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1. Introduction

The AMBER dataset aims to support researchers in developing signal-denoising

techniques that mitigate the impact of noise sources such as eye blinks, eye gaze, talking

and body movements, in order to ameliorate the signal-to-noise characteristics of EEG

(Electroencephalography) measurements. The emphasis of this research is to enable the

robust performance of brain-computer interface systems in naturalistic real-world settings,

i.e., outside of the lab.

Prior studies (Manor et al., 2016; Huang et al., 2020; Ranjan et al., 2021) have typically

focused on using characteristics of EEG signals in isolation without contextual signal sources

to identify and ameliorate such artifacts with limited success. Presently, however, no suitable

dataset exists in order to train and evaluate such approaches.

Several research articles have discussed P300 RSVP datasets available to researchers (Lees

et al., 2018). Notably, Won et al. (2022) collected P300 RSVP data from 50 participants

using a 32-channel Biosemi ActiveTwo system, while another dataset was presented by

Acqualagna and Blankertz (2013), acquired from 12 subjects. Additionally, an extensive

dataset was introduced by Zhang et al. (2020), which involved 64 subjects recorded with

a 64-channel Synamps2 system. However, these datasets share a common limitation in

that they solely focus on EEG signals without incorporating any contextual signal sources.

In contrast, our aim is to provide the research community with an extensive dataset

that not only includes participant video data alongside EEG recordings, but also closely

replicates real-world situations, bridging the gap between controlled laboratory settings and

naturalistic environments.

The AMBER dataset incorporates a multimodal and contextual approach by capturing

video data of the participant alongside the EEG recording. The inclusion of video data

enriches the dataset by providing contextual information and additional modalities for

analysis. By recording video data simultaneously with EEG signals, researchers can leverage

a broader range of contextual cues, such as facial expressions, body movements, and

eye movements.

EEG is an accessible and safe method for researchers and users to build and operate

BCI (Brain-Computer Interface) applications (Awais et al., 2021). While the initial use of

such techniques began in clinical/rehabilitative settings for the purposes of augmenting

communication and control, a recent trend has been to use such signals and methods in

new domains, such as the image annotation task, which relies on the identification of target

brain events to trigger labeling (Bigdely-Shamlo et al., 2008; Pohlmeyer et al., 2011; Marathe

et al., 2015).
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The Rapid Serial Visual Presentation (RSVP) is an approach

to BCI in which a series of images are displayed at high speed.

Participants are asked to differentiate between a set of target images

and a set of standard images, where P300 ERP is evoked by a target

image but not by standard images (Healy and Smeaton, 2017;Wang

et al., 2018).

While the RSVP-BCI paradigm can be demonstrated in

controlled lab-based environments, translation of this paradigm

into consumer contexts requires a better understanding of

real-world EEG artifacts that impact EEG signal quality in

ecologically valid settings, e.g., in online worlds, metaverse, and

gaming contexts. Such application scenarios are characterized

by less constrained user behavior, some of which is entirely

necessary for the normally expected interactions. Examples include

talking, head and hand movements, all of which generate

artifacts that impede the application of EEG in BCIs in

real-world contexts.

By utilizing the P300/RSVP task in this dataset, we aim to

differentiate the EEG results obtained in the presence of noise

from those obtained in noise-free conditions. This differentiation

allows for a comprehensive analysis of the impact of noise on

EEG signals and facilitates the evaluation of signal-denoising

techniques. The P300/RSVP task is particularly relevant as it

involves measuring accuracy, making it an effective dependent

variable to assess the efficacy of noise cleaning and evaluate the

influence of behavioral artifacts on the EEG signals. Furthermore,

we can gain insights into the relationship between noise,

behavioral artifacts, and the quality of EEG signals, ultimately

enhancing our understanding of the robustness of EEG data in

real-world settings.

For the purpose of creating this dataset, participants were

instructed to produce particular artifacts at particular times via

a carefully controlled protocol, e.g., moving head left to right

vs. up and down, eye movement, eye blinks, facial expressions,

lip movement, body movement, etc. The specific artifacts that

participants were instructed to produce during data recording

reflect the most problematic artifacts encountered in real-world

EEG recording (Urigüen and Garcia-Zapirain, 2015; Jiang et al.,

2019; Rashmi and Shantala, 2022).

Moreover, the AMBER dataset represents a significant

advancement in the field of brain-computer interfaces (BCIs) by

providing researchers with a resource to address one of the key

challenges in EEG data analysis—signal denoising. EEG recordings

are often plagued by various artifacts and noise, which can obscure

the underlying neural signals and hinder accurate analysis. The

importance of signal-denoising lies in its potential to enhance

the quality and reliability of EEG measurements, enabling more

accurate identification and interpretation of neural responses. By

effectively removing unwanted artifacts and noise, researchers can

gain deeper insights into brain activity and cognitive processes,

leading to a more comprehensive understanding of neural

mechanisms. Moreover, denoising techniques are crucial for

developing robust BCIs that can reliably detect and interpret brain

signals in real-world scenarios. The dataset serves as a valuable

resource for exploring and developing novel signal denoising

techniques, ultimately paving the way for more effective and

practical applications of BCIs in naturalistic settings.

TABLE 1 Description of tasks performed in a single session.

No. Task ID Task description Duration (s)

1. B1 Baseline Eyes Open 60

2. B0 Baseline Eyes Movement 10

3. B2 Baseline Eyes Close 60

4. X1 RSVP Task 90

5. X2 RSVP Task 90

6. X3 Artifact 1: Body Movement 90

7. X4 RSVP + Body Movement 90

8. X5 Artifact 2: Talking 90

9. X6 RSVP + Talking 90

10. X7 Artifact 3: Head Movement 90

11. X8 RSVP + Head Movement 90

2. Data acquisition

Ten healthy participants aged between 20 and 35 years were

recruited from Dublin City University to participate in the data

collection. Among these participants, there were 6 males and 4

females, and each participant was assigned an alias ranging from

“P1” to “P10”. Data acquisition was performed with approval from

the Dublin City University (DCU) Research Ethics Committee

(DCUREC/2021/175).

The hardware used for data collection was the ANT-Neuro

eego sports mobile EEG system. A 32-channel EEG cap positioned

according to the 10-20 international electrode system was used for

the data acquisition. CPz was used as the online reference channel,

and the impedance of all electrodes was kept under 15 kOhm. Data

was collected at a sampling rate of 1,000 Hz (using a lowpass filter

of 500 Hz) and saved in EDF format.

EEGwas recorded from the ten participants while they followed

a pre-defined protocol of tasks. Timestamp information for image

presentation (via a photodiode and hardware trigger) was also

captured to allow for precise epoching of the EEG signals for each

trial (Wang et al., 2016).

3. Experimental protocol

In the AMBER dataset, we employ a multimodal approach that

encompasses two primary signal sources: (1) EEG data collection

and (2) video recording. Both EEG recordings and video are

captured at the same time.

3.1. EEG recording

The dataset contains EEG responses to 10,500 images, in total.

Each participant completed 4 sessions where each session contained

8 blocks followed by 3 different baselines. A description of each task

in a single session is given in Table 1.
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FIGURE 1

Illustration of the P300/RSVP task where images of cars have been used as the target class. Reproduced with permission from Freepik.com1.

As seen in Table 1, the data collection is split into

three sections:

1. The standard RSVP image search paradigm, in which the

subjects perform the target search task while sitting still in front

of the monitor (X1 and X2);

2. The RSVP paradigm with participant-induced noise, in which

the participants through following a protocol, generate three

distinct types of EEG artifactual noise through movements (i.e.,

head movement, body movement, and talking) while doing the

RSVP task (X4, X6, and X8);

3. The noise paradigm, in which the participants generate three

distinct types of noises throughout the trial without performing

any RSVP image search task (X3, X5, and X7).

1 Freepik.com image source links: https://www.freepik.com/free-

photo/red-luxury-sedan-road_6198664.htm#query=cars&position=

0&from_view=search&track=sph; https://www.freepik.com/free-photo/

yellow-sport-car-with-black-autotuning-road_6159512.htm#query=

cars&position=2&from_view=search&track=sph#position=2&query=cars;

https://www.freepik.com/free-vector/white-hatchback-car-isolated-

white-vector_3602751.htm#from_view=detail_alsolike; https://www.

freepik.com/free-photo/pink-flower-white-background_976070.htm#

In the image search RSVP task, participants searched for a

known type of target (e.g., a car) and were instructed to covertly

count occurrences of target images in the RSVP sequence so as to

maintain their attention on the task. In Figure 1, we show examples

of the target search images used. In each 90-s RSVP block, images

were presented successively at a rate of 4 Hz with target images

randomly interspersed among standard images with a percentage

of 10% across all blocks. In each block, 360 images (36 targets/324

standards) were presented in rapid succession on screen.

There were 288/2592 target/standard trials captured for the

standard RSVP task per participant, whereas, in the case of

query=flower&position=5&from_view=search&track=sph; https://

www.freepik.com/free-photo/close-up-fine-tuning-string-adjuster-

violin_2978632.htm#query=wooden%20guitar%20on%20table&position=

27&from_view=search&track=ais; https://www.freepik.com/free-photo/

front-view-cute-domestic-dog-pet_5795881.htm#query=golden

%20retriever%20face&position=1&from_view=search&track=ais; https://

www.freepik.com/free-ai-image/scary-bobcat-indoors_59584025.

htm#query=bengal%20cat%20close%20up&position=3&from_view=

search&track=ais; https://www.freepik.com/free-ai-image/gray-suv-

is-parked-road-front-field_40368536.htm#query=cars&position=

36&from_view=search&track=sph.
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each noisy RSVP task (1-body movement, 2-talking, and 3-head

movement), there were 144/1296 target/standard trials available.

In addition to recording using the pre-defined RSVP paradigm,

intentional artifacts were also generated by the participants through

following a protocol. In the first scenario, participants generated

noise in parallel with the RSVP task, and in the second scenario,

they generated artifactual noise without performing the RSVP task.

These intentional artifacts were induced to simulate realistic

scenarios and study the effects of bodymovement, talking, and head

movement on EEG data. By performing these intentional artifact-

generating tasks in parallel with the RSVP task, this dataset captures

the effect of coincident noise on task performance and EEG data.

The inclusion of intentionally generated artifacts also enables a

more comprehensive analysis of the noise characteristics and their

impact on EEG data, enabling researchers to develop more effective

signal-denoising techniques.

3.1.1. Artifact 1: body movement
To induce body movement artifacts, participants were

instructed to repeatedly raise and wave their hands, followed

by putting their hands down, and repeating this sequence of

movements for the entire duration of the 90-s block. Participants

were given the freedom to choose which hand(s) to raise and in

what sequence, with the intention of inducing variability around

artifact production. They were instructed to perform the task at

a comfortable speed, neither too fast nor too slow, in order to

maintain consistency across participants. This task was designed

to simulate a real-world or metaverse-type environment where a

person might be moving their hands and arms while using a virtual

reality setup such as playing a game or engaging in any other

activity that involves body movements.

3.1.2. Artifact 2: talking
To generate talking artifacts, participants were instructed to

count aloud, mixing numbers and letters in random sequences,

for the entire 90-s block. They were given the freedom to choose

the order and sequence of their counting, with the aim of

inducing variability.

During the RSVP task, participants were instructed to count

and continuously repeat the number of target images out loud

to create talking artifactual noise in the EEG. The aim of this

instruction was to simulate a real-life scenario where individuals

may need to focus on a task while simultaneously communicating

verbally in situations like playing a game or collaborating with

others in a virtual space.

3.1.3. Artifact 3: head movement
To generate head movement artifacts, participants were

instructed to move their heads in an up-down (nodding) or left-

right motion, at a natural speed, throughout the entire 90-s block.

Participants were specifically instructed to alternate between up-

down and left-right head movements in a randomized manner.

This task was designed to simulate real-world scenarios where a

person might produce head movements in situations like nodding

in agreement during a conversation or shaking their head in

response to a question. Additionally, this task aimed to simulate

virtual reality (VR) environments, where a person might use a VR

headset and move their head to explore different directions while

playing games or visiting virtual spaces.

Figure 2 illustrates the organization of the EEG recordings for

each participant. It also provides an overview of the files (i.e., raw

EEG data and labels) associated with each task.

3.2. Video recording

We employed a multimodal approach that involved

capturing video data of BCI participants while they produced

specific artifacts.

3.2.1. Video data collection and framing
To accurately capture the various artifacts, video data was

recorded using a Logitech C920 webcam, which has a frame rate of

20 fps. The camera was calibrated using OpenCV (Zhang, 2000) to

determine the camera matrix and distortion coefficients, ensuring

the accuracy of the recorded video data.

During the recording of eye, head, and mouth-

related artifacts, the participant’s face was kept fully

in the frame. This framing approach allowed for

a clear and unobstructed view of the participant’s

movements, including pupil dilation, eye-opening size,

and movement. For arm movements, the upper torso was

maintained in full frame, ensuring proper visibility of the

body movements.

3.2.2. Video data annotation and time-stamping
Each video frame was timestamped and assigned a

corresponding frame number, which was recorded in a

corresponding CSV file. This file also contained information

on frame size, zoom factors, and camera matrix. The

timestamping process ensured that the video data could be

accurately synchronized with the EEG data, allowing for a robust

multimodal analysis.

3.2.3. Significance of video data in contextual EEG
dataset

The integration of video data into the Contextual EEG

Dataset is critical for developing advanced signal-denoising

techniques and improving BCI performance in real-world

settings. Combining video data with electroencephalogram (EEG)

recordings enables researchers to explore the correlations

between facial expressions, head movements, and brain

activity, leading to a better understanding of various (neuro-

)physiological phenomena. By capturing these problematic

artifacts encountered in naturalistic environments, researchers

can better understand the factors affecting EEG data quality

and develop solutions to mitigate their impact on BCI

performance.
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FIGURE 2

Organization of the EEG recordings for each participant.

4. Data records

In this work, we collected EEG data from 10 participants,

which is labeled as Dataset A. For illustrative purposes, we

conducted basic pre-processing steps on the raw EEG data,

resulting in a modified version referred to as Dataset B.

Alongside the EEG recordings, we simultaneously captured

video data, which was independently processed to extract

relevant information. These video-derived extractions are denoted

as Dataset C. The availability of multiple datasets enables

comprehensive analysis, allowing us to explore the relationship

between EEG signals, video data, and their potential combined

insights. Detailed descriptions of each dataset are provided

below.

4.1. Data A: raw EEG data

The raw EEG data recorded during each task is stored in EDF

file format, which contains all the relevant information, including

the complete EEG signal as well as the events that occurred

during the task. For each participant, there are 11 EDF files

corresponding to each session, which results in a total of 44 files

for all four sessions.

Frontiers inNeuroergonomics 05 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1216440
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Awais et al. 10.3389/fnrgo.2023.1216440

The RSVP tasks have additional information about the target

and standard image triggers, which are given in the form of CSV

files. There are five RSVP tasks per session (two standard and

three noisy RSVP tasks), which results in 20 CSV marker files for

each participant. This combination of EDF and CSV files provides

a comprehensive dataset that allows for detailed analysis of EEG

signals and their corresponding events during the RSVP tasks. An

overview of the files (i.e., EDF and CSV) associated with each task

in a session can be seen in Figure 2.

During each RSVP task, a total of 360 images were presented

to participants. As a result, each corresponding CSV marker

file contains 360 rows of information having two distinct

labels, “1” and “2”. The label “1” indicates the presence of

a target image in the corresponding epoch for the RSVP

task, while the label “2” indicates the absence of a target

image, and, therefore, a standard non-target image. These labels

provide vital information for the analysis of the EEG data as

they allow the identification of the specific moments in time

when the target and non-target stimuli were presented during

the task.

4.2. Data B: processed EEG data

In addition to the raw data (i.e., Dataset A), an illustrative

pipeline has been provided that encompasses crucial preprocessing

steps to make the EEG data amenable to analysis, visualization, and

machine learning. This transformation procedure was proposed as

an example to restructure the continuous raw data into a more

compact dataset and to make it easier to use.

The pipeline includes essential stages such as filtering,

resampling, re-referencing, and epoching. By following this

example pipeline, researchers can effectively transform and

structure the data, allowing for a deeper understanding of its

characteristics and facilitating further analysis. Python (version

3.9.12) was mainly used along with the MNE (version 0.24.0) to

implement the processing. This example pipeline is available (click

here), allowing interested researchers to modify the processing

setup as they wish.

4.2.1. Raw data loading
A function was developed in Python to quickly load the raw

EEG data for a particular participant and session. This function

is helpful for efficiently accessing the EEG data for analysis and

processing. The raw data is stored in the EDF file format, which

contains all the relevant information related to the EEG recordings,

including the event markers. Further information about event

markers is stored in separate CSV files for each RSVP task.

4.2.2. Digital filtering
A low pass filter with a cut-off frequency of 30Hz was applied to

the EEG data to remove any high-frequency noise or artifacts that

may be present in the signal above 30 Hz. This filtering step helped

to improve the signal-to-noise ratio and enhance the quality of the

EEG data.

4.2.3. Re-sampling
We have carried out down-sampling on our original signal

sampled at 1,000 Hz to obtain a down-sampled signal with a

new sampling rate of 100 Hz. The down-sampled signal can help

reduce the computational load of subsequent processing steps while

preserving the essential features of the signal.

4.2.4. Re-referencing
The raw EEG data was initially recorded using the default CPz

reference. However, in order to improve the quality of the data,

common average referencing (CAR) was applied using the MNE

re-reference function.

4.2.5. Epoching
The continuous EEG recordings were segmented into epochs

by extracting the time series data from −0.2 to 1 s relative to the

onset of the visual stimulus.

After undergoing the aforementioned pre-processing steps, the

data is saved into CSV files. Each session comprises 11 CSV

files, resulting in a total of 44 files for each participant. Each file

contains comprehensive information about the channels, epochs,

and their respective categories. By providing access to this pre-

processed data as an example, users can explore the raw datasets

in a multitude of ways, unlocking various possibilities for analysis

and interpretation.

4.3. Data C: video data

In this section, we describe the process of extracting metadata

from video recordings using OpenCV libraries and synchronizing

it with EEG data recorded in the European Data Format (EDF).

4.3.1. Video processing and metadata extraction
Video recordings can provide valuable information

on an individual’s facial expressions, head position, and

skeletal movements. To extract this information, we

utilized the OpenCV libraries, which offer a wide range of

functionalities for image and video analysis. The metadata

extracted includes:

1. Three-dimensional head position.

2. Eye opening.

3. Mouth opening.

4. Two-dimensional eye position.

5. Three-dimensional skeleton movement.

Each of these metadata elements is timestamped to ensure

accurate synchronization with the EEG data.

4.3.2. Data conversion and representation
Once the metadata is extracted from the video, it is converted

into a suitable format for integration with the EEG data. We

represent each metadata element as a graph line to facilitate the

visualization and analysis of the combined data. This graphical
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representation allows researchers to easily identify patterns and

correlations between video metadata and EEG activity.

4.3.3. Synchronization with EEG data
In order to accurately integrate the video metadata with the

EEG data, we utilize the video frame timestamps as a reference for

aligning the metadata with the EEG data. This ensures that each

metadata element is correctly associated with the corresponding

EEG activity.

The combined analysis of video metadata and EEG data has

numerous applications in various fields, such as neuroscience,

psychology, and human-computer interaction. By understanding

the relationship between facial expressions, head movements,

and brain activity, researchers can gain insights into emotion

recognition, attention, and cognitive processes. Moreover, this

approach can also be applied to develop advanced human-

computer interfaces and improve the accuracy of brain-computer

interfaces (Redmond et al., 2022).
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