehearsal of movement and is

considered a BCI paradigm that evokes motor-related oscillatory

processes between the α (8–12 Hz) and β (13–30 Hz) EEG bands

(Pfurtscheller and Neuper, 1997). Next, P300 BCI’s use evoked

potentials that are generated approximately 300 ms after stimulus

onset (hence the name P300), elicited using the oddball paradigm,

in which low-probability target items are mixed with high-

probability non-target items (Polich and Margala, 1997). Finally,

the steady-state visually evoked potentials (SSVEPs) are also evoked

potentials caused by visual stimulation (e.g., flashing light), which

occur at the primary visual cortex of the brain (Creel, 2019).

Both P300 and SSVEP BCI paradigms are used mainly as assistive

interfaces (e.g., for patients in the locked-in state), while MI-BCI

captures activity over the motor and somatosensory cortices and

is used primarily for motor restoration and rehabilitation (Cervera

et al., 2018).

Specifically, MI shares many of the neural mechanisms with

the actual movement (Lotze et al., 1999; Kimberley et al.,

2006), including the recruitment of the prefrontal cortex, which

is responsible for the creation and maintenance of a clear

representation used during action and imagination (Hanakawa

et al., 2003). However, the level of the activation of the Central

Nervous System (CNS) activation is on average weaker in

imaginary movement than in the concrete action. In general, when

a neural structure is activated, there is a desynchronization of single

neurons activities that is reflected in a decrease in Power Spectral

Density (PSD) of the EEG signal in certain frequency ranges; when

there is an idle state, instead, there is a synchronization of single

neurons activities, leading to an increase in the PSD (Perry and

Bentin, 2009). The two phenomena are recognized as event-related

desynchronization (ERD) and synchronization (ERS), respectively,

and in general are observable between the 8–30 Hz band, within the

α (or µ) and β bands (McFarland et al., 2000).

The degree of activation of the cortex has been observed

to be linked to the type of imagery performed. There are two

types of strategies: kinesthetic motor imagery and visual motor

imagery (Guillot et al., 2004). In the first one, the subjects feel

that they are actually performing the movement, with coordination

and all the related sensory perception, so from a first-person

perspective comprehensive of the whole elicited sensations (or

the projection of them). Whereas, in the latter, the subjects

just observe themselves from an internal (first-person view) or

external perspective (third-person view). Stinear et al. observed

an effective difference between the two modalities: kinesthetic

MI was found to modulate corticomotor excitability. These

findings had an impact in terms of rehabilitation purposes

(Stinear et al., 2005).

One limitation observed along among various BCI

implementations is that not all subjects are able to use an

MI-based BCI; this is a commonly reported limitation, referred

to as BCI illiteracy (Vidaurre and Blankertz, 2010). Since a

BCI-implementation- related experiment requires a relatively long

large amount of time and effort, prior studies have attempted

to identify factors that could improve performance in MI-BCI

control. Some examples include the use of tactile feedback

(Pillette et al., 2021), task gamification (Vourvopoulos et al.,

2016), motor-priming prior to the MI-BCI training session

(Vourvopoulos and Bermúdez i Badia, 2016), but also, and the use

of embodied feedback either in the virtual or the physical world

through robots. Specifically, prior research has shown that MI

skills can be augmented by using humanlike hands (Alimardani

et al., 2016), and that the sense of embodiment in VR can be

enhanced by multisensory feedback related to body movements

(Leonardis et al., 2014).

TABLE 1 Subjects demographics.

Number of subjects 10

Gender 5 females, 5 males

Mean age (years) 25± 6

Handedness Right hand dominance

Background University students (5) and lab staff (5)
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Despite the large number of studies in this area and the variety

of methods adopted to increase the effectiveness of these systems

(Lotte et al., 2007, 2018), some methodological issues still remain

unclear. For example, in literature, it’s it is not clear which kind

of feedback, especially in which condition, is most beneficial for

the user. Specifically, research on the impact of robot hands’

perspective on EEG ERD patterns is relatively limited. A recent

survey revealed that a small subset of studies has have investigated

BCI in controlling robotic arms (most of the studies involve

wheelchairs or drones), and there are some further very limited

in studies analyzing ERD patterns (Zhang and Wang, 2021). The

majority of the studies report mainly classification accuracies and

BCI performance metrics.

The aim of this study is to investigate the impact of the visual

perspective (first- vs. third- person perspective) on ERD power,

lateralization, and learnability during a Brain-Robot Interaction. To

achieve this, a longitudinal study was designed, including wherein

10 healthy participants underwent, undergoing the two MI-BCI

conditions in over three consecutive days.

2. Methods

2.1. Demographics

For this experiment, 12 healthy subjects were recruited; one

subject was excluded due to left-handedness for consistency

purposes, and one due to a dropout, resulting into a total

of 10 participants. The mean age was 25 years (±6), with a

balanced sample between 5 males men and 5 females women

(Table 1). All No recruited participants had no prior experience

with neurofeedback or BCI, and all were without any known

neurological disease. All participants signed an their informed

consent before participating in the study in accordance with the

1964 Declaration of Helsinki, and the protocol was approved by

the Ethics Committee of CHULN and CAML (Faculty of Medicine,

University of Lisbon) with reference number: 245/19.

2.2. Protocol

Volunteers were instructed to stay as still as possible during the

MI to avoid any motor- related activity that was not related to the

actual task. To facilitate their MI performance, a simple MI task

was chosen that involved reaching an object on the table in front of

them, moving the right or the left arm. During trials, subjects were

asked to imagine the movement of their arm in a kinesthetic way,

including the imagination of the coordination of all the muscles,

joints involved in the real action, and the relative sensations. As

feedback provision, the robot was moving its arms forward to

reach the object and then going back, continuously, resembling the

imagined movement. The complete protocol pipeline is illustrated

in Figure 1.

The MI trials were based on the Graz paradigm (Pfurtscheller

et al., 2003), and can be described as follows: each trial lasted 4

s, forewarned by the appearance of a green cross on the screen

and a concomitant beep-sound a second before the onset of the

task. The beep sound was added in order to prepare the subject

for the incoming trial. Next, an arrow was appearingappeared

pointing right or left, and the subject had to imagine the continuous

movement of the corresponding arm reaching for the object for as

long as the green cross was on. To each subject, 20 arrows pointing

to the left and 20 pointing to the right were displayed randomly,

for a total of 40 trials. Between each trial, there was an interval

that lasted randomly between 1.5 and 3.5 s. The robot was moving

the corresponding hand, depending on the arrow direction, and

for the entire of the duration. Since the robot was moving during

the training trials, the elicited brain activity can be described as a

mixture of MI and Motor Observation (MO).

FIGURE 1

Schematic of the protocol pipeline. The duration of each step is reported: the experiments lasted maximum 2 h per participant.
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FIGURE 2

Experimental setup. (A) The Baxter robot; (B) screen for delivering

the visual simulations to the user for the first-person perspective;

(C) participant with the 32 electrode EEG system and headphones

for auditory stimulation and impeding outside noise.

2.3. Experimental setup

This experiment was performed in a laboratory environment

under controlled conditions. The subjects went through two BCI

acquisitions (one per condition) lasting a maximum of 2 h, during

over three consecutive days, each day at approximately the same

hour of the day. This was selected tominimize confounding factorss

related to the time of the acquisition of the EEG. During the session,

subjects were comfortably sited seated on a chair with their arms

resting on a table (Figure 2).

2.3.1. The robot
The robot used was Baxter (Rethink Robotics, Bochum,

Germany), a versatile research robot, 2 m tall, 140 kg of in weight,

with a wheeled pedestal that allowsmobility (Figure 2A). It presents

an anthropomorphic design with its animated face and two arms, in

which the hands are replaced by two grips to permit allow it to grab

tools. Each limb has 7 degrees of freedom (DoF) that make it able

to perform continuous and natural movements. Baxter is using an

open-source Robot Operating System (ROS) (Quigley et al., 2009),

and it provides a stand-alone server (i.e., ROSMaster) to which any

development workstation can connect and control Baxter ROS via

the various ROS Application Programming Interface (APIs).

2.3.2. Visual feedback
For the first-person perspective condition, a camera was

mounted at the head of the robot, capturing the robot arms and

displaying them in a secondary computer monitor, together with

the MI instructions (Figure 2B). For the third-person perspective,

the secondary monitor was removed, and the MI instructions were

delivered directly from a monitor attached in front of the robot, so

the robot hand was in front of the field-of-view of the participant

(Figure 2A).

2.3.3. Instrumentation
For the EEG acquisition, the LiveAmp 32 (Brain Products,

Gilching, Germany) system was used. LiveAmp is a wireless

amplifier with 32 active electrodes arranged in the 10-20 standard

configuration, and a triaxial accelerometer (Figure 2C). The EEG

signals were sampled at 250 Hz.

2.4. Software for analysis

For acquisition and visualization purposes, the OpenVibe

software platform was used. OpenVibe, enables to the design,

testing, and use of BCI pipelines through an intuitive platform

consisted consisting of a set of software modules (in C++) that

can be easily and efficiently integrated to design BCI (Renard

et al., 2010). To analyze the data, MATLAB was used with the

EEGLAB toolbox (Delorme and Makeig, 2004), a dedicated plugin

for processing and analyzing continuous and event-related EEG. It

permits to workallows for working with EEG data at an individual

level and with a group study.

2.5. Preprocessing

The acquired signal was preprocessed in order to enhance the

brain activity of interest and to lower the present noise. First,

the EEG signal was band-pass filtered between 1 and 40 Hz in

order to remove high- frequency noise usually related to muscle

artifacts and not of interest in MI tasks. Then, channels were

re-referenced to Common Average Reference (CAR), after the

identified bad channels were interpolated in order to not spread

the noise of the bad channels to the others. After this, the epochs

of interest (MI related to left and right movement imaginations)

were extracted and, Independent Component Analysis (ICA) was

then employed in order to remove eyes movement, blinking, and

muscle- related artifacts.

2.6. EEG data analysis

To investigate the differences in terms of conditions and

the evolution of the brain response along sessions, a group

study was performed on the recorded data. In particular, the

EEG signal acquired during trials was analyzed both in the

temporal and spatial domain. Concerning the temporal analysis,

the Event-Related Desynchronization (ERD) in the α band

(8-12 Hz) was computed for each trial and each subject, since

it is related with MI (Babiloni et al., 1999). This feature was

extracted from the Event-Related Spectral Perturbation (ERSP),

where the PSD of a single epoch is computed both across time

and in the frequency range of interest through time-frequency

decomposition using Morlet wavelets. The PSD was estimated

using the Welch method. The computed ERSP was divided by a

baseline, represented by the ERSP computed in the second before

the stimulus onset. Concerning the spatial domain, a qualitative

and a quantitative analysis were performed. For this purpose, the

ERD was averaged across time and represented through scalp

Frontiers inNeuroergonomics 04 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1080794
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Farabbi et al. 10.3389/fnrgo.2023.1080794

FIGURE 3

ERSP distributions along sessions for MI right-hand trials: ERSP recorded in channel C3 and C4 in the first-person and third-person perspectives. The

dashed lines represent the interpolation of the medians of each session.

topographical plots. This was done in order to qualitatively assess

any differences in the spatial distribution of the ERD. Regarding

the contralateral/ipsilateral activation during left and right epochs,

the ERD lateralization was extracted through the Lateralization

Index (LI) (Doyle et al., 2005), and has been computed using the

following formula:

LI =
(ERDC3Left − ERDC4Left)+ (ERDC4Right − ERDC3Right)

2
(1)

where C3 and C4 represent the electrodes examined and left and

right correspond to the arm that the user was supposed to imagine

to movinge. The LI value can be interpreted as follows: ipsilateral

dominance corresponds to a negative value, while contralateral

one to positive LI. Indeed, taking into account just a single task

analysis (left or right), if the contralateral value is lower than

the ipsilateral value, meaning a contralaterally desynchronized

status, LI would be positive. LI has been computed for every

session and condition, both for the training and online phases, in

α band.

2.7. Statistical analysis

Comparison between conditions was performed through

statistical tests. Since data distributions were not normal,

but also due to the small sample size, non-parametric tests

were employed.

In particular, the Friedman test was used as the non-parametric

alternative to the Repeated Measures ANOVA for finding any

statistically significant differences among conditions, both in terms

of ERDs and LIs. Moreover, the Friedman Test was also used to

assess any learning effect through a comparison between the first

and last sessions for each condition. or all statistical comparisons;

the significance level was set to 5% (p < 0.05) and were was carried

out using MATLAB R2021a.

3. Results

In this section, we report the ERD of the α band, and over

the C3 and C4 electrodes since they are the target electrodes for

acquiring sensorimotor rhythms.

3.1. Impact of visual perspective

In terms of the impact of the visual perspective, the Friedman

test yielded no significant differences between conditions, for all

sessions, for both electrodes (C3; C4), and for both right (Figure 3)

and left (Figure 4) trials. The χ2 scores and p-values obtained by

this comparison are reported in Table 2.
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FIGURE 4

ERSP distributions along sessions for MI left-hand trials: ERSP recorded in channel C3 and C4 in the first-person and third-person perspectives. The

dashed lines represent the interpolation of the medians of each session.

TABLE 2 The χ
2 score and the p-values obtained through the Friedman test comparing the two di�erent perspective conditions.

C3 C4

Left Right Left Right

Ses 1 Ses 2 Ses 3 Ses 1 Ses 2 Ses 3 Ses 1 Ses 2 Ses 3 Ses 1 Ses 2 Ses 3

χ
2
(1) 0.4 1.6 1.6 0.4 1.6 0.4 1.6 0.4 0.4 1.6 1.6 1.6

p-value 0.527 0.206 0.206 0.527 0.206 0.527 0.206 0.527 0.527 0.206 0.206 0.206

None of the obtained values showed significant differences.

Further, it can be noticed that, in all cases, most of the subjects

managed to evoke ERD during MI, resulting in negative values of

ERSPs (α desynchronization), with only a few outliers. It is worth

noticing that the desynchronization in the two electrodes (C3; C4),

is not only similar for both conditions, but also for the same side

(Left;Right MI).

Concerning the spatial distribution of the α desynchronization,

the most activated region is the sensorimotor area, around C3

and C4 electrodes as anticipated (Figure 5). However, it is worth

noticing that the brain activation is actually spread in throughout

both the electrodes C3 and C4, mainly in Session 1 (Left

epochs) and Session 3 (Right epochs). In all other cases, a more

contralateral activation is observed, mainly from the third-person

perspective condition. Nonetheless, the spatial patterns are similar

between conditions.

This is also confirmed also by the LI distributions along

sessions (Figure 6) where no significant difference has been

found between the first- and third- person perspective

[i.e., χ2(1) and p-values for each session are: (1.6, 0.206),

(1.6, 0.206), and (1.6, 0.206)]. Overall, it is not possible

to verify any predominance of the laterality for both

visual conditions.

3.2. Impact of time-learning e�ect

In this section, we are assess if the ERSP is changing across the

three different sessions, indicating possible learning effects.

The comparison along sessions concerning the ERSP metric

did not yield any significant difference across time in both

conditions for both electrodes and epochs. The results of the

Friedman test in terms of χ2 score and p-values are reported

in Table 3. However, the interpolation of the medians of the

ERSPs distributions of each session (Figures 3, 4) showed two
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FIGURE 5

ERD of each channel averaged along subjects during the di�erent sessions, for each feedback condition and for both left and right MI epochs.

Negative values indicate desynchronization of that region.

FIGURE 6

The Lateralization Index distributions along the three sessions for the first-person perspective (in red) and third-person perspective (in blue) are

reported. The green line represents the interpolation of the medians obtained in the three sessions for each feedback condition.

different behaviors for the two feedback conditions: the first-person

perspective resulted on in an increasing trend of ERSP along the

three sessions for both electrodes and epochs, while the third-

person perspective resulted in a decreasing trend of decrease

along sessions. The slopes related to this trend are reported in

Table 3.

Concerning the LI, a similar behavior can be assessed.

Again, the Friedman test did not yield any significant differences
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TABLE 3 Statistics obtained for the comparison between sessions in terms of Lateralization Index.

C3 C4

Left Right Left Right

1st PP 3rd PP 1st PP 3rd PP 1st PP 3rd PP 1st PP 3rd PP

χ
2
(1) 1.6 1.6 0.4 0.4 1.6 1.6 0.4 1.6

p-value 0.206 0.206 0.527 0.527 0.206 0.206 0.527 0.206

Slope 0.42 –0.50 0.48 –0.87 0.40 –0.59 0.67 –0.77

The χ2 score and the p-value of the comparison between first and third session and the slope of the trend of the medians obtained during the three sessions are reported.

between the first- [χ2
(1)

= 0.4, p = 0.527] and third-

[χ2
(1)

= 1.6, p = 0.206] person perspective across sessions,

respectively. Moreover, the trend along sessions, as extracted by

the median slopes, show two different behaviors depending on the

feedback condition. Specifically, the first-person perspective has a

negative trend over time (coef :−1.193), while the third-person

perspective resulted in a positive trend (coef : 1.695) as illustrated

in Figure 6.

4. Discussion

The obtained results suggest that in all visual perspective

conditions during Brain-Robot Interaction through MI, we can

elicit α desynchronization responses of the somatosensory area.

Nonetheless, no impact of the condition nor time was found on

the α ERSP power. Moreover, the α ERSP distribution at scalp

level showed no predominant hemisphere, with the spread all over

the somatosensory area, highlighting no ipsilateral or contralateral

dominance. However, during the third-person perspective condition

of feedback, the ERD seems to be more contralaterally localized

than the one observed during the first-person perspective, where,

especially in the third session, electrodes C3 and C4 recorded a

similar activity. The contralateral α ERSP during the third-person

perspective feedback can be particularly noticed during the MI of

the right hand, which and that can be related to the fact that

all the participants analyzed had right-hand dominance, thus it

would be easier for them to imagine vividly the movement of their

dominant hand.

Concerning ERSP development over time, we noticed that

the two feedback conditions gave two different behaviors along

sessions, when interpolating the medians of the ERSP distributions.

This trend was used to assess the learning ability of the subjects

during the ongoing of throughout the experiment. In particular

with learning ability, we intend the capability aim to have a more

vivid imagination of the task investigated, resulting in a more

desynchronized response of the neurons (i.e., the ERSP decreases

across time). The first-person perspective condition trend along

the three session increases, while the one for the third-person

perspective decreases, suggesting a better learning ability of the

subject with this type of feedback. However, a consideration must

be done made for the first-person perspective condition. The use of

the monitor for simulating this condition is not optimal, since it

does not give the right sense of embodiment to the subjects. It is

suggested to use differentmeans for replicative of this perspective in

different ways, such as by using visors for Virtual Reality, that which

are is already widely used in MI-based BCI trials (Vourvopoulos

et al., 2019).

Moreover, both for the spatial and temporal domain analyses,

no statistically significant differences were highlighted between

sessions. This may be due to the restricted number of participants

and, we believe, to the number of sessions (and the interval between

them) that does not permit to strongly assess the presence of

learning ability of the subjects along across sessions.

Concerning the direct comparison between the two perspective

conditions, the Friedman test on the metrics of interest revealed

no significant differences. This suggests that the two conditions do

not affect the brain response during MI tasks, but, again, it must be

taken into account that the simulation of the first-person perspective

was not optimal in the proposed protocol.

Overall, current findings contribute for to the future

development of robot-assisted rehabilitation, given the impact that

MI BCI’s could have in re-training the lost functions in stroke

patients, and promotinge recovery by employing intensive and

repetitive motor training (AL-Quraishi et al., 2018). Furthermore,

the latest research in rehabilitation robotics highlighted the

importance that embodied robotic feedback could offer in lasting

clinical outcomes (Robinson et al., 2021), while robotic-assisted

upper limb systems allow the performance of tasks of everyday

living (e.g., grasping, eating, and personal hygiene), found to

be amongst the most important activities to be exercised in

rehabilitation (Rätz et al., 2022).

5. Conclusions

In this paper, a study of the impact of the visual perspective

of robotic arms on brain response during MI tasks is presented.

The results obtained in terms of temporal and spatial activation

did not indicate any significant differences, suggesting that the

robot arm perspective given to the subject during MI trials

does not affect the elicited activity of the brain in terms of

α ERSP. However, this is a preliminary study, since a general

effect on the learning ability of the subjects was observed in

the analyzed ERSP, but, due to the restricted number of sessions

and subjects, the considerations about it are limited. Future

development of this work should consider increasing the number

of sessions and the number of participants and, moreover, to

changinge the method of presenting the first-person perspective,

and improvinge the perceived sense of embodiment of the robotic

limbs. Last but not least, this study also resulted into the

production of 180 labeled MI EEG datasets during robot arm
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movement, publicly available for educational and research purposes

(Farabbi et al., 2020).
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