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As Artificial Intelligence (AI) proliferates across various sectors such as

healthcare, transportation, energy, and military applications, the collaboration

between human-AI teams is becoming increasingly critical. Understanding the

interrelationships between system elements - humans and AI - is vital to

achieving the best outcomes within individual team members’ capabilities. This

is also crucial in designing better AI algorithms and finding favored scenarios

for joint AI-human missions that capitalize on the unique capabilities of both

elements. In this conceptual study, we introduce Intentional Behavioral Synchrony

(IBS) as a synchronization mechanism between humans and AI to set up a

trusting relationship without compromising mission goals. IBS aims to create a

sense of similarity between AI decisions and human expectations, drawing on

psychological concepts that can be integrated into AI algorithms. We also discuss

the potential of usingmultimodal fusion to set up a feedback loop between the two

partners. Our aim with this work is to start a research trend centered on exploring

innovative ways of deploying synchrony between teams of non-humanmembers.

Our goal is to foster a better sense of collaboration and trust between humans and

AI, resulting in more e�ective joint missions.

KEYWORDS

human-AI teaming, Intentional Behavioral Synchrony (IBS), human-machine trust,

Human-Machine Interaction (HMI), multimodal fusion

1. Introduction

In coherence with the rapid growth of interest in Artificial Intelligence (AI) applications,

it is inevitable that AI will play a vital part in humans’ lives (Haenlein and Kaplan, 2019). As a

result, the upcoming years will see various forms of human-machine teaming across several

domains and applications, including those involved in high-sensitivity and complex tasks,

such as military applications (National Intelligence Council, 2021), transportation (National

Science and Technology Council United States Department of Transportation, 2020), and

others. Studying the dynamics of human-AI teams is an interdisciplinary endeavor that

involves technical concepts related to the intelligent part (such as computer science and

engineering) and the human element (such as psychology). It also entails examining the

interactions between humans and AI, which in addition to the concepts above, encompass

a wide range of considerations, including human factors, ethics, and policymaking. This

area of research is becoming increasingly important because fewer studies are available

that examine the interactions between humans and AI than those that focus solely on the

individual elements. Thus, there is a growing interest in understanding how humans and AI

can work together in a way that is safe, ethical, and effective.

Although AI is a new field, research into it does not have to begin from scratch.

Rather, we view AI as a subdomain of the machine-based automation movement that

started in the mid-1900s. Therefore, there is a wealth of research and knowledge that we
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can use to design better human-AI systems. Furthermore, by

viewing AI as an evolved, more-sophisticated version of a rule-

based machine or a robot, one of the key pillars in understanding

the relationship between humans and AI is human trust, a topic

that has been addressed by many over the years, of those which

date back to the 1980s (Muir, 1987). From the literature, we define

human trust in AI as the degree to which a user holds a positive

attitude toward an AI team member’s reliability, predictability, and

dependability to perform the actions that contribute to delivering

the overall task aims. Trust establishment is influenced by many

factors, which can be divided into three categories: human factors

(about humans), partner factors (about AI), and environmental

factors (about context), all of which are interconnected (Hancock

et al., 2011). Achieving the correct balance and alignment between

human trust and AI capabilities requires accounting for all these

factors, a concept known as “calibrated trust” (Lee and See, 2004).

This work follows in the same vein by introducing a new concept

that has the potential to help enhance our knowledge of human-AI

team systems.

In a human-human team setting, the level of trust the trustor

places in the trustee is influenced by the latter’s ability to defend

themselves and explain the rationale behind their decisions. This is

also extendable to human-AI teams (Chen et al., 2016). However,

this is a challenging feature to have in AI (Calhoun et al., 2019).

Thus, instead of imposing the explainability load on AI, we propose

shifting this burden to humans by having AI imitate their actions

in low-stakes subtasks. By recognizing themselves in the actions of

AI, humans can set up a connection with it. As a result, in decision-

making instances where the best decision is unclear, humans can

trust the AI’s decision based on the pre-established trust from

earlier, more direct decision-making interactions. We are calling

this model “Intentional Behavioral Synchrony (IBS),” and we define

it as the intentional adoption of minor decision-making patterns

by an AI agent to mimic those of its human teammate in scenarios

where such decisions have a minimally noticeable impact on the

mission’s overall aims. This approach aims to enhance human-AI

teaming, improving team performance in the long term. This paper

aims to introduce this concept and discuss its origin and ability to

implement it in real-life applications.

2. Intentional behavioral synchrony

2.1. Theoretical foundation

The IBS concept draws inspiration from a psychological

phenomenon seen in human-human interaction, known as

interpersonal synchrony. Traditionally, interpersonal synchrony

refers to physical and temporal coordination (Schmidt et al.,

1990), but it has been found to involve several other behavioral

mechanisms beyond movement (Mazzurega et al., 2011). It is

well-established that synchrony is an indicator of social closeness

between two humans (Tickle-Degnen and Rosenthal, 1987). This

concept can be easily extrapolated to human-agent teams, but only

for agents with similar or very closely matched behavioral and

cognitive abilities to humans. But here we are concerned with AI-

powered machines, or agents, that have the abilities of processing

complex-sets of information, reasoning, decision-making, and

taking actions, in pursuit of general high-level aims [definition is

inspired by Gabbay et al. (1998)]. These agents are not necessarily

humanoid, and they might be embedded in a piece of software that

is invisible to humans. This is why synchrony, in the traditional

sense, cannot be used with such systems. Thus, the IBS concept was

introduced. IBS can be thought of as an add-on to currently existing

AI elements of different nature. It is a trust-building strategy for

humans working with AI teammates, which can be integrated into

AI algorithms to enhance the team’s overall performance.

The importance of trust comes from its being essential

in building a personal relationship or companionship with a

teammate. This human trait has been shown to advance team

efforts in achieving their goals (Love et al., 2021). Humans

strive to prove a sense of companionship with their possessions,

as shown by many individuals naming their belongings. This

practice is prevalent across various domains, including sensitive

environments like the military, where equipment is often

named, such as the famous Big Dog robot. Therefore, by

implementing IBS in AI algorithms, we can create a sense of

harmony that aligns with human expectations, thereby fostering

stronger connections between team members, allowing humans

to trust more sophisticated decisions made by the AI that

humans may not be able to attest the optimality of the

decisions made.

2.2. Operational environments

The proposed strategy is fundamental in nature and, thus,

can be implemented in a range of scenarios. Here, we offer some

guidelines to illustrate how IBS can be effectively used.

2.2.1. Not limited to robots
IBS is meant to supply a connection between a decision-making

element and a companion human to ease joint task performance.

This connection is not restricted to robots or humanoid agents

but can extend to any type of intelligent entity. For example, it

could be a software application making actions, whether visibly or

invisibly, that affect the joint task. Also, IBS and other behavioral

synchrony mechanisms are expected to work effectively with

humanoid robots, which may have greater potential than invisible

AI agents.

2.2.2. Not limited to specific types of interaction
Regardless of the freedom given to AI and whether its

role is complementary to humans in making joint decisions

or if it handles making independent decisions, the trust value

brought by behavioral synchrony is unquestionable. So, IBS can

be used in various applications regardless of the AI’s interaction

with the human partner. Furthermore, the significance of trust

between humans and AI is not limited to specific domains

where the human’s emotional state is crucial to achieving

team aims but is a fundamental aspect of teamwork. Hence,

it is essential to consider trust when perfecting the design of

AI machines to maximize the overall benefits generated by

the team.
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2.2.3. A personalized fashion
Each human has a unique perspective and set of qualities

that affect their ability to work effectively in teams and interact

with AI, which is referred to as dispositional trust in literature

(Hoff and Bashir, 2015). Dispositional trust develops from human

characteristics, such as accumulated experiences and life events

met by the individual up to the present time. These interactions

significantly affect human behavior and can leave individuals

vulnerable to intentional or unintentional biases, which can affect

how they collaborate with AI in joint systems. As a result, IBS

integration, as well as any trust-building mechanism, will need

to be conducted on an individual basis. Nonetheless, clustering

techniques could be used to find shared characteristics among

humans that could ease the process.

3. Practical framework

3.1. Description

Our vision is to use IBS and behavioral synchrony in highly

dynamic and complex environments where tasks are layered

with multiple goals and aims. These environments offer many

opportunities to test the effectiveness of our theory in real-world

applications; they have the freedom to try alternative approaches

(decisions) that eventually can achieve the same goals. To give

a perspective on how such a strategy would work, consider the

exemplary diagram in Figure 1. The figure illustrates how an

AI element is positioned to make decisions in a hierarchical

manner, where each decision affects the later set of decisions.

These decisions are interdependent and driven by a set of primary

and secondary goals that AI has been programmed to achieve. In

the figure, AI is one of many elements of a network of elements

involving the human companion and other AI-human teams. This

setup is ideal for applying IBS and similar algorithms.

At each step of the decision-making process, the decision that

contributes to achieving the greatest number of goals is preferred.

This is how intelligent elements should be programmed. In the

figure, these are the paths shown in red. In such an environment, AI

can carry out the goals set by humans in diverse ways by following

one of the red routes. Thus, no goals or aims of the experiment will

be compromised by taking either path. The proposed IBS method

suggests prioritizing the path that is more like what a human would

choose, not just at the first stage but throughout the decision-

making process. This can be implemented by adding this IBS

requirement to the list of secondary or even tertiary requirements

of the systems. While this is not an aim of the specific mission

itself, it aims to build a connection with the humans involved which

may help achieve other strategic goals eventually, using the AI

algorithms developed in this training mission.

However, certain decisions made by AI could compromise the

delivery of all aims, as depicted in the yellow path in the graph.

In the case that the yellow path is much more intuitive to humans

compared to the red paths, the challenge becomes about making

comparisons and analyzing trade-offs between specific task aims

(achieving as many goals as possible) and overall strategic aims

(building robust AI algorithms that work efficiently and effectively

with humans). The challenge lies in analyzing the associated risks

and rewards for interconnected teams composed of many elements.

There are two ways of integrating IBS to address situations where

adding IBS criteria may compromise the quality of work. The first

method involves integrating this element during the training phase

in an offline manner. Once sufficient training has been completed,

humans should have enough confidence in the AI’s reasoning

abilities to make proper decisions without the need for real-time

IBS. The second approach is to keep IBS implemented during

actual task execution to supply a continuous real-time sense of

similarity to the human, simply by avoiding actions that are out of

the ordinary.

3.2. Human reflections for feedback

To test the effect of AI decisions on humans and whether that

is the ideal alternative from a set of options or not, one potential

measurement method is the use of self-reported questionnaires.

However, this method is susceptible to biases such as recall,

interpretation, and social desirability biases, among others. An

alternative approach is incorporating real-time human signals into

the AI system. The use of physiological modalities in Human-

Machine Interaction (HMI) applications is prevalent. In settings

where signal acquisition devices are available, they could be used to

set up a feedback loop from humans to the AI system to evaluate

its decisions. However, this strategy has added constraints, most

notably signal interpretation and the necessity to isolate the outside

events from the targeted events with the machine. These obstacles

may be outweighed by the insights physiological signals provide

that cannot be gained through other traditional approaches.

Different human physiological signals have been long set up

to be correct in detecting human emotions, including trust as one

such emotion. Because of established neural correlates of trust,

Electroencephalography (EEG) has been one of the key modalities

used to extract trust levels (Long et al., 2012). The earliest attempts

were mostly confined to using Event-Related Potentials (ERPs) to

extract the brain response of humans while completing specific

cognitive activities. Studies of this sort include (Boudreau et al.,

2009; Long et al., 2012; Dong et al., 2015). The ERP (Event

Related Potentials) approach is hard to be integrated into practical

systems, and thus we would not recommend it. Furthermore, in

a study published in Akash et al. (2018), EEG and Galvanic Skin

Response (GSR) were used to find links with trust. The authors were

successful in doing so, with accuracy values in the 70% range. GSR

was also shown to correlate with trust levels in studies of different

contexts, such as the work of Montague et al. (2014) and Khawaji

et al. (2015). Furthermore, there have been several recent studies

examining EEG for detecting the neural markers of human trust,

such as Wang et al. (2018), Blais et al. (2019), Jung et al. (2019), and

Oh et al. (2020). Electrocardiography (ECG) is far less researched

compared to EEG and GSR. We are not aware of any studies

that examined implementing ECG for capturing human trust in

the context of intelligent machines. With that, some studies have

shown a relationship between heart rate and other ECG features

with trust in contexts not related to HMI, such as the work shown

by Leichtenstern et al. (2011) and Ibáñez et al. (2016). Also, there

are a few studies that examined the mapping between eye-tracking

Frontiers inNeuroergonomics 03 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1181827
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Naser and Bhattacharya 10.3389/fnrgo.2023.1181827

FIGURE 1

An exemplary diagram of AI decisions in a complex multi-layer mission.

with trust, but in applications different from the application of

interest here.

In addition to the physiological signals, there is a prospect of

using facial expressions to detect trust and other emotions of the

human in such systems. Using deep neural networks trained on

video footage, which is more prevalent and easier to implement

than certain physiological modalities, can classify human emotions.

Detecting human emotional states from facial expressions is a

broad area of research, and it is well-established to be amazingly

effective (Ko, 2018; Naga et al., 2021).

As shown above, many inputs from humans have shown

a potential in detecting human trust. Also, some studies have

been undertaken to investigate the validity of multimodal fusion

techniques in detecting human trust and emotions, such as Zheng

et al. (2014), Huang et al. (2017), and Zhao et al. (2019). That

said, multimodal fusion is still in the first stages of development.

Still, it holds the potential for creating robust classification

schemes, leaving room for further research on integrating different

physiological modalities to quantify the trust between humans

and AI.

3.3. Supporting evidence

By examining the relevant literature, one can investigate the

soundness of the proposed approach. Here, two fundamental

questions are discussed.

3.3.1. Can familiarity/similarity help establish trust
between humans and AI?

Explainability is crucial for building trust with machines,

but it is not always feasible. To address this, IBS is introduced

as a tool to create similarity. Our aim is to replace the

need for explainability with similarity, supported by the work

of Brennen (2020) where users were found to build trust in

AI through familiarity rather than detailed explanations of its

working methodology. Furthermore, establishing trust based on

behavioral imitation is a well-known psychological human trait.

In the work of Over et al. (2013), it was demonstrated that

children place great importance on establishing trust with adults

Frontiers inNeuroergonomics 04 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1181827
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Naser and Bhattacharya 10.3389/fnrgo.2023.1181827

when the adults imitate their choices. Other studies have also

examined the importance of shared traits in establishing trust.

For instance, in the study of Clerke and Heerey (2021), higher

levels of behavioral mimicry and similarity were shown to lead

to greater trust between individuals, which further supports the

validity of exploring the IBS method for establishing trust in

human-AI systems.

3.3.2. Is it possible to have the same/similar
output despite making di�erent early decisions?

In simple applications of singular goals, such as in a chess

game, it is indeed possible to obtain the same or similar

outcome despite making different early decisions (Sutton and

Barto, 1998); different openings can lead to the same output of

winning. However, when a network of sub-goals is introduced,

such as aiming to finish the game in the shortest time,

the process becomes more complex. While concrete empirical

evidence is necessary to provide a definitive answer, it is

reasonable to expect similar outputs, regardless of the early

decisions made. This is because the number of possible paths

(decisions) is highly likely to surpass the number of potential

outcomes. As a result, some of these paths will ultimately

lead to very similar outputs, providing many options for the

machine to learn while establishing a relationship with the

human partner.

4. Conclusions

In this brief conceptual study, we have introduced the idea

of Intentional Behavioral Synchrony (IBS) as an essential step

toward building trust between humans and AI machines in

joint systems. We have highlighted the significance and positive

impact of synchrony between humans and AI elements while

working together as a team, especially in highly dynamic and

complex tasks. Although our study does not supply empirical

evidence, it offers valuable insights for examining the impact of

IBS in real systems and encourages further research to explore

factors that have been overlooked or underestimated in setting

up more effective human-AI teams. Future studies could include

investigating different mechanisms for measuring human reactions

to AI in such dynamic applications. Also, the work paves the

way for innovative ways of achieving synchrony among teams

that include non-human members. Such an endeavor requires the

collaborative effort of a multidisciplinary team of engineers, data

scientists, and psychologists and must be executed in a context-

dependent way.
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