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Explainable stress type
classification captures
physiologically relevant responses
in the Maastricht Acute Stress Test

Jaakko Tervonen*, Johanna Närväinen, Jani Mäntyjärvi and

Kati Pettersson

VTT Technical Research Centre of Finland Ltd., Espoo, Finland

Introduction: Current stress detection methods concentrate on identification of

stress and non-stress states despite the existence of various stress types. The

present study performs a more specific, explainable stress classification, which

could provide valuable information on the physiological stress reactions.

Methods: Physiological responses were measured in the Maastricht Acute Stress

Test (MAST), comprising alternating trials of cold pressor (inducing physiological

stress and pain) and mental arithmetics (eliciting cognitive and social-evaluative

stress). The responses in these subtasks were compared to each other and to

the baseline through mixed model analysis. Subsequently, stress type detection

was conducted with a comprehensive analysis of several machine learning

components a�ecting classification. Finally, explainable artificial intelligence (XAI)

methods were applied to analyze the influence of physiological features onmodel

behavior.

Results: Most of the investigated physiological reactions were specific to the

stressors, and the subtasks could be distinguished from baseline with up to 86.5%

balanced accuracy. The choice of the physiological signals to measure (up to

25%-point di�erence in balanced accuracy) and the selection of features (up to

7%-point di�erence) were the two key components in classification. Reflection of

the XAI analysis to mixed model results and human physiology revealed that the

stress detectionmodel concentrated on physiological features relevant for the two

stressors.

Discussion: The findings confirm that multimodal machine learning classification

can detect di�erent types of stress reactions from baseline while focusing on

physiologically sensible changes. Since themeasured signals and feature selection

a�ected classification performance the most, data analytic choices left limited

input information uncompensated.

KEYWORDS

interpretable artificial intelligence, machine learning, physiology, stress, acute stress

detection

1 Introduction

Stress affects people both positively and negatively: in some cases it helps individuals

cope while in others it paralyzes them. The human body adapts to stressful situations

efficiently but when the transient stress repeats without adequate recovery, it can convert

slowly and insidiously into chronic stress that threatens health and wellbeing. Therefore,
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studying stress detection methodology has received significant

attention in recent years. Current methods, however, are limited

since they focus on binary detection between stress and non-

stress states (Vos et al., 2023). In addition, the various machine

learning (ML) components affecting detection performance remain

understudied in conjunction with a physiological inspection of the

most important features to apply.

The harmful effects of stress aremainly associated with frequent

activation of the hypothalamus-pituitary-adrenal (HPA), which

triggers a sequence of events causing the release of cortisol

in the bloodstream, increasing cortisol levels (Sharpley, 2009).

The stressful activation may also begin from the sympathetic

nervous system through sympatho-adrenaline-medullary (SAM),

which causes the increase of arousal level via adrenaline (Sharpley,

2009; Smeets et al., 2012). Thus, two stress-responsive axes evoke

physiological changes. These can be detected from biosignal

features such as heart rate (HR) and heart rate variability

(HRV) from electrocardiogram (ECG), skin conductance responses

from electrodermal activity (EDA), spectral power parameters

from electroencephalogram (EEG), and eye movement and blink

statistics from electro-oculogram (EOG) (Schmidt et al., 2019;

Giannakakis et al., 2022; Vanhollebeke et al., 2022).

A vast majority of stress detection research is conducted in

laboratory conditions, where stress must be induced. The induction

protocols may contain social-evaluative, mentally and attentionally

engaging, or physically uncomfortable elements (Dickerson and

Kemeny, 2004; Schmidt et al., 2019). Several studies, such as Mozos

et al. (2017), Schmidt et al. (2018), and Aristizabal et al. (2021), have

employed the Trier Social Stress Test (TSST) (Kirschbaum et al.,

1993), which comprises a public speaking and a mental arithmetic

(MA) task. A cold pressor test (CPT), where participants hold their

right hand in cold water for a short period (1–3 min), has been

used to deliver physical stress (Daniels and Georgiou, 2019; Ghiasi

et al., 2020; Mishra et al., 2020a). These protocols have typically had

resting sessions between the different stressors and each subtask has

been completed just once. However, such setups are far from real

life situations where the various stressors offer no chance to rest

and recover between them.

In contrast, the Maastricht Acute Stress Test (MAST) (Smeets

et al., 2012) consists of alternating trials of CPT and MA subtasks,

each lasting 45–90 s, repeated for 10 min with no resting sessions

between the trials. By design, MAST contains two stressors

(cognitive MA and physical CPT), but it also contains elements

of a social-evaluative stressor since the researcher pressures the

participant to perform better and wrong answers cause a penalty

in the arithmetic subtask. The different stressors cause different

physiological reactions in the human body, which are briefly

reviewed next.

Stressors including social-evaluative or cognitive elements

increase blood pressure, HR, blink rate, and EDA activity, decrease

HRV (Schuri and von Cramon, 1981; Hellhammer and Schubert,

2012; Aristizabal et al., 2021), and cause significant changes in some

spectral EEG parameters (Vanhollebeke et al., 2022). Since CPT

triggers a sympathetic activation (Mourot et al., 2008), it causes

changes in EDA (Mourot et al., 2008; Ghiasi et al., 2020) and in

blink rate (Paparella et al., 2020). However, the HR response to

the CPT varies individually: Mourot et al. (2008) reported that

HR increased continuously during the 3-min CPT for 20 out of

39 participants and decreased for the others after a short initial

increase. As for EEG, most studies with CPT have been related to

pain research and Chang et al. (2002) summarize these findings:

decreased alpha band and increased beta band activity. They also

observed increased frontal theta activity and decreased posterior

alpha activity during a three-minute CPT. Recently, Chouchou

et al. (2021) concluded that the decrease in parietal alpha activity

is a robust but unspecific marker of pain.

In earlier studies, the MAST has been mainly treated as a

single 10-min stressor that increases blood pressure and salivary

cortisol levels (Smeets et al., 2012; Quaedflieg et al., 2017; Shilton

et al., 2017). However, HR evidenced no group level effect between

pre-MAST and post-MAST phases (Shilton et al., 2017). The

limited reactivity could mean that the HR reactions have subsided

prior to post-MAST measurements, as reported in a TSST study

(Hellhammer and Schubert, 2012). As MAST consists of a dynamic

sequence of two stressor trials, it would be meaningful to treat

the stressors as two distinct states rather than as a single block of

general stress. Verifying whether these two stressors elicit different

types of stress either through HPA or SAM activation would be

complicated due to the need for hormonal measurements between

the repeated trials and the leakage arising from themissing recovery

periods. Nevertheless, the current study refers to the induced

states as stress types since the two stressors are expected to cause

varied physiological reactions in the human body. This leads to

stress detection problem with two different stressors, physical stress

(CPT) and cognitive stress with elements of social stress (MA).

The problem is challenging, primarily because there is no recovery

between alternating MA and CPT subtasks, and there is likely to

be physiological leakage, especially affecting the classification of the

first few subtask windows. So far, few studies have used such an

approach to study the stress and physiology during the MAST but

it has been shown in Pettersson et al. (2020) and Tervonen et al.

(2021b) that CPT andMA can be separated with MLmethods from

biosignal measurements.

A ML approach to stress detection follows a processing

pipeline with steps such as data preprocessing, feature

extraction, and classification (Schmidt et al., 2019). Preprocessing

consists of synchronization of the available data streams,

filtering the raw signals to increase the signal-to-noise ratio,

and segmenting the signals into desired lengths to enable

classification of measurements. At feature extraction, the

filtered and segmented signals are turned into more insightful

features, e.g., HR is computed from the ECG signal. Finally,

the features are classified with a ML algorithm combined with

proper validation procedure to ensure generalizability of the

model.

Despite the different types of stressors and resulting stress,

existing studies focus on binary stress detection (Vos et al., 2023).

Even when the stress induction protocol has included a variety of

social-evaluative or cognitive stress stimuli, the divergent stressful

conditions have been labeled as a single stress state, e.g., Mishra

et al. (2020b) and Chalabianloo et al. (2022). The works with a

non-binary setup have detected the intensity of stress (Gjoreski

et al., 2017), classified between resting, mental stress, and physical

activity (Chalabianloo et al., 2022), or between resting, stress, and
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an affective state (Feng et al., 2023) instead of detecting the type of

stress.

Additionally, despite the comprehensive and versatile reactions

that stress causes in the human body, the emphasis in biosignal

based stress detection studies is in HRV and EDA measurements

(Schmidt et al., 2019; Giannakakis et al., 2022; Vos et al., 2023). The

studies utilizing EEG often use spectral analysis of multichannel

EEG measurements (Vanhollebeke et al., 2022), which is time-

consuming to set up, computationally heavy and infeasible in real-

life situations. A more realistic option is to measure brainbeat,

a derived EEG parameter introduced by Holm et al. (2009). It

is computed from the frontal and parietal signals, which can be

measured with simple wearable EEG devices. EOG is commonly

measured in multichannel EEG studies to remove eye movement

and blink artifacts from the EEG signal. However, the EOG signals

have rarely been used as a parameter in stress detection, despite that

eye movements and blinks react to changes in human cognitive

state (Marshall, 2007; Henderson et al., 2013; Pettersson et al.,

2020).

Consequently, the knowledge of which physiological features

to apply in stress detection is incomplete. Despite that feature

importance analysis is essential to properly interpret and validate

a classification model, the exact features that were the most

important are scarcely reported. This objective was progressed

in Pettersson et al. (2020) and Tervonen et al. (2021a,b), but

they employed large sets of features and feature importance

was computed with methods that may produce model-specific

or biased estimates (e.g., partial dependence plots in Tervonen

et al., 2021a which is based on feature permutations, disregarding

feature intercorrelations). Shapley additive explanations (Lundberg

and Lee, 2017) would be a more robust choice, as they fairly

assign the prediction to individual features. The approach was

adopted in stress detection context in Chalabianloo et al. (2022)

but the analysis was limited to just HRV and EDA features. The

existing investigations of feature importance have also been rather

technical (Tervonen et al., 2021a,b; Chalabianloo et al., 2022) and

physiological sensibility is little discussed.

On the modeling side, the focus on stress detection has

been on improving the data processing pipeline and especially

on conducting extensive evaluations to find the best classifier

and signals to measure (Schmidt et al., 2019; Giannakakis et al.,

2022; Vos et al., 2023). Thus, only the results with several

classifiers and signal combinations are often reported, e.g., Schmidt

et al. (2018) and Pettersson et al. (2020), and little attention is

given to estimating the effect of other modeling choices, such as

data segmentation and optimizing the classifier hyperparameters.

Therefore, assessing the importance of conducting those steps is

hindered.

The present study investigates the physiological responses in

ECG, EDA, EOG, and EEG to the subtasks of the MAST protocol.

The main aim is to (1) determine whether reactions to the stressors

deviated with a mixed model analysis, and (2) detect the stress

types from a baseline condition using a ML analysis. The emphasis

on the ML analysis is on evaluating the necessity and effect of

different components in the pipeline, namely which signals to

measure and classifier to use, the duration of feature windows,

feature selection, and hyperparameter optimization. Finally, the

study examines physiological parameters’ impact on classification,

both with an extensive set of features and an interpretable one

of a few easily interpretable features, and reflects these results to

physiology. To the best of authors knowledge, this study is the

first to extensively examine the physiological responses during the

MAST with both a statistical and an explainable ML analysis.

2 Materials and methods

The analysis in this study was conducted as follows: (1) the

data were collected; (2) the data were preprocessed and features

extracted; (3) the data were analyzed with mixed models to

determine whether the protocol elicited varying reactions to the

MAST subtasks and to see how the physiological features reflected

stress; and (4) a ML analysis was conducted to find whether the

stress types can be classified and model behavior was explained to

see which exact features affected classification the most and how.

2.1 Data collection

Study participants were healthy volunteers (N = 24, 7 male)

with a mean age of 23.5 years (sd = 3.0 years, range 19–29).

The volunteers were required to be right-handed, have no history

in cardiac disorders, no severe depression, and no consumption

of medicines affecting the autonomous nervous system. The

participants were instructed to maintain their normal lifestyle,

avoid any atypical activities during the 24 h before the study visit

and ensure they do not arrive hungry nor very full. All visits were

hosted by the same researcher and the experiments were conducted

one participant at a time. All participants gave their informed

consent in all the studies. The participants were also informed that

they could stop their participation at any given time and their

participation was completely voluntary. The study proposal was

evaluated by the Ethics Committee in the Humanities and Social

and Behavioural Sciences of the University of Helsinki.

The MAST was conducted as part of a larger protocol (see

Figure 1). Baseline physiology was recorded for 120 s before and

after the protocol while the participants stayed still and kept their

eyes on a fixation point on a computer screen. These baseline

periods served as the baseline resting state in this study.

The MAST protocol consisted of 10 min of alternating trials

of physical (CPT) and psycho-social (MA) stress, each trial with a

varying duration between 45 and 90 s. In the cold immersion, the

participants held their hand in water with a constant temperature

of 2 ◦C. The participants counted down from 2,043 in steps of 17

under time pressure and penalization in the arithmetic subtaskMA;

the researcher urged them to be fast and they had to return to

start when making a mistake. The instructions for each subtask was

visible on a computer screen during the whole protocol.

Physiological signals were collected with NeurOne system

(Bittium, Oulu, Finland). The measured signals included one-

channel ECG between left collarbone and right lower back, EDA

between the index and middle finger, 64-channel EEG placed

according to the International 10-20 system, and two-channel

EOG between the electrodes placed above and beneath the left
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FIGURE 1

The study protocol. Only the data from baselines (BL1 and BL2), and MAST are discussed in this work. IAF stands for the phase when individual alpha

frequencies were measured.

eye (vertical) and the outer corners of the eyes (horizontal).

Electrodes T9 and T10 served as a linked mastoid reference. The

participants held their left hand still during the experiment to

ensure undisturbed EDA signal. Each signal was sampled at a

sampling rate of 1, 000Hz and low-pass filtered with a cut-off

frequency of 250Hz.

2.2 Data preprocessing and feature
extraction

Data processing followed a feature-based approach, where the

raw biosignals were processed into features usable for classification

of stressful states. A total of 150 features were computed, and

Table 1 lists all the extracted features and provides the names of

features used later in text.

Heartbeats and interbeat intervals (IBIs) were extracted from

the ECG signals with a Matlab toolbox (Sedghamiz, 2014)

implementing the Pan-Tompkins algorithm. Then, HR and HRV

features were computed from the IBIs. The statistics of HR and

its first derivative were calculated. HRV was extracted in time,

frequency and non-linear domain with the Python package hrv-

analysis (Champseix, 2018). In total, 44 features from the ECG

signal were extracted.

Saccades and blinks were extracted from the EOG signals with

an automated algorithm (Pettersson et al., 2013). Once obtained,

the statistics of saccade rate, time between saccades, saccade

duration, blink rate, time between blinks, blink duration, and blink

waveform skewness were computed for a total of 81 features.

The EDA signal was decomposed into phasic and tonic

component using the Ledalab Matlab software (Benedek and

Kaernbach, 2010). Then, statistics of the phasic component and

its two first derivatives were computed, along with the number of

skin conductance responses (SCR) and the total time the phasic

component was increasing and decreasing, totalling 24 features.

Finally, the brainbeat (BB) was extracted from the EEG signal

as follows. The EEG data were bandbass (1 − 40Hz) filtered. The

eye movement artifacts were removed by regression algorithm, the

EEG signal was down-sampled to 200 Hz and Fourier transformed

to yield spectra. First, individual alpha frequencies (IAFs) were

extracted from eyes closed condition (measured right after the

baseline in the beginning of the measurement protocol) for each

participant and the individual alpha band range was set to IAF 2Hz

and theta range 48Hz. The BB parameter was computed as the ratio

theta(Fz)/alpha(Pz) (Holm et al., 2009).

To analyze the effect of the selected window duration, all

features were extracted in windows of 10, 15, 30, and 45 s with

a window slide of 5, 7.5, 15, and 15 s, respectively. The window

durations and slides were selected to fit the length of the MAST

subtasks to minimize data loss. Shorter windows than 10 s were

not considered, since many of the features were computed from

detected events: e.g., in Bentivoglio et al. (1997) it was observed that

mean blink rate in rest condition is 17 blinks per minute, which is

approximately one blink every 4 s. Thus, shorter windows might

not contain any blinks. Moreover, no saccades were detected in

some, especially shorter, windows. The saccades made may have

been too small to detect them from the EOG signal, lost in transient

noise, or nonexistent, as the participants were instructed to look

at a fixation point in the BL task so they should not have made

saccades. Windows with too few blinks or saccades were left out

of the analysis. Table 2 lists the number of samples at each window

length; see Section 2.4.1 for a description of feature sets.

All the features extracted may be important for classification,

but some of the features, such as statistics of second derivatives, are

difficult to interpret. Therefore, an interpretable set of features was

defined, consisting mainly of average measures: the mean of HR,

IBI, phasic EDA, blink rate, time between blinks, blink duration,

blink skewness, saccade rate, time between saccades, and saccade

duration. In addition, root mean square of successive differences

(RMSSD, a HRV measure), number of SCRs and BB were added.

This set was used for an explainable machine learning analysis and

a mixed model analysis.

To account for the subjective nature of physiological

measurements, the features were normalized by person specific

z-score standardization which has been shown to outperform other

normalization strategies (Gjoreski et al., 2020).

2.3 Mixed model analysis

The physiological stress reactions during the MAST were

explored with a linear mixed model analysis. The models were

applied to assess whether the protocol elicited different kinds

of stress (rest = BL, physiological stress = CPT, psycho-social

stress = MA) using features from the biosignals that have been

found to reflect stress or cognitive loading: ECG (heart rate, inter-

beat-interval; ibi, rmssd), EDA (number of peaks, mean), EOG
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TABLE 1 List of extracted features from each signal, and their naming convention used in other figures and tables. Features written in bold denote

interpretable features.

Feature name prefix Features Description

ecg_hr_ mean, std, lq, uq, median, min, max, range, cv Statistics of HR

ecg_hr_d1_ mean, std, lq, uq, median, min, max, range, cv Statistics of the 1st derivative of HR

ecg_hrv_ ibi_mean, ibi_median, ibi_range Statistics of IBIs

ecg_hrv_ sdnn, sdsd Std of IBIs and successive differences

ecg_hrv_ (p)nn20, (p)nn50 Percentage and number of IBIs differing more than

20ms/50ms

ecg_hrv_ rmssd Root mean square of successive differences

ecg_hrv_ cvnni, cvsd Ratio of sdnn and mean IBI, and RMSSD and mean IBI

ecg_hrv_ vlf, lf, hf, total_power Power in very, low, high frequency bands and total

power

ecg_hrv_ lf/hf Ratio of lf and hf

ecg_hrv_ lfnu, hfnu Normalized lf and hf

ecg_hrv_ hrvti HRV triangular index

ecg_hrv_ cvi, csi, Modified_csi (Modified) cardiac sympathetic index, cardiac vagal

index

ecg_hrv_ sd1, sd2, sd2/sd1 Poincar plot std perpendicular and along the identity

line, their ratio

eda_phasic_ mean, std, lq, uq, median, min, max Statistics of phasic EDA

eda_phasic_d1_ mean, std, lq, uq, median, min, max Stats of the 1st drv. of phasic EDA

eda_phasic_d2_ mean, std, lq, uq, median, min, max Stats of the 2nd drv. of phasic EDA

eda_phasic_ npeaks Number of peaks

eda_phasic_ risetime, dectime Time signal increased/decreased

eog_blink_br_ mean, std, lq, uq, min, max, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of blink rate

eog_blink_bdur_ mean, std, lq, uq, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of blink duration

eog_blink_tbb_ mean, std, lq, uq, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of time between blinks

eog_blink_bskew_ mean, std, lq, uq, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of blink waveform skewness

eog_sac_sr_ mean, std, lq, uq, min, max, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of saccade rate

eog_sac_sdur_ mean, std, lq, uq, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of saccade duration

eog_sac_tbs_ mean, std, lq, uq, median, rmssd, cv, kurtosis, skewness, p5, p95 Statistics of time between saccades

eeg_ bb Brainbeat

Std, standard deviation; lq and uq, lower and upper quartile; pX, the X’th percentile; sac, saccades.

(blink rate, time between blinks, blink duration, blink skewness,

saccade rate, time between saccades, saccade duration) and EEG

(brainbeat).

The subtask type represented a fixed effect, participant a

random effect, and a 45 s window with a 15 s window slide was

selected for all features. The models were computed with R’s lmer

and glmer functions from the lme4 package (Bates et al., 2015).

Since the number of EDA peaks reflects counts, a generalized

linear mixed model (glmer) with Poisson link and maximum

likelihood with Laplace approximation was applied in the fit for

it and p-values were computed using asymptotic Wald test. As for

the other features, a linear mixed model (lmer) with maximum

likelihood estimation was employed and p-values were computed

with Satterthwaite’s method (Luke, 2017). The null models were

compared to stress type models with analysis of variance (ANOVA)

and the post-hoc analyses were executed by using Tukey’s contrasts.

The significance level for statistical inference was Bonferroni

corrected to account for multiple testing.

2.4 Machine learning analysis

2.4.1 Classification
Seven classifiers commonly used in stress detection studies

detected CPT and MA from BL: k-nearest neighbors (KNN),

linear and quadratic discriminant analysis (LDA, QDA), support

vector machine (SVM), decision tree (DT), random forest (RF),

and extreme gradient boosting (XGB), each of which is shortly

described in the next paragraph.
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TABLE 2 Number of samples in each feature set at each window length.

Missing values occurred mainly when participants made too few blinks or

saccades to compute EOG features.

Feature set Window length (s)

10 15 30 45

ECG 3,762 2,420 1,078 814

EDA 3,762 2,420 1,078 814

EOG 2,520 1,956 1,012 792

BB 3,762 2,419 1,077 813

ECGEDA 3,762 2,420 1,078 814

EOGBB 2,519 1,954 1,010 790

ECGEDAEOGBB 2,519 1,954 1,010 790

KNN serves as an example of a distance-based classifier. A

new observation is classified to the class, which most K closest

training observations come from. LDA, QDA, and SVM construct

hyperplanes to separate the classes. QDA assumes that the features

follow a multivariate Gaussian distribution within each class and

classifies a new observation to the class with the highest posterior

probability, which gives rise to a quadratic decision boundary. LDA

is similar to QDA, but it further assumes that covariance matrices

of the different classes are equal, giving rise to a linear decision

boundary. On the other hand, SVM makes no assumptions on

the probability distributions but instead it directly constructs an

optimal hyperplane with maximal margin to the different classes,

combined with transformation to a space in which the features are

linearly separable. DT, RF, and XGB are tree-based classifiers, which

split the data hierarchically with an aim to contain observations

from a single class only in each leaf node. RF consists of several

independent DTs, each of which is trained on a random subset of

samples and features, whereas in XGB, the DTs are not independent

but try to fix the errors made by previous trees. For further reading

on the classifiers, we refer to Hastie et al. (2009).

Classification was performed with seven feature sets to assess

the effects of signal types. The feature sets were formed through

feature-level fusion, i.e., features from individual signals were

extracted independently and fused prior to classification. First,

each signal distinguished between the stress states alone (feature

sets ECG, EDA, EOG, BB). Next, ECG and EDA features

were combined (feature set ECGEDA) since many devices (e.g.,

Empatica E4 and Shimmer3) enable measuring those together.

Similarly, EOG and BB were fused (feature set EOGBB) since EOG

is often measured with EEG, to remove eye movement artifacts

from the EEG signal. Finally, all available signals were used together

(feature set ECGEDAEOGBB). Table 2 displays the number of

samples for each feature set and window length.

Classification performance is generally improved by

hyperparameter optimization and feature selection. In this work,

Bayesian optimization was applied to find optimal hyperparameters

for each classifier (Bergstra et al., 2013). Non-informative priors

with reasonable value range were adopted for each parameter, and

the optimization was continued for 50 iterations per classifier,

expect for LDA and QDA, which have no optimizable parameters.

In addition, features were selected using the sequential forward

floating search (SFFS) algorithm (Pudil et al., 1994), which adds or

removes features as needed one by one until convergence. Feature

selection was not conducted for tree-based models because they

can simply ignore non-informative features during model training

nor for the BB feature set, which consisted of a single feature.

To estimate how well the models generalize to new users, a

leave-three-out validation strategy was employed. At each iteration,

the data of three users was left out, the model was trained with

the rest of the users’ data and evaluated with the left-out fold.

Additionally, a nested leave-three-out validation loop was included

for hyperparameter optimization and feature selection to ensure

that optimal parameters and features were selected according to

validation, and not testing data. Thus, at each validation iteration,

an internal leave-three-out validation was conducted to select

the features and the best hyperparameters. Balanced accuracy,

weighted by number of samples in each fold, served as an optimality

criterion, since the label distribution was slightly skewed: as

computed from subtask durations (see Figure 1), the data consisted

of (up to a rounding error) 28.6% BL, 42.9% CPT, and 28.6% MA.

The results are reported in terms of average balanced accuracy and

its standard deviation across the validation folds.

In terms of computation time, one validation iteration lasted

on average for 5 s with the XGB model, and 0.8 s with the SVM

model without SFFS on the computer used to run the experiments.

However, one iteration with SVMmodel when SFFS was used took

on average ∼7.7 min, so SFFS added a significant computational

load to model training.

Classification experiments were conducted in Python. The

xgboost package was used for XGB implementation and the scikit-

learn implementation for other classifiers. Bayesian optimization

was conducted with the hyperopt and SFFS feature selection with

themlxtend packages.

2.4.2 Model explanations
The paradigm of explainable artificial intelligence (XAI), which

aims to help understand how opaque ML models work, has been

acknowledged as a crucial feature for practical MLmodels in recent

years (Barredo Arrieta et al., 2020). In this work, XAI was applied

to the ML models using feature relevance explanation techniques

that described the functioning of the model by measuring the

importance each feature had to the prediction output. The

importance of features for classification was assessed with Shapley

additive explanations (SHAP).

SHAP is a local, model-agnostic explanation method based

on game theory. It has a solid mathematical background with

desirable properties for an explanationmethod, which are discussed

thoroughly in Lundberg and Lee (2017). As a local method, SHAP

values are computed for each observation. To draw conclusions

on global model behavior, summary statistics or visualizations are

needed. A single SHAP value describes the effect that an observed

feature value has on the model output as compared to average

prediction (Molnar, 2022). So, in the case of classification, a SHAP

value of e.g., 0.04 of a feature with respect to a given class denotes

that the probability of being classified to the given class was 4%-

points higher than it was on average. The global importance of

each feature can be estimated as an average absolute SHAP value,
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TABLE 3 Results of the mixed model post-hoc analyses. The direction of the e�ect can be deduced from the sign of the Z-value.

CPT-BL MA-BL MA-CPT

Feature z-value p-value z-value p-value z-value p-value

ecg_hr_mean 13.14 <0.001 25.31 <0.001 14.47 <0.001

ecg_hrv_ibi_mean −14.04 <0.001 −25.21 <0.001 −13.58 <0.001

ecg_hrv_rmssd −3.15 0.005 −7.22 <0.001 −4.66 <0.001

eog_blink_br_mean 10.13 <0.001 17.14 <0.001 8.73 <0.001

eog_blink_tbb_mean −9.89 <0.001 −10.79 <0.001 −2.37 0.046

eog_blink_bdur_mean 5.01 <0.001 0.69 0.768 −3.73 <0.001

eog_sac_sr_mean 1.20 0.454 3.72 <0.001 2.78 0.0148

eog_sac_sdur_mean 16.36 <0.001 17.75 <0.001 3.84 <0.001

eda_npeaks 0.31 0.949 8.75 <0.001 8.80 <0.001

eda_mean 4.23 <0.001 19.45 <0.001 16.30 <0.001

brainbeat −0.25 0.966 6.00 <0.001 6.37 <0.001

The Bonferroni corrected significance level for p-values in these tests was 0.005.

and investigation of the distribution of individual SHAP values in

relation to feature values allows assessing how changes in feature

values are related to changes in model output.

3 Results

3.1 Mixed model results

The physiological stress reactions during the CPT andMA trials

of the MAST were studied with linear mixed model analysis. The

results showed statistically significant effect of stress type (BL, CPT,

MA) on all features, expect for blink skewness and the time between

saccades. The residual normality was verified from the histograms

and q-q plots for all the models with statistically significant effect

for the stress type. Post-hoc analyses of all the significant features

are presented in Table 3. Detailed results of the mixed model

analysis including analysis of variance model comparison, models

fixed and random effects as well as effect sizes are included in

Supplementary material.

3.2 Classification results

3.2.1 Overall performance
Longer windows tended to perform better regardless of

classifier type and feature set. The best balanced accuracy at a 45 s

window length was 86.5%, which was clearly higher than the best

at a 10 s window length, 74.8%. The best single signal seemed to

be EOG for almost all classifiers and window durations but feature

sets with multiple signals performed better than single signals. The

combined ECGEDAEOGBB performed the best out of all feature

sets across all classifiers, except for QDA.

SVM provided the best performance with 12 out of 28 window

length and feature set combinations, followed by XGB (10), SVM

with SFFS (3), DT with SFFS (2), and RF (1). The balanced

accuracies for each set of features with each classifier and each

window length are shown in Figure 2. For a deeper investigation,

the classification results are available in numerical format as

Supplementary material.

The differences between classifiers or feature sets were modest:

average performances were usually within standard deviations,

except for the BB feature set and QDA classifier. This is

understandable, since the BB feature set consisted of only a

single feature, as opposed to multiple features in other feature

sets. For most window durations and signals, QDA classifier

performed poorly, which likely occurred due to its sensitivity to

multicollinearity, as e.g., HRV variables tend to be correlated.When

SFFS was run with QDA, it performed similarly to other classifiers.

Table 4 shows the confusionmatrices for each window duration

for the XGB model with ECGEDAEOGBB feature set. Predicting

baseline when the actual observations were from a stressful state

was uncommon: 3.9 − 5.6% and 0.9 − 1.8% of observations

from CPT and MA, respectively, were classified as BL at each

window length. Similarly, the amount of BL data classified

as MA was between 0.4 and 4.2%. Instead, the two stressful

states were increasingly confused with each other when window

duration decreased, and similarly predicting CPT instead of BL was

increasingly more common with shorter windows.

Therefore, the classifier performed well when the task was to

distinguish BL and stress or BL and MA from each other, while

classification between the two stressful states was more difficult.

Detecting CPT from BL was also more challenging than detecting

MA from BL, as CPT exhibited a closer physiological proximity

to BL than MA. Similar phenomenon was observed earlier in

Tervonen et al. (2021b).

3.2.2 Parameter optimization
Figure 3 shows how beneficial Bayesian hyperparameter

optimization was as compared to using default hyperparameters (as

determined for each classifier in each of the software packages used)

with the 45 s window length.

Frontiers inNeuroergonomics 07 frontiersin.org

https://doi.org/10.3389/fnrgo.2023.1294286
https://www.frontiersin.org/journals/neuroergonomics
https://www.frontiersin.org


Tervonen et al. 10.3389/fnrgo.2023.1294286

FIGURE 2

Average balanced accuracy and standard deviation across the window lengths, feature sets and classifiers. The average and standard deviation were

computed across the validation folds. The “-s” after a model name denotes scores with SFFS feature selection.

TABLE 4 Confusion matrices of the XGB model for each window length

with all available features, values as percentages of true labels.

Predicted label

BL MA CPT BL MA CPT

True label

45 s 30 s

BL 89.9 0.4 9.7 85.8 1.0 13.2

MA 1.6 80.6 17.8 1.8 82.4 15.8

CPT 3.9 7.2 88.9 5.6 10.1 84.2

15 s 10 s

BL 76.3 2.9 20.8 71.5 4.2 24.4

MA 1.7 76.8 21.5 0.9 73.5 25.6

CPT 4.4 13.6 82.0 4.7 16.4 78.9

The optimization improved balanced accuracy by 1 − 6

percentage points for most models and feature sets. The DT

algorithm seemed to benefit the most with up to 9.1 percentage

point improvement. Most of the improvements occurred within

the first iterations, and on average further improvements were

limited to <1 percentage point after ten iterations of the Bayesian

optimization algorithm (data not shown).

Overall, feature sets with lower performance (e.g., BB and

EDA), which also had more room for improvement, seemed to

benefit more from parameter optimization than feature sets with

higher performance (e.g., EOG). Interestingly, the optimization

process could not discover hyperparameters that performed better

than the default ones in some conditions (e.g., SVM-SFFS with

ECGEDAEOGBB features). These observations are in line with

Tervonen et al. (2021a) who reported a 3.7 percentage points

FIGURE 3

The di�erence of average balanced accuracy between optimized

and default hyperparameters with all models and feature sets at a

45 s window length. The “-s" after a model name denotes use of

SFFS feature selection.

increase in binary workload classification accuracy, and in general,

with most datasets the hyperparameter optimization yields little or

no improvement (Sun and Pfahringer, 2013; Tran et al., 2020).
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3.2.3 Explainability analysis
The focus on this section is on the best performing classifier,

XGB with 45 s window length and ECGEDAEOGBB feature set.

Please refer to Table 1 for naming of features.

Evaluating feature importance as absolute SHAP value for each

class allows analyzing the impact each feature had on separating the

class from others. Figure 4 shows top-20 most important features

according to absolute SHAP values. The most influential features

were related to saccade duration (six features) and all signals except

for BB had some features in the top-20. The differences between the

total importance of features were modest, but the figure shows that

e.g., features on saccade duration were especially important for the

correct classification of BL and CPT, while EDA features were more

involved in distinguishing MA.

However, absolute SHAP values show no direction of the

contributions of different features and many of the features are

difficult to interpret. Therefore, the inspection is continued with

the interpretable set of features defined in Section 2.2. First,

classification was redone with the XGB model at 45 s window

length. After optimizing hyperparameters, the balanced accuracy

with the interpretable feature set was 81.5%, which is rather similar

to the full set of features, 86.5%, considering that only 8.7% of

features were used. So, simplifying the model by reducing the

number of features by a large margin and by using features that

are easier to understand led only to slightly lower performance.

Following the classification, SHAP values were computed and a

beeswarm plot of the SHAP values was drawn in Figure 5 to more

carefully assess the ways in which features affected classification,

which is discussed next.

4 Discussion

4.1 Physiology, feature importance and
contributions to classification

Figure 5 supports the mixed model finding that physiological

reactions between the stress types are different, and for nearly all

features, the direction of the impact is similar to the direction of

the effect in the mixed models; Table 5 summarizes the findings.

The discrepancies between mixed model and SHAP results occur

since the methods are overall different, SHAP (through the XGB

classifier) also takes feature correlations into account, and despite

that some features may not show statistically significant difference

between conditions (i.e., show no difference in mixed models), they

may differ enough to improve classification which displays in the

SHAP values.

The traditional stress-related markers such as HR and HRV

parameters and mean EDA suggest that MA caused stronger effects

than the CPT and BL, while the CPT caused slightly more stress

than BL. Despite that the reactions varied between the subtasks, the

current study expresses no verification for whether MA and CPT

elicited different types of stress solely through either the HPA or the

SAM, as justified in the introduction. Next, physiological reactions

are presented and discussed in more detail signal by signal.

4.1.1 Cardiac responses: ECG
HR and its inverse, mean of IBIs, were the most important

features of the ECG parameters. As expected, HR was lower at BL

and the psychosocial stressor (MA) increased it, which shows in

both Table 3 and Figure 5. According to the mixed model results,

HR increased during CPT as compared to BL, but the direction of

the HR change in CPT was less obvious in Figure 5. The behavior

may follow from three reasons: (1) the features were normalized

to have zero mean on an individual level in the ML analysis, (2)

feature interactions affected the results and thus the SHAP values

in the ML analysis, and (3) features were considered separately

without normalization in the mixed model analysis. As seen from

Figure 5, higher HR than one’s own average increased the chance

of being classified to CPT, and lower HR, which is the case for

majority of data during CPT, decreased this chance. The result may

also reflect individual differences in HR reactions, as Mourot et al.

(2008) reported. They found that some of the participants showed

an increasing HR trend during the 3-min CPT, while the other

participants’ HR started to decrease after a short initial increase.

Sendowski et al. (1997) reported that HR began to decrease after

one minute of cold immersion. In the current study, little of the

CPT data come from the condition where CPT has lasted for over a

minute.

HRV, characterized by parameter RMSSD, classically indicates

stress (Schmidt et al., 2019): stress attenuates HRV. Interestingly,

the role of RMSSD was clear but quite modest, both in mixed

models (Table 3) and in SHAPs (Figure 5), indicating that in this

protocol, CPT was less stressful than MA. According to mixed

models, RMSSD was lower during MA than CPT and according

to the SHAP values, lower RMSSD values were associated with

lower chance of being classified to CPT and higher chance of being

classified to MA.

4.1.2 Eye parameters: EOG
The saccade duration links directly to the magnitude of the eye

movement, the longer the duration the larger the eye movement.

The saccade duration contributed strongly to all conditions,

especially in BL and CPT. Brief saccades associated with BL and

longer ones with the stress states. One reason for this distinction

may be related to the experimental setup, as the visual information

differed between BL and MAST. During the BL, participants kept

their gaze on a fixation point in the middle of a screen, whereas in

both MAST trials the instructions (two lines of text) were visible

on the screen. Although the visual stimulus matched between CPT

andMA, the trials exhibited a clear disparity: the participants made

shorter saccades in CPT. This means that the saccade duration may

also contain information about the type of stress and not just the

visual stimulus.

Saccade rate (SR) reflects eye activity: the higher the SR the

more actively the person scans the environment (e.g., visual search).

According to the mixed model analysis, the participants moved

their eyes more often in MA than in BL and CPT, which is also

visible in Figure 5: higher SR contributes to MA classification

whereas its contribution in BL and CPT is confusing. In MA, the

seed number was visible on the screen and the participants may
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FIGURE 4

Top-20 features according to absolute SHAP values of the XGB classifier at a 45 s window length and the feature set ECGEDAEOGBB. The length of

the bar for each class describes the class-wise importance of the feature.

FIGURE 5

Beeswarm plot of the SHAP values of the interpretable feature set. Markers correspond to observations in the data. The marker colors reflect feature

values and the location on the horizontal axis shows how that feature a�ects the probability of being classified into each of the three classes.

Features are ordered according to absolute SHAP value, descending.
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have scanned the number while performing mental calculation,

which may increase SR compared to BL and CPT.

Blink rate (BR) and time between blinks (TBB) both reflect

how actively a person blinks. MA induced the highest BR, but

also CPT increased the BR compared to BL. In earlier studies,

CPT and painful stimulation in general have increased the BR

(Paparella et al., 2020). Attentional engagement decreases the

number of blinks during cognitively demanding tasks that require

visual attention (Maffei and Angrilli, 2019; Ranti et al., 2020). Here

MA was cognitively demanding but required no visual attention.

Similar MA tasks have increased the BR and giving answer verbally

has increased BR significantly compared to a non-verbal condition

(Schuri and von Cramon, 1981). Moreover, MA in this study

contained time pressure and penalization exposing participants to

a social-evaluative threat. This uncomfortable situation might have

caused anxiety or even fear, which also increases BR (Maffei and

Angrilli, 2019).

Blink duration, i.e., the time the eye is closed while blinking,

contributes positively to CPT (longer blinks) and negatively to

BL and MA (shorter blinks). Increased blink duration indicates

sleepiness (Schleicher et al., 2008), however, decreased vigilance

increases especially the re-opening time of the eye, which in

turn skews the blink’s waveform (blink skewness). Here the blink

skewness showed no changes in different stress stages, suggesting

that the blink duration may be a sufficient indicator of the

discomfort and even pain experienced during the cold pressor.

However, no literature was found addressing the link between blink

duration and discomfort or pain.

4.1.3 Skin conductivity response: EDA
The amplitude of the phasic EDA increased in both stressor

tasks (Table 3), but the effect was stronger in MA, indicating

higher stress, and MA and CPT indeed differed from each other

significantly. The same was seen even more clearly in the number

of EDA peaks: there was no difference between CPT and BL but

both were different from MA. These observations are in line with

SHAP values in Figure 5. Higher values in phasic EDA and number

of peaks were related to higher chance of being classified into

MA. Consequently, higher values decreased the chance of being

classified into BL and CPT and lower values increased this chance.

EDA activity is linked to the arousal level and activation of

the sympathetic ANS branch, suggesting that CPT causes slightly

larger sympathetic activation than BL, and MA clearly larger than

CPT. Recently, Lee (2021) provided a comprehensive summary

of the connection between EDA and engagement, attention, and

alertness: increased EDA was linked to e.g., cognitive effort during

solving arithmetic problems or reading a map, and state anxiety

while being asked to give a public unplanned presentation. This

agrees with the results in this study: EDA response is strong in

MA, demanding cognitive effort and attention. EDA has also been

used in assessment of pain perception and the feasibility of an EDA-

based algesimeter was introduced in Storm (2008) with promising

results. On a group level, EDA appears to be less sensitive pain

marker than HR, yet on an individual level, EDA correlates with

pain ratings better than HR (Loggia et al., 2011). However, in the

MAST protocol, the induced painmay not be comparable to stimuli

used in actual pain studies and care should be used in comparing

the results.

4.1.4 Cognitive load: EEG
Brainbeat indicates the level of cognitive loading and attention

(Holm et al., 2009). Mixed model analysis (Table 3) accentuated

that only the MA increases the BB. According to Figure 5, BB had

low feature importance, but its behavior was curiously different

from other features. High BB values related to higher chance of

being classified to BL and MA, and low BB values to CPT. MA

challenges one cognitively, but BL is supposed to be a relaxing and

even boring phase of the protocol, which, when looking at HR,

HRV and EDA, seems to be so. However, the brain seems to remain

relatively active during BL, whereas during CPT, the cognitive load

seems to diminish, possibly as a recovery reaction following the

high-load MA phase. In the CPT phase, the participants mentally

relax from the MA, which is also visible in RMSSD, even if the

CPT itself is physically uncomfortable. Interestingly, many EEG

studies of pain have used CPT as pain induction method (Chang

et al., 2002; Chouchou et al., 2021), and those studies have found

increased frontal theta and decreased parietal alpha activity in

pain condition, i.e., effects that would show as increased BB. In

those experiments, the CPT duration has typically been longer,

cumulating the pain sensation, and not preceeded by a cognitively

stressful phase.

4.2 Characteristics and consequences of
the stress induction protocol

When comparing the MAST results to results from protocols

inducing only one type of stress, there are some differences

to be considered. The trials in MAST last from 45 to 90 s. In

protocols employing stressors with longer durations, adaptation

and habituation may contribute more. On the other hand, in

MAST, repetition introduces a learning effect, especially in MA.

As MAST has no recovery delay between MA and CPT phases,

the physiological adaptation to the new stressor will take some

time, and the response time will depend on the biosignal. The

adaptation time, or physiological leakage, makes classificationmore

challenging, especially during the first windows, which may be

erroneously classified into the previous subtask. The dynamics of

the physiological signals during MAST as time series is an obvious

research need arising from the current work.

The CPT subtasks in MAST last for at most 90 s and the

hand is warmed up by a heatpad during the interleaved MA trials.

Compared to pain induction protocols where the maximum pain

rating is typically reached at around 90 s through the 3-min CPT

(Chang et al., 2002), the average pain in MAST is likely lower than

in a standard pain-induction CPT. Moreover, the CPT in this study

was applied to the right (dominant) hand, for practical purposes,

as the left hand was kept immobile to ensure good signal in EDA,

and the dominant hand was needed to operate the questionnaires.

McGinley and Friedman (2015) have indicated that CPT would

produce larger effects when applied to the left hand. This indeed

could have produced even stronger responses and in protocols
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where the target hand can be selected freely, the left one should be

favored.

4.3 Machine learning pipeline components

Table 6 presents a summary of the effect of different ML

components and learnings from them. The effect of each

component was assessed as difference in average balanced accuracy

TABLE 5 Summary of the e�ects of CPT and MA to the interpretable

features as compared to BL.

Feature Mixed models SHAP

ecg_hr_mean Increased in both Agrees, but less

obvious in CPT

ecg_hrv_ibi_mean Decreased in both Agrees, but less

obvious in CPT

ecg_hrv_rmssd Decreased in both Agrees in MA

eda_mean Increased in both Agrees in MA

eda_npeaks Increased in MA Agrees in MA

eog_blink_br_mean Increased in both Agrees, but less

obvious in CPT

eog_blink_bdur_mean Increased in CPT Agrees in CPT, but

decreased in MA

eog_blink_tbb_mean Decreased in both Agrees in CPT, but

less obvious in MA

eog_blink_bskew_mean No difference Increased in MA,

decreased in CPT

eog_sac_sr_mean Increased in MA Agrees in MA, but

decreased in CPT

eog_sac_sdur_mean Increased in both Agrees

eog_sac_tbs_mean No difference Small effect,

decreased in CPT

brainbeat Increased in MA Agrees in MA,

decreased in CPT

across all the other components. The average applied was harmonic

mean, since the average was taken over relative values (balanced

accuracies). Overall, the selection of the signals to measure and to

use for classification showed the largest effect, whereas the other

choices resulted with moderate to low effect.

Therefore, practitioners and researchers should pay special

attention to the choice of the signals they measure and consider the

viability of measuring several for their application. Once the signals

have been selected, using longer feature windows or selecting

features with SFFS seem to be the best alternatives. However,

SFFS comes with a notable computational load, which may hinder

its applicability especially with larger datasets. The choice of the

duration of feature windows was limited to at most 45 s in this

study because of the data collection protocol. Short windows enable

closer-to-real-time state detection, but the performance decreased

as window duration decreased. The overall impression has been

noted before (Gjoreski et al., 2017; Siirtola, 2019; Tervonen et al.,

2021a). This likely happens since shorter feature windows enclose

less data and thus, less information, and less physiological events

than longer ones. In addition, shorter windows contain fewer

samples and consequently, the contribution of noise and transient

artifacts is higher than in longer windows. Considering that the 10 s

window contained almost five times less data than the 45 s window

but still approximately three out of four classifications were correct,

shorter windows may have some use in applications where more

timely state detection is necessary, such as driver monitoring. In

some other domains, like chronic stress management, hourly or

even daily stress detection may be sufficient. Thus, the selection of

window duration comes down to requirements of the application

under investigation, which should be considered when interpreting

the results in this paper.

Reducing the number of features decreasedmodel performance

by 5 percentage points. However, such reduction allowed to study

the features effects on classification and reflect them to human

physiology (see Section 4.1). This examination showed that the

model concentrated on physiologically relevant phenomena. Such

analysis gives the model some ecological validity and helps build

trust to it. Had it been conducted with the full set of 150

TABLE 6 Observations made from the investigated ML pipeline components, and their e�ect on balanced accuracy.

Choice Observations Comparison E�ect

Signals to measure - EOG and ECG were the best single signals - to EDA and to BB +0.11,+0.25

- Adding signals improved performance - ECGEDAEOGBB to EOG +0.06

- Best two signal combination was ECGEDA - to EOGBB +0.01

Length of feature windows - Longer windows performed better - 45 s window to 10 s window +0.05

Feature selection - SFFS was useful but at high computational cost - models with vs. without SFFS +0.07

- Interpretable set of features based on SHAP values

performed nearly as well as the full set

- Interpretable to full feature set with XGB

and 45 s window

−0.05

Classifier - XGB showed highest performance - to the next best model RF +0.02

Hyperparameter optimization - Benefit rather limited - optimized to default parameters +0.02∗

- Few iterations of Bayesian optimization suffices - 50 vs. 5 iterations +0.003∗

- Models and feature sets with poorer performance

seemed to benefit more

- see Figures 2, 3 -

Effect values are harmonic means of balanced accuracies obtained across the other choices.
∗Arithmetic mean, since some values were negative.
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features, making conclusions at such detailed level would have

been overwhelming. Therefore, opting for fewer features in favor

of interpretability is desirable in any application that requires trust

to the ML model.

4.4 Limitations and future work

The sample size in the dataset was rather small, but comparable

to sample sizes documented in several review articles: Giannakakis

et al. (2022) reported an average of 23 participants in stress

detection studies, Schmidt et al. (2019) an average of 21 participants

in stress and affect detection studies, and Vos et al. (2023) conveyed

an average sample size of 21 in open stress detection datasets, and

an average number of participants of 19 in stress detection studies.

As noted in Vos et al. (2023), the problem of small sample sizes is

common in machine learning based stress detection research.

The critique extends to this research. Moreover, the

sample analyzed comprised young and healthy people and

the measurement setup was too heavy to incorporate in real-life

field studies. However, as an explorative study, a homogeneous

sample helps diminish the effects of different confounding factors,

and the main goals were to determine whether the reactions in

ECG, EDA, EOG, and BB deviated between the baseline and

stress types and whether a ML model could detect the stress types

from baseline. The results indicate sufficiently positive outcome

to justify future studies with a larger and more diverse sample,

or potentially with several datasets to increase sample size and

facilitate cross-dataset comparisons. As the features employed for

classification can also be extracted from light-weight wearable

devices, semi-constrained and even real-life studies with several

types or levels of stress and more dynamic state changes are viable.

The dynamicity posed a challenge already in this study, as

the MAST protocol lacks rest periods between the two stressor

tasks. This likely caused some physiological leakage when the

task changed, affecting classification performance. As resting and

recovering after each stressor is impossible in real-life, detection

methodologies must be able to handle such complication, and

future studies should with several stress types would benefit from

a close inspection of the amount of leakage and its implications to

classification.

In the current study, missing data exhibited mainly in EOG

features in windows with few or no blinks conducted and in

windows with too few or too small saccades, or too noisy

signal to extract saccades. Windows with missing values were

dropped after feature fusion to allow the models to benefit from

all available data. This choice, however, caused some variation

in the number of samples per feature set at each window

length, displayed in Table 2. Dropping the values before feature

fusion improved classification performance on average by 0.6%,

so the effect of missing data handling was rather small. Since

missing values are bound to occur either randomly due to e.g.,

sensor malfunction or systematically due to not making any

blinks, handling these cases carefully is important for robust

stress detection in the field. Potential future solutions include

imputation and maximum likelihood methods, or the detection

could rely on single signal models when data from one signal is

missing.

Finally, stress reactions are subjective. The current study

acknowledged this only by normalizing feature separately for

each participant before classification. While the approach is

common and shown to be effective, it requires a full set

of data from each participant, and thus it is infeasible in

application which expect new users: features could not be

normalized for the new person until sufficient data was collected.

Furthermore, the participant-wise balanced accuracy varied from

56 to 100% for the most accurate model, and so the model

performed poorly for some people. It could be that those persons

were indeed not stressed, but to improve the performance

and the practical value of the model, future work could

consider personalization approaches that improve the performance

for the most difficult participants and operate on minimal

data.

5 Conclusions

A set of physiological signals was successfully used to

distinguish two stress conditions from each other and from a

baseline condition, both using a mixedmodel analysis and applying

ML methods. Mixed model analysis found that physiological

responses to the different stressors varied and ML models could

classify the stressor tasks and baseline with decent performance.

The two analysis methods agreed well on the importance and

direction of the effect of various physiological features, and

these findings were in line with the existing literature on stress

psychophysiology. The contribution of features reflecting ECG and

EOG outweighed the impact of EDA and brainbeat (EEG).

In stress type classification usingML, signal windowing, feature

selection, classifier choice, and hyperparameter optimization

attenuated in favor of the choice of the biosignals and computed

features. The work demonstrated that stress type detection was

feasible using measurements that can be implemented on wearable

devices. The best accuracy was achieved using a multimodal

set of biosignals and features. Subsequently, the limited input

information could not be compensated by choices made in the data

analysis.

As the first investigation to the divergent physiological

reactions within the MAST, the study provides a basis for near

real-time acute stress type detection with dynamic state changes.

However, larger cross-dataset comparisons are needed before

applying it in real-life use cases.
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